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Almost every programming language’s syntax includes a notion of binder and corresponding bound occur-
rences, along with the accompanying notions of a-equivalence, capture avoiding substitution, typing contexts,
runtime environments, and so on. In the past, implementing and reasoning about programming languages
required careful handling to maintain the correct behaviour of bound variables. Modern programming lan-
guages include features that enable constraints like scope safety to be expressed in types. Nevertheless, the
programmer is still forced to write the same boilerplate over again for each new implementation of a scope
safe operation (e.g., renaming, substitution, desugaring, printing, etc.), and then again for correctness proofs.

We present an expressive universe of syntaxes with binding and demonstrate how to (1) implement scope
safe traversals once and for all by generic programming; and (2) how to derive properties of these traversals
by generic proving. Our universe description, generic traversals and proofs, and our examples have all been
formalised in Agda and are available in the accompanying material.
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1 INTRODUCTION

In modern typed programming languages, programmers writing embedded DSLs [Hudak 1996]
and researchers formalising them can now use the host language’s type system to help them.
Using Generalised Algebraic Data Types (GADTs) or the more general indexed families of Type
Theory [Dybjer 1994] for representing their syntax, programmers can statically enforce some of
the invariants in their languages. Managing variable scope is a popular use case [Altenkirch and
Reus 1999] as directly manipulating raw de Bruijn indices is error-prone. Solutions range from
enforcing well scopedness to ensuring full type and scope correctness. In short, we use types to
ensure that “illegal states are unrepresentable”, where illegal states are ill scoped or ill typed terms.

Despite the large body of knowledge in how to use types to define well formed syntax (see
the Related Work in Section 9), it is still necessary for the working DSL designer or formaliser
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to redefine essential functions like renaming and substitution for each new syntax, and then to
reprove essential lemmas about those functions. To reduce the burden of such repeated work and
boilerplate, we apply the methodology of datatype-genericity to programming and proving with
syntaxes with binding,.

To motivate our approach, let us look at the formalisation of an apparently straightforward
program transformation: the inlining of let-bound variables by substitution. You have two languages:
the source (S), which has let-bindings, and the target (T), which only differs in that it does not:

Su=x|SS|Ax.S|letx=Sin$S Tu=x|TT| Ax.T

Breaking the task down, you need to define an operational semantics for each language, define
the program transformation itself, and prove a correctness lemma that states each step in the source
language is simulated by zero or more steps of the transformed terms in the target language. In the
course of doing this, you discover that you actually have a large amount of work to do:

(1) To define the operational semantics you need to define substitution, and hence renaming, for
both the source and target languages, even though they are very similar;

(2) In the course of proving the correctness lemma, you discover that you need to prove eight
lemmas about the interactions of renaming, substitution, and transformation that are all
remarkably similar, but must be stated and proved separately (e.g, as in [Benton et al. 2012]).

Even after doing all of this work, you have only a result for a single pair of source and target
languages. If you were to change your languages S or T, you would have to repeat the same work
all over again (or at least do a lot of cutting, pasting, and editing).

Using the universe of syntaxes with binding we present in this paper, we are able to solve this
repetition problem once and for all.

Content and Contributions. We start with primers on scoped and sorted terms (Section 2), scope
and sort safe programs acting on them (Section 3), and programmable descriptions of data types
(Section 4). These introductory sections help us build an understanding of the problem at hand as
well as a toolkit that leads us to the novel content of this paper: a universe of scope safe syntaxes with
binding (Section 5) together with a notion of scope safe semantics for these syntaxes (Section 6).
This gives us the opportunity to write generic implementations of renaming and substitution
(Section 6.2), a generic let-binding removal transformation (generalising the problem stated above)
(Section 7.1), and normalisation by evaluation (Section 7.2). Further, we show how to construct
generic proofs by formally describing what it means for a semantics to be able to simulate another
one (Section 8.1), or for two semantics to be fusable (Section 8.2). This allows us to prove the
lemmas required above for renaming and substitution generically, for every syntax in our universe.

Our implementation language is Agda [Norell 2009]. However, our techniques are language inde-
pendent: any dependently typed language at least as powerful as Martin-Lof Type Theory [Martin-
Lof 1982] equipped with inductive families [Dybjer 1994] such as Coq [The Coq Development Team
2017], Lean [de Moura et al. 2015] or Idris [Brady 2013] ought to do.

2 A PRIMER ON SCOPE AND SORT SAFE TERMS

Scope safe terms follow the discipline that every variable is either bound by some binder or is
explicitly accounted for in a context. Bellegarde and Hook (1994), Bird and Patterson (1999), and
Altenkirch and Reus (1999) introduced the classic presentation of scope safety using inductive
families [Dybjer 1994] instead of inductive types to represent abstract syntax. Indeed, using a family
indexed by a Set, we can track scoping information at the type level. The empty Set represents the
empty scope. The functor 1 + (_) extends the running scope with an extra variable.
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An inductive type is the fixpoint of an endofunctor on Set. Similarly, an inductive family is the
fixpoint of an endofunctor on Set — Set. Using inductive families to enforce scope safety, we get
the following definition of the untyped A-calculus: T(F) = AX €Set. X + (F(X) X F(X)) + F(1 + X).
This endofunctor offers a choice of three constructors. The first one corresponds to the variable
case; it packages an inhabitant of X, the index Set. The second corresponds to an application node;
both the function and its argument live in the same scope as the overall expression. The third
corresponds to a A-abstraction; it extends the current scope with a fresh variable. The language is
obtained as the fixpoint of T:

Lam = piF € Set>®* . 1X eSet. X + (F(X) x F(X)) + F(1 + X)

Since ‘Lam’ is a endofunction on Set, it makes sense to ask whether it is also a functor and a monad.
Indeed it is, as Altenkirch and Reus have shown. The functorial action corresponds to renaming,
the monadic ‘return’ corresponds to the use of variables, and the monadic ‘join’ corresponds to
substitution. The functor and monad laws correspond to well known properties from the equational
theories of renaming and substitution. We will revisit these properties below in Section 8.2.

A Mechanized Typed Variant of Altenkirch and Reus’ Calculus. There is no reason to restrict this
technique to fixpoints of endofunctors on Set>¢. The more general case of fixpoints of (strictly
positive) endofunctors on Set/ can be endowed with similar operations by using Altenkirch,
Chapman and Uustalu’s relative monads (2010; 2014).

We pick as our J the category whose objects are inhabitants of List I (Iis a parameter of the
construction) and whose morphisms are thinnings (see Section 3). This List Iis intended to represent
the list of the sort (/ kind / types depending on the application) of the de Bruijn variables in scope.
We can recover an untyped approach by picking I to be the unit type. Given this typed setting, our
functors take an extra I argument corresponding to the type of the expression being built. This is
summed up by the large type I -Scoped:

_—Scoped : Set — Set;
I-Scoped = I — List I — Set

We use Agda’s mixfix operator notation where underscores denote argument positions.

To lighten the presentation, we exploit the observation that the current scope is either passed
unchanged to subterms (e.g. in the application case) or extended (e.g. in the A-abstraction case) by
introducing combinators to build indexed types.

_ 5 _:(ST: A— Set) > (A — Set) F: (A—> A) — (A— Set) > (A — Set)
(S>TNa=Sa—Ta (frDa=T(fa

X_:(ST: A — Set) = (A — Set) K : Set — (A — Set) [[]:(A— Set) — Set
(SxNa=SaxTa kSa=S [T]=V{ad— Ta

We lift the function space and the product type pointwise with _ — _ and _X_ respectively,
silently threading the underlying scope. The _+_ makes explicit the adjustment made to the index
by a function, conforming to the convention (see e.g. [Martin-Lof 1982]) of mentioning only context
extensions when presenting judgements and write f+ T where fis the modification and T the
indexed Set it operates on. Although it may seem surprising at first to define binary infix operators
as having arity three, they are meant to be used partially applied, surrounded by [_] which turns an
indexed Set into a Set by implicitly quantifying over the index. Lastly, k is the constant combinator,
ignoring the index.
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We make — associate to the right as one would expect and give it the highest precedence level
as it is the most used combinator. These combinators lead to more readable type declarations. For
instance, the compact expression [ suc + (P X Q) = R] desugars to the more verbose type V {i} —
(P(suci) X Q(suci)) = Ri.

As the context comes second in the definition of _-Scoped, we can readily use these combinators
to thread, modify, or quantify over the scope when defining such families:

data Var : I -Scoped where data Lam : Type —-Scoped where
z: | (i=_)rVari] V: [Varo = Lamo ]
s: [Vari—> (j=_)rVari] A: [Lam(c =1) > Lamo = Lamrt ]
L: [(c=)rlLamt = Lam (o0 = 1) ]

The inductive family Var represents well scoped and well kinded de Bruijn (1972) indices. Its
z (for zero) constructor refers to the nearest binder in a non-empty scope. The s (for successor)
constructor lifts a a variable in a given scope to the extended scope where an extra variable has
been bound. Both of the constructors’ types have been written using the combinators defined above.
They respectively normalise to:

z:V ixs— Vari(i: xs) s:Vijxs— Varixs— Vari(j: xs)

The Type —Scoped family Lam is Altenkirch and Reus’ simply typed A-calculus representation.

3 A PRIMER ON TYPE AND SCOPE SAFE PROGRAMS

The scope-and-type safe representation described in the previous section is naturally only a start:
once the programmer has access to a good representation of the language they are interested in,
they will naturally want to (re)implement standard traversals manipulating terms. Renaming and
substitution are the two most typical examples of such traversals. Now that well-typedness and
well-scopedness are enforced statically, all of these traversals have to be implemented in a type and
scope safe manner. These constraints show up in the types of renaming and substitution:

ren: ([ -Env) Var A - Lamo T - Lamo A  sub: (I -Env) Lam A — Lam o — Lam o A

ren p (VK = [V]en (lookup p k) subp (Vk) =[V]su (lookup p k)
ren p (A ft) =A(renpf)(renpt) subp (Aft) =A(subpf) (subp i)
ren p(Lb) =L (ren (extend, p) b) subp (Lb) =L (sub (extendsy, p) b)

Fig. 1. Type and Scope Preserving Renaming and Substitution

We have voluntarily hidden technical details behind some auxiliary definitions left abstract here:
[V] and extend. Their implementations are distinct for ren and sub but they serve the same purpose:
[V] is used to turn a value looked up in the evaluation environment into a term and extend is used
to alter the environment when going under a binder. This presentation highlights the common
structure between ren and sub which we will exploit later in this section, particularly in Figures 3
and 4 where we define an abstract notion of semantics and the corresponding generic traversal.

Both renaming and substitution are defined in terms of environments (I' ~Env) V' A that describe
how to associate a value V (variables for renaming, terms for substitution) well scoped and typed
in A to every entry in I'. Environments are defined as the following record structure (using a record
helps Agda’s type inference reconstruct the type of values V for us):

record _—Env (" : List I) (V : I -Scoped) (A : List I) : Set where
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constructor pack
field lookup : V{i} = Var il —» V iA

As we have already observed, the definitions of renaming and substitution have very similar
structure. Abstracting away this shared structure would allow for these definitions to be refactored,
and their common properties to be proved in one swift move.

Previous efforts in dependently typed programming [Allais et al. 2017; Benton et al. 2012] have
achieved this goal and refactored renaming and substitution, but also normalisation by evaluation,
printing with names or CPS conversion as various instances of a more general traversal. As we will
show in Section 7.3, typechecking in the style of Atkey (2015) also fits in that framework. To make
sense of this body of work, we need to introduce three new notions: Thinning, a generalisation of
renaming; Thinnables which are types that permit thinning; and the O functor, which freely adds
Thinnability to any indexed type. We use O, and our compact notation for the indexed function
space between indexed types, to crisply encapsulate the additional quantification over environment
extensions which is typical of Kripke semantics.

Thinning : List I — List I — Set
Thinning T A = (I' —=Env) Var A

Thinnings subsume more structured notions such as the Category of Weakenings [Altenkirch et al.
1995] or Order Preserving Embeddings [Chapman 2009]. In particular, they do not prevent the user
from defining arbitrary permutations or from introducing contractions although we will not use
such instances. However, such extra flexibility will not get in our way, and permits a representation
as a function space which grants us monoid laws “for free” as per Jeffrey’s observation (2011).

The O combinator turns any (List I)-indexed Set into one that can absorb thinnings. This is
accomplished by abstracting over all possible thinnings from the current scope, akin to an S4-
style necessity modality. The axioms of S4 modal logic incite us to observe that the functor O is
a comonad: extract applies the identity Thinning to its argument, and duplicate is obtained by
composing the two Thinnings we are given. The expected laws hold trivially thanks to Jeffrey’s
trick mentioned above.

The notion of Thinnable is the property of being stable under thinnings; in other words Thinnables
are the coalgebras of O. It is a crucial property for values to have if one wants to be able to push
them under binders. From the comonadic structure we get that the O combinator freely turns any
(List I)-indexed Set into a Thinnable one.

O : (List I — Set) — (List I — Set) Thinnable : (List I — Set) — Set
(@ T =[ThinningT' = T] Thinnable T=[ T - O T]
extract [T > T ] th™ : Thinnable (O T)

duplicate :[OT->o0@7T) ] th® = duplicate

Fig. 2. The O comonad, Thinnable, and the cofree Thinnable.

As Allais, Chapman, McBride and McKinna (ACMM) (2017) shows, equipped with these new
notions we can define an abstract concept of semantics for our scope-and-type safe language (cf.
Figures 3 and 4). Broadly speaking, a semantics turns our deeply embedded abstract syntax trees
into the shallow embedding of the corresponding parametrised higher order abstract syntax term.
We get a choice of useful scope-and-sort safe traversals by using different ‘host languages’ for this
shallow embedding.
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Semantics, specified in terms of a record Sem, are defined in Figure 3 in terms of a choice of
values V and computations C. Realisation of a semantics will produce a computation in C for
every term whose variables are assigned values in V' as demonstrated in Figure 4. A semantics
must satisfy constraints on the notions of values V and computations C at hand. First of all, values
should be thinnable so that sem may push the environment under binders. Second, the set of
computations needs to be closed under various combinators which are the semantical counterparts
of the language’s constructors. The semantical counterpart of application is an operation that takes
a representation of a function and a representation of an argument and produces a representation
of the result. The interpretation of the A-abstraction is of particular interest: it is a variant on the
Kripke function space one can find in normalisation by evaluation. In all possible thinnings of the
scope at hand, it promises to deliver a computation whenever it is provided with a value for its
newly bound variable. This is concisely expressed by the type (O (V ¢ — C 1)).

record Sem (V C : Type —Scoped) : Set where
field th" :V{o} — Thinnable (V o)
[vl : (Vo - Co ]
[A] - [Cloc=1) >Co SCr ]
[L] :(c:Type)— [O(Ve > Cr1) S5 Clo=1) |

Fig. 3. Semantics for Lam

Agda allows us to package, together with the fields of the record Sem, the generic traversal
function sem, which is brought into scope for any instance of Sem. We thus realise the promise
made earlier, namely that any given Sem V C induces a function which, given a value in V for
each variable in scope, transforms a Lam term into a computation C.

sem: (I -Env) VA — (Lamo T — C o A)

sem p (V k) [V] (lookup p k)

sem p (A ft) =[A] (sem p f) (sem p 1)

sem p (L b) [L] _(\ o v— sem (extend o p v) b)

Fig. 4. Fundamental Lemma of Semantics for Lam, relative to a given Sem V C

Coming back to renaming and substitution, we see that they both fit in the Sem framework. We
notice that the definition of substitution depends on the definition of renaming: to be able to push
terms under binder, we need to have already proven that they are thinnable.

In both cases we use (pack s) (where pack is the constructor for environments and s, defined
in Section 2, is the function lifting an existing de Bruijn variable into an extended scope) as the
definition of the thinning embedding I" into ¢ :: T'.

We also include the definition of a basic printer relying on a name supply to highlight the fact
that computations can very well be effectful. The Printing semantics is defined by using Strings
as values and State N String as computations. We use a Wrapper with a type and a context as
phantom types in order to help Agda’s inference propagate the appropriate constraints. We define
a function fresh that generates new concrete names using a State monad.

The wrapper Wrap does not depend on the scope T so it is automatically a Thinnable functor.
We jump straight to the definition of the printer. To print an application, we produce a string
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Renaming : Sem Var Lam Substitution : Sem Lam Lam
Renaming = record Substitution = record
{thY = thV {thY =Xtp—renpt
[Vl =V [Vl =id
s[Al =A (Al =A
;[L]  =Xo b— L(b(packs)z)} ;[L]  =Xo b— L(b(packs)(V2z)}

ren: ([ -Env) Var A - Lamo T - Lamo A  sub:(I -Env) Lam A — Lam o — Lam o A
ren = sem Renaming sub = sem Substitution

Fig. 5. Renaming and Substitution as Instances of Sem

record Wrap (A : Set) (o : Type) (T : List Type) : Set where
constructor MkW; field getW : A

fresh : V o — State N (Wrap String o (o :: T'))
fresh o = get >= X\ x — put (suc x) > return (MkW (show x))

Fig. 6. Wrapper and fresh name generation

representation of the term in function position, then of its argument and combine them by putting
the argument between parentheses. To print a A-abstraction, we start by generating a fresh name
for the newly-bound variable, use that name to generate a string representing the body of the
function to which we prepend a “A” binding the fresh name.

Printing : Sem (Wrap String) (Wrap (State N String))
Printing = record
{thY = thWrer
; [V]
 [A]

s [L]

mapWraP return

A mfmt — MKW $ getW mf ==\ f— getW mt>=\t —
return $ f+ "(" H ")

Ao mb— MKW $ fresho >= X\ x—

getW (mb extend x) =\ b —

return $ "\" + getW x+ "." + b}

Fig. 7. Printing as an instance of Sem

Both printing and renaming highlight the importance of distinguishing values and computations:
the type of values in their respective environments are distinct from their type of computations.

All of these examples are already described at length by ACMM (2017) so we will not spend any
more time on them. They have also obtained the simulation and fusion theorems demonstrating
that these traversals are well behaved as corollaries of more general results expressed in terms of
sem. We will come back to this in Section 8.1.

One important observation to make is the tight connection between the constraints described in
Sem and the definition of Lam: the semantical counterparts of the Lam constructors are obtained
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90:8 G. Allais, R. Atkey, J. Chapman, C. McBride, J. McKinna

by replacing the recursive occurences of the inductive family with either a computation or a Kripke
function space depending on whether an extra variable was bound. This suggests that it ought
to be possible to compute the definition of Sem from the syntax description. Before doing this in
Section 5, we need to look at a generic descriptions of datatypes.

4 A PRIMER ON THE UNIVERSE OF DATA TYPES

Chapman, Dagand, McBride and Morris (CDMM) (2010) defined a universe of data types inspired
by Dybjer and Setzer’s finite axiomatisation of Inductive-Recursive definitions (1999) and Benke,
Dybjer and Jansson’s universes for generic programs and proofs (2003). This explicit definition of
codes for data types empowers the user to write generic programs tackling all of the data types one
can obtain this way. In this section we recall the main aspects of this construction we are interested
in to build up our generic representation of syntaxes with binding.

The first component of CDMM’s universe’s definition is an inductive type of Descriptions of
strictly positive functors from Set’ to Set’. It has three constructors: ‘c to store data (the rest of
the description can depend upon this stored value), X to attach a recursive substructure indexed
by J and ‘M to stop with a particular index value.

The recursive function [_] makes the interpretation of the descriptions formal. Interpretation of
descriptions give rise right-nested tuples terminated by equality constraints.

data Desc (I J: Set) : Set; where [_] : Desc I§— (J— Set) — (I — Set)
‘c:(A:Set) - (A— DescIj) — DescI] [‘cAd |Xi=3[acA]([da] X))
‘X:J— DescIJ— DescIj [ Xjd [Xi=Xjx[d]Xi
‘B:1— Descl]J [‘my  [Xi=i=sV{

Fig. 8. Datatype Descriptions and their Meaning as Functors

These constructors give the programmer the ability to build up the data types they are used to.
For instance, the functor corresponding to lists of elements in A stores a Boolean which stands for
whether the current node is the empty list or not. Depending on its value, the rest of the description
is either the “stop” token or a pair of an element in A and a recursive substructure i.e. the tail of the
list. The List type is unindexed, we represent the lack of an index with the unit type T.

listD : Set — Desc T T
listD A= ‘o Bool $ \ isNil —
if isNil then ‘W tt
else ‘c A\ _ — Xtt (‘W tt))

Fig. 9. The Description of the base functor for List A

Indexes can be used to enforce invariants. For example, the type Vec A n of length-indexed lists.
It has the same structure as the definition of listD. We start with a Boolean distinguishing the
two constructors: either the empty list (in which case the branch’s index is enforced to be 0) or a
non-empty one in which case we store a natural number n, the head of type A and a tail of size n
(and the branch’s index is enforced to be suc n).

The payoff for encoding our datatypes as descriptions is that we can define generic programs for
whole classes of data types. The decoding function [_] acted on the objects of Set’, and we will
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vecD : Set — Desc NN
vecD A= ‘o Bool $ \ isNil —
if isNil then ‘W 0
else cNA\n— ‘cd AN_— Xn(HE (suc n)))

Fig. 10. The Description of the base functor for Vec A n

now define the function fmap by recursion over a code d. It describes the action of the functor
corresponding to d over morphisms in Set’. This is the first example of generic programming over
all the functors one can obtain as the meaning of a description.

fmap:(d:DescIf) > [X 5 Y] > [[d] X 5 [d] Y]
fmap (0 Ad) f(a,v) =(a,fmap(da)fv)

fmap (Xjd) f(r,v) =(fr,fmapdfv)

fmap (‘M i) ft =t

Fig. 11. Action on Morphisms of the Functor corresponding to a Description

All the functors obtained as meanings of Descriptions are strictly positive. So we can build the
least fixpoint of the ones that are endofunctors (i.e. the ones for which I equals J). This fixpoint is
called p and its iterator is given by the definition of fold d* .

data p (d: DescI1I): Size — I — Set where
‘con:[d](uds)i—pd(Ts)i

fold: (d:DescI) - [[d] X - X] —> [pds > X]
fold d alg (‘con 1) = alg (fmap d (fold d alg) t)

Fig. 12. Least Fixpoint of an Endofunctor and Corresponding Generic Fold

The CDMM approach therefore allows us to generically define iteration principles for all data
types that can be described. These are exactly the features we desire for a universe of data types
with binding, so in the next section we will see how to extend CDMM’s approach to include binding.

The functor underlying any well scoped and sorted syntax can be coded as some Desc (I X
List I) (I x List I), with the free monad construction from CDMM uniformly adding the variable
case. Whilst a good start, Desc treats its index types as unstructured, so this construction is blind
to what makes the List I index a scope. The resulting ‘bind’ operator demands a function which
maps variables in any sort and scope to terms in the same sort and scope. However, the behaviour
we need is to preserve sort while mapping between specific source and target scopes which may
differ. We need to account for the fact that scopes change only by extension, and hence that our
specifically scoped operations can be pushed under binders by weakening.

ZNB In Figure 12 the Size [Abel 2010] index added to the inductive definition of u plays a crucial role in getting the
termination checker to see that fold is a total function.
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5 A UNIVERSE OF SCOPE SAFE AND WELL KINDED SYNTAXES

Our universe of scope safe and well kinded syntaxes follows the same principle as CDMM’s universe
of datatypes, except that we are not building endofunctors on Set any more but rather on I -Scoped.
We now think of the index type I as the sorts used to distinguish terms in our embedded language.
The ‘o and ‘B constructors are as in the CDMM Desc type, and are used to represent data and
index constraints respectively. What distinguishes this new universe Desc from that of Section 4
is that the X constructor is now augmented with an additional List I argument that describes
the new binders that are brought into scope at this recursive position. This list of the kinds of
the newly-bound variables will play a crucial role when defining the description’s semantics as a
binding structure in Figures 14, 15 and 16.

data Desc (I: Set) : Set; where
‘c:(A:Set) > (A— Descl) — Descl
‘X: List I — I — Desc I — Desc I
‘W — Desc I

Fig. 13. Syntax Descriptions

The meaning function [_] we associate to a description follows closely its CDMM equivalent.
It only departs from it in the ‘X case and the fact it is not an endofunctor on I —Scoped; it is
more general than that. The function takes an X of type List I — I -Scoped to interpret ‘X A j (i.e.
substructures of sort j with newly-bound variables in A) in an ambient scope I as X A jT.

[_] : Desc I — (List I — I -Scoped) — I -Scoped
[‘cAd ]Xil=3[acA]([da] Xil)
[‘XAjd ] XiT=XATx[d]XiTl

[‘W¢  [XiT-i=¥

Fig. 14. Descriptions’ Meanings

The astute reader may have noticed that [_] is uniform in X and I'; however refactoring [_] to
use the partially applied X _ _T following this observation would lead to a definition harder to use
with the combinators for indexed sets described in Section 2 which make our types much more
readable.

If we pre-compose the meaning function [[_] with a notion of ‘de Bruijn scopes’ (denoted Scope
here) which turns any I -Scoped family into a function of type List I — I -Scoped by appending
the two List indices, we recover a meaning function producing an endofunctor on I -Scoped. So far
we have only shown the action of the functor on objects; its action on morphisms is given by a
function fmap defined by induction over the description just like in Section 4.

Scope : I -Scoped — List I — I -Scoped
Scope TAi=(A+_)r Ti

Fig. 15. De Bruijn Scopes
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The endofunctors thus defined are strictly positive and we can take their fixpoints. As we want
to define the terms of a language with variables, instead of considering the initial algebra, this time
we opt for the free relative monad [Altenkirch et al. 2014] (with respect to the functor Var): the ‘var
constructor corresponds to return, and we will define bind (also known as the parallel substitution
sub) in the next section.

data Tm (d: Desc I) : Size — I -Scoped where
‘var: [ Vari = Tmd(Ts)i]
‘con: [[d] (Scope Mmds)i - Tmd(Ts)i]

Fig. 16. Term Trees: The Free Var-Relative Monads on Descriptions

Coming back to our original examples, we now have the ability to give codes for the well
scoped untyped A-calculus and, just as well, the intrinsically typed simply typed A-calculus. The
variable case will be added by the free monad construction so we only have to describe two
constructors: application where we have two substructures which do not bind any extra argument
and A-abstraction which has exactly one substructure with precisely one extra bound variable. In
the untyped case a single Boolean is enough to distinguish the two constructors whilst in the typed
case, we need our tags to carry extra information about the types involved so we use the ad-hoc
‘STLC type, and its decoding STLC defined by a pattern-matching A-expression in Agda.

data ‘STLC : Set where

UTLC : Desc T App Lam : Type — Type — ‘STLC

UTLC = ‘o Bool $ \ isApp — if isApp
then X []tt (X [] tt (‘M tt))
else X (tt=[])tt (‘M tt)

STLC : Desc Type

STLC = ‘o ‘STLC $ \ where
(Appo )= X[l (e=1)(X[] o (W1))
(Lamo 1) > X(o=[])r (M (c = 1))

Fig. 17. Examples: The Untyped and Simply Typed Lambda Calculi

For convenience we use Agda’s pattern synonyms corresponding to the original constructors in
Section 2: ‘V for V the variable constructor, ‘A for A the application one and ‘L for L the A-abstraction.
These synonyms can be used when pattern-matching on a term and Agda resugars them when
displaying a goal. This means that the end user can seamlessly work with encoded terms without
dealing with the gnarly details of the encoding. These pattern definitions can omit some arguments
by using “ ”, in which case they will be filled in by unification just like any other implicit argument:
there is no extra cost to using an encoding! The only downside is that the language currently does
not allow the user to specify type annotations for pattern synonyms.

pattern ‘V x = ‘varx pattern 'V x = ‘varx
pattern ‘A ft = ‘con (true, f, t, refl) pattern ‘A ft ="‘con (App__, f, t, refl)
pattern ‘L b = ‘con (false, b, refl) pattern ‘L b = ‘con (Lam __, b, refl)

Fig. 18. Respective Pattern Synonyms for the Untyped and Simply Typed Lambda Calculus
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It is the third time (the first and second times being the definition of listD and vecD in Figure 9
and 10) that we use a Bool to distinguish between two constructors. In order to avoid re-encoding
the same logic, the next section introduces combinators demonstrating that descriptions are closed
under finite sums and finite products of recursive positions.

Common Combinators and Their Properties. As seen previously, we can use a dependent pair
whose first component is a Boolean to take the coproduct of two descriptions: depending on the
value of the first component, we will return one or the other. We can abstract this common pattern
as a combinator _‘+_ together with an appropriate eliminator case which, given two continuations,
picks the one corresponding to the chosen branch.

_+_:Desc I — Desc I — Desc I case: ([d] XiT — A)—
d‘+e= ‘o Bool $\ isLeft — ([e] XiT — A) —
if isLeft then delse e ([d'+e] Xil — A)

Fig. 19. Descriptions are closed under Sum

Closure under product does not hold in general. Indeed, the equality constraints introduced
by the two end tokens of two descriptions may be incompatible. So far, a limited form of closure
(closure under finite product of recursive positions) has been sufficient for all of our use cases. As
with coproducts, the appropriate eliminator unXs takes a value in the encoding and extracts its
constituents (All P xs is defined in Agda’s standard library and makes sure that the predicate P
holds true of all the elements in the list xs).

‘Xs : List I — Desc I — Desc I unXs: (A:List) > [XsAd] Xil —
‘Xs js d = foldr (‘X []) djs AlNi—> X[]iT)Ax[d] XiT

Fig. 20. Descriptions are closed under Finite Products of Recursive Positions

A concrete use case for both of these combinators will be given in section 7.1 where we explain
how to seamlessly enrich an existing syntax with let-bindings and how to use the Sem framework
to elaborate them away.

6 GENERIC SCOPE SAFE AND WELL KINDED PROGRAMS FOR SYNTAXES

Based on the Sem type we defined for the specific example of the simply typed A-calculus in
Section 3, we can define a generic notion of semantics for all syntax descriptions. It is once more
parametrised by two I-Scoped families V and C corresponding respectively to values associated
to bound variables and computations delivered by evaluating terms. These two families have to
abide by three constraints:

e th" Values should be thinnable so that we can push the evaluation environment under
binders;

e var Values should embed into computations for us to be able to return the value associated to
a variable as the result of its evaluation;

e alg We should have an algebra turning a term whose substructures have been replaced
with computations (possibly under some binders, represented semantically by the Kripke
type-valued function defined below) into computations
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record Sem (d : Desc I) (V C : I -Scoped) : Set where
field th™ :Thinnable (V i)

var [ Vi - Ci]

alg  :[[d] (Kripke VC)i = Ci]

Fig. 21. A Generic Notion of Semantics

Here we crucially use the fact that the meaning of a description is defined in terms of a function
interpreting substructures which has the type List I — [-Scoped, i.e. that gets access to the current
scope but also the exact list of the newly bound variables’ kinds. We define a function Kripke by
case analysis on the number of newly bound variables. It is essentially a subcomputation waiting
for a value associated to each one of the fresh variables.

o If it’s 0 we expect the substructure to be a computation corresponding to the result of the
evaluation function’s recursive call;

e But if there are newly bound variables then we expect to have a function space. In any context
extension, it will take an environment of values for the newly-bound variables and produce a
computation corresponding to the evaluation of the body of the binder.

Kripke : (V C : I-Scoped) — (List I — I -Scoped)
Kripke VC[] i=Ci
Kripke VCT i=0(T -Env)V = C)

Fig. 22. Substructures as either Computations or Kripke Function Spaces

It is once more the case that the abstract notion of Semantics comes with a fundamental lemma:
all I —Scoped families V and C satisfying the three criteria we have put forward give rise to
an evaluation function. We introduce a notion of computation _—Comp analogous to that of
environments: instead of associating values to variables, it associates computations to terms.

_—Comp : List I - I -Scoped — List I — Set
(T'-Comp)CA=Tmdsil' - CiA

6.1 Fundamental Lemma of Semantics

We can now define the type of the fundamental lemma (called sem) which takes a semantics and
returns a function from environments to computations. It is defined mutually with a function body
turning syntactic binders into semantics binders: to each de Bruijn Scope (i.e. a substructure in a
potentially extended context) it associates a Kripke (i.e. a subcomputation expecting a value for
each newly bound variable).

sem :SemdV C — (I' -Env) ¥V A — (I' -Comp) C A
body :SemdV C — (T -Env) VA —- VO i— Scope(Tmds)© il — Kripke V COiA

Fig. 23. Statement of the Fundamental Lemma of Semantics
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The proof of sem is straightforward now that we have clearly identified the problem structure
and the constraints we need to enforce. We use postfix projections (of the form .name) to make use
of the semantic combinators packaged in the Sem parameter S. If the term considered is a variable,
we lookup the associated value in the evaluation environment and turn it into a computation using
var. If it is a non variable constructor then we call fmap to evaluate the substructures using body
and then call the algebra to combine these results.

sem S p (‘var k) = (S .var) (lookup p k)
sem S p (‘con 1) = (S .alg) (fmap d (body S p) 1)

Fig. 24. Proof of the Fundamental Lemma of Semantics — sem

The auxiliary lemma body distinguishes two cases. If no new variable has been bound in the
recursive substructure, it is a matter of calling sem recursively. Otherwise we are provided with
a Thinning, some additional values and evaluate the substructure in the thinned and extended
evaluation environment (thanks to a auxiliary function _>>_ which given two environments (I
—-Env) V © and (A -Env) V © produces an environment ((I' ++ A) -Env) V ©).

body S p [] it=semSpt
body Sp(_=_) it=X\o vs— semS (vs> thf" (S .th") p o)t

Fig. 25. Proof of the Fundamental Lemma of Semantics — body

Given that fmap introduces one level of indirection between the recursive calls and the subterms
they are acting upon, the fact that our terms are indexed by a Size is once more crucial in getting
the termination checker to see that our proof is indeed well founded.

6.2 Our First Generic Programs: Renaming and Substitution

Similarly to ACMM (2017) renaming can be defined generically for all syntax descriptions as a
semantics with Var as values and Tm as computations. The first two constraints on Var described
earlier are trivially satisfied. Observing that renaming strictly respects the structure of the term it
goes through, it makes sense for the algebra to be implemented using fmap. When dealing with
the body of a binder, we ‘reify’ the Kripke function by evaluating it in an extended context and
feeding it placeholder values corresponding to the extra variables introduced by that context. This
is reminiscent both of what we did in Section 3 and the definition of reification in the setting of
normalisation by evaluation (see e.g. Coquand’s work (2002)).

Substitution is defined in a similar manner with Tm as both values and computations. Of the
two constraints applying to terms as values, the first one corresponds to renaming and the second
one is trivial. The algebra is once more defined by using fmap and reifying the bodies of binders.

The reification process mentioned in the definition of renaming and substitution can be imple-
mented generically for Semantics families which have VarLike values (vI¥3" and vI'™ are proofs of
VarLike for Var and Tm respectively) i.e. values which are thinnable and such that we can craft
placeholder values in non-empty contexts.

For any VarLike V, we can define fresh” of type (I' ~Env) V (A ++ T') and fresh' of type (I' ~Env)
V (T ++ A) by combining the use of placeholder values and thinnings, and it is almost immediate
that variables are VarLike. Hence, we can then write reify like so:
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Renaming : Sem d Var (Tm d o) Substitution : Sem d (Tm d o) (Tm d o0)
Renaming = record Substitution = record

{thY =Xkp — lookup p k {thY =Xtp—renpt

svar = ‘var svar =id

;alg = ‘con o fmap d (reify vIV")} ;alg = ‘con o fmap d (reify vI™) }
ren : (I'-Env)VarA — sub: (I' -Env) (Tm d o0) A —

Tmdool 5Tmdooo A Tmdool 5Tmdooo A

ren p t = Sem.sem Renaming p ¢ sub p t = Sem.sem Substitution p t

Fig. 26. Generic Renaming and Substitution for All Scope Safe Syntaxes with Binding

record VarLike (V : I -Scoped) : Set where
field new :[(i=)rVi]
th"”  : Thinnable (V i)

Fig. 27. VarLike: Thinnable and with placeholder values

reify : VarLike V — V A i — Kripke ¥V C A i' — Scope CAiT
reify vIV [] ib=">b
reify vIV A@(_=_) ib=b(fresh" vV A) (fresh' v[V )

Fig. 28. Generic Reification thanks to VarLike Values

7 A CATALOGUE OF GENERIC PROGRAMS FOR SYNTAX WITH BINDING

One of the advantages of having a universe of programming language descriptions is the ability to
concisely define an extension of an existing language by using Description transformers grafting
extra constructors a la Swiestra (2008). This is made extremely simple by the disjoint sum combinator
_‘+_ which we defined in Section 5. An example of such an extension is the addition of let-bindings
to an existing language.

7.1 Sugar and Desugaring as a Semantics

Let bindings allow the user to avoid repeating themselves by naming sub-expressions and then
using these names to refer to the associated terms. Preprocessors adding these types of mechanisms
to existing languages (from C to CSS) are rather popular. We introduce a description of Let-bindings
which can be used to extend any language description d to d ‘+ Let (where ‘+ is the disjoint of sum
of two descriptions defined in Figure 19):

Let : Desc I
Let= ‘c(IXID)$uncurry ot —
X[o(X(o=[])r (W)

Fig. 29. Description of a Single Let Binding
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This description states that a let-binding node stores a pair of types ¢ and 7 and two subterms.
First comes the let-bound expression of type o and second comes the body of the let which has
type 7 in a context extended with a fresh variable of type o. This defines a term of type 7.

In a dependently typed language, a type may depend on a value which in the presence of let bind-
ings may be a variable standing for an expression. The user naturally does not want it to make any dif-
ference whether they used a variable referring to a let-bound expression or the expression itself. Vari-
ous typechecking strategies can accommodate this expectation: in Coq [The Coq Development Team
2017] let bindings are primitive constructs of the language and have their own typing and reduction
rules whereas in Agda they are elaborated away to the core language by inlining.

This latter approach to extending a language d with let bindings by inlining them before type-
checking can be implemented generically as a semantics over (d ‘+ Let). For this semantics values
in the environment and computations are both let-free terms. The algebra of the semantics can
be defined by parts thanks to case defined in Section 5: the old constructors are kept the same by
interpreting them using the generic Substitution algebra; whilst the let-binder precisely provides
the extra value to be added to the environment. The process of removing let binders is kickstarted
with a placeholder environment associating each variable to itself.

UnLet : Sem (d ‘+ Let) (Tm d o) (Tm d o0)
Sem.th”  UnLet = th™
Sem.var  UnLet = id unlet: [ Tm (d ‘+ Let) oo i > Tm d oo i]
Sem.alg  UnlLet = unlet = Sem.sem UnLet (pack ‘var)
case (Sem.alg Substitution) X where
(_,e,t,refl) — extract t (c o €)

Fig. 30. Inlining Let Binding

In less than 10 lines of code we have defined a generic extension of syntaxes with binding
together with a semantics which corresponds to an elaborator translating away this new construct.
In their own setting working on STLC, ACMM (2017) have shown that it is similarly possible to
implement a Continuation Passing Style transformation as a semantics.

We have demonstrated how easily one can define extensions and combine them on top of a
base language without having to reimplement common traversals for each one of the intermediate
representations. Moreover, it is possible to define generic transformations elaborating these added
features in terms of lower-level ones. This suggests that this setup could be a good candidate to
implement generic compilation passes and could deal with a framework using a wealth of slightly
different intermediate languages a la Nanopass [Keep and Dybvig 2013].

7.2 (Unsafe) Normalisation by Evaluation

A key type of traversal we have not studied yet is a language’s evaluator. Our universe of syntaxes
with binding does not impose any typing discipline on the user-defined languages and as such
cannot guarantee their totality. This is embodied by one of our running examples: the untyped
A-calculus. As a consequence there is no hope for a safe generic framework to define normalisation
functions.

The clear connection between the Kripke functional space characteristic of our semantics and the
one that shows up in normalisation by evaluation suggests we ought to manage to give an unsafe
generic framework for normalisation by evaluation. By temporarily disabling Agda’s positivity
checker, we can define a generic reflexive domain Dm in which to interpret our syntaxes. It has
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three constructors corresponding respectively to a free variable, a constructor’s counterpart where
scopes have become Kripke functional spaces on Dm and an error token because the evaluation of
untyped programs may go wrong.

{# NO_POSITIVITY_CHECK #-}
data Dm (d: Desc I) : Size — I -Scoped where

V:[Vari - Dmds i ]
C:[[d] (Kripke (Dmds)(Dmds)i - Dmd((Ts) i ]
1] Dmd(Ts) i |

Fig. 31. Generic Reflexive Domain

This datatype definition is utterly unsafe. The more conservative user will happily restrict herself
to typed settings where the domain can be defined as a logical predicate or opt instead for a
step-indexed approach.

But this domain does make it possible to define a generic nbe semantics which, given a term,
produces a value in the reflexive domain. Thanks to the fact we have picked a universe of finitary
syntaxes, we can traverse [McBride and Paterson 2008] the functor to define a (potentially failing)
reification function turning elements of the reflexive domain into terms. By composing them, we
obtain the normalisation function which gives its name to normalisation by evaluation.

The user still has to explicitly pass an interpretation of the various constructors because there is
no way for us to know what the binders are supposed to represent: they may stand for A-abstractions,
>-types, fixpoints, or anything else.

reifyP™  :[Dmdsi —> Maybe o Tmdooi]
nbe : Alg d (Dm d o) (Dm d 00) — Sem d (Dm d c0) (Dm d o0)

norm :Alg d(Dm d o) (Dm doo) - [Tm doo i - Maybeo Tm dooi]

Dm

norm alg = reifyP™ o Sem.sem (nbe alg) (base vI°™)

Fig. 32. Generic Normalisation by Evaluation Framework

Using this setup, we can write a normaliser for the untyped A-calculus: we use case from section
5 to distinguish between the semantical counterpart of the application constructor on one hand
and the A-abstraction one on the other. The latter is trivial: functions are already values! The
semantical counterpart of application proceeds by case analysis on the function: if it corresponds
to a A-abstraction, we can fire the redex by using the Kripke functional space; otherwise we grow
the spine of stuck applications.

We have not used the L constructor so if the evaluation terminates (by disabling totality checking
we have lost all guarantees of the sort) we know we will get a term in normal form.

7.3 An Algebraic Approach to Typechecking

Following Atkey (2015), we can consider type checking and type inference as a possible semantics
for a bi-directional [Pierce and Turner 2000] language. We represent the raw syntax of a simply
typed bi-directional calculus as a bi-sorted language using a notion of Mode to distinguish between
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normt¢ : [ Tm UTLC oo tt <> Maybe o Tm UTLC oo tt ]

normC = norm $ case app (C o (false ,_)) where

Model = Dm UTLC oo

app : [[ X []tt (X [] tt (‘M tt)) ] (Kripke Model Model) tt = Model tt ]
app (C (false, f, ) ,t ,_)=f(basevIV™)(¢ot) -- redex
app (f .t ,_)=C(true, f, t,refl) -- stuck application

Fig. 33. Normalisation by Evaluation for the Untyped A-Calculus

terms for which we will be able to Infer the type and the ones for which we will have to Check a
type candidate.

Following traditional presentations, eliminators give rise to Inferrable terms under the condition
that the term they are eliminating is also Inferrable and the other arguments are Checkable
whilst constructors are always Checkable. Two extra constructors allow changes of direction: Cut
annotates a Checkable term with its type thus making it Inferrable whilst Emb embeds Inferrables
into Checkables.

Lang : Desc Mode
Lang = ‘o LangC $\ where
App — X [] Infer (‘X [] Check (‘H Infer))
Lam — ‘X (Infer =: []) Check (‘B Check)
[
[

data LangC : Set where
App Lam Emb : LangC

Cut: Type = LangC (Cut 0) — X[] Check (‘W Infer)

Emb — ‘X [] Infer (‘B Check)

Fig. 34. A Bidirectional Simply Typed Language

The values stored in the environment will be Type information for bound variables no matter
what their Mode is. In contrast, the generated computations will, depending on the mode, either
take a type candidate and Check it is valid or Infer a type for their argument. These computations
are always potentially failing so we use the Maybe monad.

Type- : Mode — Set
Type- Check =Type — Maybe T
Type- Infer = Maybe Type

Var- : Mode — Set
Var- _ = Type

Fig. 35. Var- and Type- Relations indexed by the Mode

We can now define typechecking as a Semantics. The algebra describes the algorithm (_<$_ takes
an A and a Maybe B and returns a Maybe A which has the same structure as its second argument):
e when facing an application: infer the type of the function, make sure it is an arrow type,
check the argument at the domain’s type and return the codomain
o for a A-abstraction: check the input type is an arrow type and check the body at the codomain
type in the extended environment where the newly-bound variable has the domain’s type
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e a cut always comes with a type candidate against which to check the term and to be returned
in case of success

e finally, the change of direction from Inferrable to Checkable is successful when the inferred
type is equal to the expected one.

Typecheck : Sem Lang (const o Var-) (const o Type-)
Typecheck = record {th" =X\ vp — v, var = var _; alg = alg } where

var : (i : Mode) — Var- i — Type- i
var Infer = just
var Check = _—_

alg : [ Lang | (Kripke (x o Var-) (x o Type-)) i — Type- i
alg (App, f, t, refl) f 3= \o0=7T >
iSArrow c=7 >=uncurry A\ o 7 —

T<$to
alg (Lam, b, refl)

N 0=7T — iSArrow =7 3= uncurry A\ o 7 —
b (extend {o = Infer}) (c 0 o) T

oc<$to

NO o It3=NTD0=T1

alg (Cut o, t, refl)
alg (Emb , t, refl)

Fig. 36. Type- Inference / Checking as a Semantics

We have defined a bidirectional typechecker for this simple language by leveraging the Semantics
framework. The code attached to this paper also contains a variant with more informative types:
instead of simply generating a type or checking that a candidate will do, we can use our Descriptions
to describe a language of evidence and generate not only an expression’s type but also a well scoped
and well typed term of that type.

7.4 Binding as Self-Reference: Representing Cyclic Structures

Ghani, Hamana, Uustalu and Vene (2006) have demonstrated how Altenkirch and Reus’ type-level
de Bruijn indices (1999) can be used to represent potentially cyclic structures by a finite object. In
their representation each bound variable is a pointer to the node that introduced it. Given that we
are, at the top-level, only interested in structures with no “dangling pointers”, we introduce the
notation TM d to mean closed terms (i.e. terms of type Tm d oo []).

A basic example of such a structure is a potentially cyclic list which offers a choice of two
constructors: [] which ends the list and _: which combines a head and a tail but also acts as
a binder for a self-reference; these pointers can be used by using the var constructor which we
have renamed - (pronounced “backpointer”) to match the domain-specific meaning. We can see
this approach in action in the examples [0, 1] and 010 (pronounced “0-1-cycle”) which describe
respectively a finite list containing 0 followed by 1 and a cyclic list starting with 0, then 1, and then
repeating the whole list again by referring to the first cons cell represented here by the de Bruijn
variable 1 (i.e. s z).

These finite representations are interesting in their own right and we can use the generic
semantics framework defined earlier to manipulate them. A basic building block is the unroll
function which takes a closed tree, exposes its top node and unrolls any cycle which has it as its
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CListD : Set — Desc T

CListbA = ‘Bt [0,1] :TM (CListD N) tt
G c AN _ > X(tt=[]) tt (M) 010 :TM (CListD N) tt

pattern [] = ‘con (true, refl) [0,1] = 0:1:]]

pattern _:_xxs = ‘con (false, x, xs, refl) 019 = 0:12/57

pattern «\\_ k =‘var k

Fig. 37. Potentially Cyclic Lists: Description, Pattern Synonyms and Examples

starting point. We can decompose it using the plug function which, given a closed and an open term,
closes the latter by plugging the former at each free ‘var leaf. Noticing that plug’s fundamental
nature is that of substituting a term for each leaf, it makes sense to implement it by re-using the
Substitution semantics we already have.

plug: TM dtt - V Ai— Scope (Tmdoo) Ai[] > TM di
plug t A i = Sem.sem Substitution (pack (\ _ — 1))

unroll : TMdtt > [d] (N _i_—>TMdi)tt[]
unroll ¥ @(‘con ¢) = fmap d (plug t') ¢

Fig. 38. Plug and Unroll: Exposing a Cyclic Tree’s Top Layer

However, one thing still out of our reach with our current tools is the underlying co-finite trees
these finite objects are meant to represent. We start by defining the coinductive type corresponding
to them as the greatest fixpoint of a notion of layer. One layer of a co-finite tree is precisely given
by the meaning of its description where we completely ignore the binding structure. We show with
01- - - the infinite list that corresponds to the example 010 given above. The definition proceeds by
copattern-matching as introduced in [Abel et al. 2013] and showcased in [Thibodeau et al. 2016].

record coTm (d : Desc I) (s : Size) (i: I) : Set where 01--- : coTm (CListD N) co tt

coinductive; constructor ‘con 10- -+ : coTm (CListD N) oo tt
field force : {s’: Size< s} — 01--- force = false, 0, 10-- - , refl
[d](N_i_— ocoTmds’i)il] 10- - - .force = false, 1,01--- | refl

Fig. 39. Co-finite Trees: Definition and Example

We can then make the connection between potentially cyclic structures and the co-finite trees
formal by giving an unfold function which, given a closed term, produces its unfolding. The
definition proceeds by unrolling the term’s top layer and co-recursively unfolding all the subterms.

Even if the powerful notion of semantics described in Section 6 cannot encompass all the
traversals we may be interested in, it provides us with reusable building blocks: the definition of
unfold was made very simple by reusing the generic program fmap and the Substitution semantics
whilst the definition of coTm was made easy by reusing [_].
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unfold : TM d tt — coTm d s tt
unfold t .force = fmap d (\ _ _ — unfold) (unroll 7)

Fig. 40. Generic Unfold of Potentially Cyclic Structures

8 BUILDING GENERIC PROOFS ABOUT GENERIC PROGRAMS

ACMM (2017) have already shown that, for the simply typed A-calculus, introducing an abstract
notion of Semantics not only reveals the shared structure of common traversals, it also allows them
to give abstract proof frameworks for simulation or fusion lemmas. Their idea naturally extends to
our generic presentation of semantics for all syntaxes.

The most important concept in this section is (Zip d), a relation transformer which characterises
structurally equal layers such that their substructures are themselves related by the relation it
is passed as an argument. It inherits a lot of its relational arguments’ properties: whenever R is
reflexive (respectively symmetric or transitive) so is Zip d R.

It is defined by induction on the description and case analysis on the two layers which are meant
to be equal:

e In the stop token case ‘B i, the two layers are considered to be trivially equal (i.e. the constraint
generated is the unit type)

e When facing a recursive position ‘X A j d, we demand that the two substructures are related
by R A j and that the rest of the layers are related by Zip d R

e Two nodes of type ‘c A d will be related if they both carry the same payload a of type A and
if the rest of the layers are related by Zip (d a) R.

Zip: (d:Desc)(R:(5:List)(i:)—>[Xdi—> YSi—> kSet]) —
[[d]Xi—> [d]Yi— kSet]
Zip (W7 Rx y =T
Zip(X8jd) R(r,x) (r,y) =RSjrrxZipdRxy
Zip(‘c Ad) R(a,x) (a’,y) =Z2Z[eqea’=a]Zip(da) Rx(reweqy)
where rew = subst(\a — [da] ___)

Fig. 41. Zip: Characterising Structurally Equal Values with Related Substructures

If we were to take a fixpoint of Zip, we could obtain a structural notion of equality for terms
which we could prove equivalent to propositional equality. Although interesting in its own right,
this section will focus on more advanced use-cases.

8.1 Simulation Lemma

A Zip constraint appears naturally when we want to say that a semantics can simulate another one.
Given a relation R”Y connecting values in V; and V,, and a relation R connecting computations
in C; and C,, we can define KripkeR relating values Kripke V; C; and Kripke V, C; by stating
that they send related inputs to related outputs. We use the relation transformer V[_] which lifts a
relation on values to one on environments in a pointwise manner.

We can then combine Zip and Kripke® to express the idea that two semantic objects of respective
types [ d] (Kripke V; Cy) and [ d ] (Kripke V, C;) are synchronised. The simulation constraint on
the algebras for two Semantics then becomes: given synchronized objects, the algebras should yield
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Kripke® : (A : List I) (z : I) — [ Kripke V; C; At — Kripke V5, C2 AT - K Set ]
KripkeR [] o k1 kz = RC k1 kz
KripkeR A@(_ =) o ki ky =V th— V[ RY ] p1 ps — RE (ki th py) (ky th py)

Fig. 42. Relational Kripke Function Spaces: From Related Inputs to Related Outputs

related computations. Together with self-explanatory constraints on var and th”, this constitutes
the whole Simulation constraint:

record Sim (d : Desc I) (81 : Sem d V1 Cy) (S2 : Sem dV; C3) : Set where

field th® : (o :ThinningT A) — RY v v, —
RV (Sem.th"” 81 v; 0) (Sem.th” S, v, o)
vark + RV v v, > RE (Sem.var 81 v1) (Sem.var S, )

alg® : (b:[d] (Scope (Tm d ) i) —V[RY ] p1 pp —
let vy =fmap d(Sem.body S; p1) b
vy = fmap d (Sem.body S, p2) b
in Zip d(KripkeR RV RC) v v, — RE (Sem.alg 81 vy) (Sem.alg Sz ;)

Fig. 43. A Generic Notion of Simulation

The fundamental lemma of simulations is a generic theorem showing that for each pair of
Semantics respecting the Simulation constraint, we get related computations given environments
of related input values. This theorem is once more mutually proven with a statement about Scopes,
and Sizes play a crucial role in ensuring that the function is indeed total.

sim  : V[RY 1pips— (t:Tmdsil)— RE (Sem.sem Sy p; t) (Sem.sem Sy p; t)
body : V[RY ]pips—VAj— (t:Scope(Tmds)AjT)—
KripkeR RY RC A j(Sem.body S; p; A j 1) (Sem.body Sy py A jt)

Fig. 44. Fundamental Lemma of Simulations
Instantiating this generic simulation lemma, we can for instance get that renaming and substi-
tution are extensional (given extensionally equal environments they produce syntactically equal
terms), or that renaming is a special case of substitution. Of course these results are not new but

having them generically over all syntaxes with binding is convenient; which we have experienced
first hand when tackling the POPLMark Reloaded challenge where rensub was actually needed.

rensub: (p:ThinningT A) (: Tm d oo i) — ren p t = sub (‘var <$> p) t
rensub p = Sim.sim RenSub (pack® (\ _ — refl))

Fig. 45. Renaming as a Substitution via Simulation

When studying specific languages, new opportunities to deploy the fundamental lemma of
simulations arise. Our solution to the POPLMark Reloaded challenge for instance describes the fact
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that sub p t reduces to sub p’ t whenever for all v, p(v) reduces to p(v) as a Simulation. The main
theorem (strong normalisation of STLC via a logical relation) is itself an instance of (the unary
version of) the simulation lemma.

The Simulation proof framework is the simplest examples of the abstract proof frameworks
ACMM (2017) introduce. They also explain how a similar framework can be defined for fusion
lemmas and deploy it for the renaming-substitution interactions but also their respective interactions
with normalisation by evaluation. Now that we are familiarised with the techniques at hand, we
can tackle this more complex example for all syntaxes definable in our framework.

8.2 Fusion Lemma

Results which can be reformulated as the ability to fuse two traversals obtained as Semantics
into one abound. When claiming that Tm is a Functor, we have to prove that two successive
renamings can be fused into a single renaming where the Thinnings have been composed. Similarly,
demonstrating that Tm is a relative Monad [Altenkirch et al. 2014] implies proving that two
consecutive substitutions can be merged into a single one whose environment is the first one,
where the second one has been applied in a pointwise manner. The Substitution Lemma central
to most model constructions (see for instance [Mitchell and Moggi 1991]) states that a syntactic
substitution followed by the evaluation of the resulting term into the model is equivalent to the
evaluation of the original term with an environment corresponding to the evaluated substitution.
A direct application of these results is our (to be published) entry to the POPLMark Reloaded
challenge (2017). By using a Desc-based representation of intrinsically well typed and well scoped
terms we directly inherit not only renaming and substitution but also all four fusion lemmas as
corollaries of our generic results. This allows us to remove the usual boilerplate and go straight to
the point. As all of these statements have precisely the same structure, we can once more devise a
framework which will, provided that its constraints are satisfied, prove a generic fusion lemma.
Fusion is more involved than simulation so we will step through each one of the constraints
individually, trying to give the reader an intuition for why they are shaped the way they are.

8.2.1 The Fusion Constraints. The notion of fusion is defined for a triple of Semantics; each S;
being defined for values in “V; and computations in C;. The fundamental lemma associated to such
a set of constraints will state that running S, after S; is equivalent to running Ss only.

The definition of fusion is parametrised by three relations: R relates triples of environments of
values in (I' ~Env) V4 A, (A —~Env) V3 © and (T ~Env) V3 © respectively; R relates pairs of values
V, and V5; and R, our notion of equivalence for evaluation results, relates pairs of computation
in C, and Cs.

The first obstacle we face is the formal definition of “running S, after S;”: for this statement to
make sense, the result of running S; ought to be a term. Or rather, we ought to be able to extract a
term from a C;. Hence the first constraint: the existence of a quote; function, which we supply as a
field of the record Fusion. When dealing with syntactic semantics such as renaming or substitution
this function will be the identity. However nothing prevents to try to prove for instance that
normalisation by evaluation is idempotent in which case a bona fide reification function extracting
terms from model values will be used.

quote; : (i:))—>[C1i—> Tmdooi]

Then, we have to think about what happens when going under a binder: S; will produce a Kripke
function space where a syntactic value is required. Provided that V; is VarLike, we can make use
of reify to get a Scope back. Hence the second constraint.

viV1 : VarLike V,
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Still thinking about going under binders: if three evaluation environments p; in (I' —~Env) V; A,
pz in (A —Env) V, ©, and p3 in (T —~Env) V3 © are related by Rf and we are given a thinning o
from © to Q then py, the thinned p; and the thinned p; should still be related.

th® . (o : Thinning ® E) — RE p; ps p3 —
RE py (thF" (Sem.th™” 8y) py o) (thE™ (Sem.th" S3) p3 o)

Remembering that _>>_ is used in the definition of body (Figure 25) to combine two disjoint
environments (I' -Env) ¥V © and (A —Env) V © into one of type (I' + A) -Env) V ©), we
mechanically need a constraint stating that _>>_ is compatible with RE. We demand as an extra
precondition that the values p, and ps are extended with are related according to R” . Lastly, for
all the types to match up, p; has to be extended with placeholder variables.

>>R : {pl : (F —EI’]V) (Vl A} RE P1 P2 P3 — V[ R(V ] P4 P5 —
RE (fresh! vIV1 A > thF (Sem.th” 8y) p; (fresh” vIV2" B)) (py > p3) (ps > ps3)

We finally arrive at the constraints focusing on the semantical counterparts of the terms’ con-
structors. When evaluating a variable, on the one hand S; will look up its meaning in the evaluation
environment, turn the resulting value into a computation which will get quoted and then the result
will be evaluated with S,. Provided that all three evaluation environments are related by R this
should be equivalent to looking up the value in S3’s environment and turning it into a computation.

Hence the constraint var®:

varR : REpy py p3 — (v:Varil) —

RE  (Sem.sem Sy p, (quote; i (Sem.var Sy (lookup p; v))))
(Sem.var S3 (lookup ps v))

The case of the algebra follows a similar idea albeit being more complex: a term gets evaluated
using S; and to be able to run S; afterwards we need to recover a piece of syntax. This is possible
if the Kripke functional spaces are reified by being fed placeholder V; arguments (which can be
manufactured thanks to the vI"'* we mentioned before) and then quoted. Provided that the result
of running S, on that term is related via Zip d (Kripke? RV R to the result of running S; on the
original term, the alg® constraint states that the two evaluations yield related computations.

alg® : (b:[d] (Scope (Tmds))il) —
RE p1 p2 p3 —
let v =fmap d(Sem.body S p1) b
vz = fmap d (Sem.body Ss3 p3) b
in Zip d (Kripke? RV RC)
(fmap d (\ A i — Sem.body S ps A i o quote; io reify vIV' A i) v;)
(fmap d (Sem.body S3 p3) b) —
RC (Sem.sem S p, (quote; i (Sem.alg Sy v1))) (Sem.alg S3 v3)

8.2.2 The Fundamental Lemma of Fusion. This set of constraint is enough to prove a fundamental
lemma of Fusion stating that from a triple of related environments, one gets a pair of related
computations: the composition of S; and S; on one hand and Ss on the other. This lemma is once
again proven mutually with its counterpart for Sem’s body’s action on Scopes.

8.2.3 Instances of Fusion. A direct consequence of this result is the four lemmas collectively
stating that any pair of renamings and / or substitutions can be fused together to produce either a
renaming (in the renaming-renaming interaction case) or a substitution (in all the other cases). One
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fus : REpipyps— (t:Tmdsil) —

RE  (Sem.sem S; p; (quote; i (Sem.sem Sy p; 1)) (Sem.sem Sz ps 1)
body: RE py py p3 — (A:List ) (i: 1) (b: Scope (Tmds)AiTl) —

let b’ = quote; i (reify vI"V' A i (Sem.body Sy p; A i b)) in

KripkeR RY RC A i (Sem.body Sy p; A i b’) (Sem.body S5 p3 A i b)

Fig. 46. Fundamental Lemma of Fusion

such example is the fusion of substitution followed by renaming into a single substitution where
the renaming has been applied to the environment.

subren: V (t:TmdsiTl) (p;: (T —-Env) (Tm d o) A) (p2 : Thinning A ©) —
ren p; (sub p; 1) = sub (ren py <$> pq) ¢
subren t p; p, = Fus.fus SubRen (pack® (\ k — refl)) ¢

Fig. 47. A Corollary: Substitution-Renaming Fusion

Another corollary of the fundamental lemma of fusion is the observation that Kaiser, Schéfer,
and Stark (2018) make: assuming functional extensionality, all the ACMM (2017) traversals are
compatible with variable renaming. We can reproduce this result generically for all syntaxes (see
accompanying code) but refrain from using it in practice when an axiom-free alternative is provable.

8.3 Definition of Bisimilarity for Co-finite Objects

Although we were able to use propositional equality when studying syntactic traversals working
on terms, it is not the appropriate notion of equality for co-finite trees. What we want is a generic
coinductive notion of bisimilarity for all co-finite tree types obtained as the unfolding of a description.
Two trees are bisimilar if their top layers have the same shape and their substructures are themselves

bisimilar. This is precisely the type of relation Zip was defined to express. Hence the following
coinductive relation.

record =™ (d: Desc I) (s: Size) (i: ) (t u: coTm d s i) : Set where
coinductive
field force : {s’ : Size< s} — Zip d (A _ i — ~®™™ d 5’ i) (t .force) (u .force)

Fig. 48. Generic Notion of Bisimilarity for Co-finite Trees

We can then prove by coinduction that this generic definition always gives rise to an equivalence
relation by using Zip’s stability properties (if R is reflexive / symmetric / transitive then so is Zip d
R) mentioned in Section 8.

refl ="M dsitt
sym 2 Mdsitu—~®Mdsiut

trans: M dsitu—~*Mdsiuv—a"Mdsitv
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This definition can be readily deployed to prove e.g. that the unfolding of 010 defined in
Section 7.4 is indeed bisimilar to 01- - - which was defined in direct style. The proof'is straightforward
due to the simplicity of this example: the first refl witnesses the fact that both definitions pick the
same constructor (a cons cell), the second that they carry the same natural number, and we can
conclude by an appeal to the coinduction hypothesis.

eq-01:~*™ (CListD N) i tt 01-- - (unfold 010))
eq-10 : x*™ (CListD N) i tt 10- - - (unfold (1:: 0= 1\ s 7))

eq-01 .force = refl , refl , eq-10 , tt
eq-10 .force = refl , refl , eq-01, tt

9 RELATED WORK
9.1 Variable Binding

The representation of variable binding in formal systems has been a hot topic for decades. Part of
the purpose of the first POPLMark challenge (2005) was to explore and compare various methods.

Having based our work on a de Bruijn encoding of variables, and thus a canonical treatment of
a-equivalence classes, our work has no direct comparison with permutation-based treatments such
as those of Pitts’ and Gabbay’s nominal syntax [Gabbay and Pitts 2001].

Our generic universe of syntax is based on scope-and-typed de Bruijn indices [de Bruijn 1972] but
it is not a necessity. It is for instance possible to give an interpretation of Descriptions corresponding
to Chlipala’s Parametric Higher-Order Abstract Syntax (2008) and we would be interested to see
what the appropriate notion of Semantics is for this representation.

9.2 Alternative Binding Structures

The binding structure we present here is based on a flat, lexical scoping strategy. There are other
strategies and it would be interesting to see whether our approach could be reused in these cases.

Bach Poulsen, Rouvoet, Tolmach, Krebbers and Visser (2018) introduce notions of scope graphs
and frames to scale the techniques typical of well scoped and typed deep embeddings to imperative
languages. They can already handle a large subset of Middleweight Java.

We have demonstrated how to write generic programs over the potentially cyclic structures
of Ghani, Hamana, Uustalu and Vene (2006). Further work by Hamana (2009) yielded a different
presentation of cyclic structures which preserves sharing: pointers can not only refer to nodes
above them but also across from them in the cyclic tree. Capturing this class of inductive types as a
set of syntaxes with binding and writing generic programs over them is still an open problem.

9.3 Semantics of Syntaxes with Binding

An early foundational study of a general semantic framework for signatures with binding, algebras
for such signatures, and initiality of the term algebra, giving rise to a categorical ‘program’ for
substitution and proofs of its properties, was given by Fiore, Plotkin and Turi [Fiore et al. 1999],
working in the category of presheaves over renamings, (a skeleton of) the category of finite sets.
The presheaf condition corresponds to our notion of being Thinnable. Exhibiting algebras based on
both de Bruijn level and index encodings, their approach isolates the usual (abstract) arithmetic
required of such encodings.

By contrast, working in an implemented type theory, where the encoding can be understood as
its own foundation, without appeal to an external mathematical semantics, we are able to go further
in developing machine-checked such implementations and proofs, themselves generic with respect
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to an abstract syntax Desc of syntaxes-with-binding. Moreover, the usual source of implementation
anxiety, namely concrete arithmetic on de Bruijn indices, has been successfully encapsulated via the
O coalgebra structure. It is perhaps noteworthy that our type-theoretic constructions, by contrast
with their categorical ones, appear to make fewer commitments as to functoriality, thinnability,
etc. in our specification of semantics, with such properties typically being provable as a further
instance of our framework.

9.4 Meta-Theory Automation via Tactics and Code Generation

The tediousness of repeatedly proving similar statements has unsurprisingly led to various attempts
at automating the pain away via either code generation or the definition of tactics. These solutions
can be seen as untrusted oracles driving the interactive theorem prover.

Polonowski’s DBGen (2013) takes as input a raw syntax with comments annotating binding
sites. It generates a module defining lifting, substitution as well as a raw syntax using names and
a validation function transforming named terms into de Bruijn ones; we refrain from calling it a
scopechecker as terms are not statically proven to be well scoped.

Kaiser, Schifer, and Stark (2018) build on our previous paper to draft possible theoretical foun-
dations for Autosubst, a so-far untrusted set of tactics. The paper is based on a specific syntax:
well-scoped call-by-value System F. In contrast, our effort has been here to carve out a precise
universe of syntaxes with binding and give a systematic account of their semantics and proofs.

Keuchel, Weirich, and Schrijvers’ Needle (2016) is a code generator written in Haskell producing
syntax-specific Coq modules implementing common traversals and lemmas about them.

9.5 Universes of Syntaxes with Binding

Keeping in mind Altenkirch and McBride’s observation that generic programming is everyday
programming in dependently-typed languages (2003), we can naturally expect generic, provably
sound, treatments of these notions in tools such as Agda or Cogq.

Keuchel, Weirich, and Schrijvers’ Knot (2016) implements as a set of generic programs the
traversals and lemmas generated in specialised forms by their Needle program. They see Needle as
a pragmatic choice: working directly with the free monadic terms over finitary containers would
be too cumbersome. In our experience solving the POPLMark Reloaded challenge, Agda’s pattern
synonyms [Pickering et al. 2016] make working with an encoded definition almost seamless.

The GMeta generic framework (2012) provides a universe of syntaxes and offers various binding
conventions (locally nameless [Charguéraud 2012] or de Bruijn indices). It also generically imple-
ments common traversals (e.g. computing the sets of free variables, shifting de Bruijn indices or
substituting terms for parameters) as well as common predicates (e.g. being a closed term) and
provides generic lemmas proving that they are well behaved. It does not offer a generic framework
for defining new well scoped-and-typed semantics and proving their properties.

Erdi (2018) defines a universe inspired by a first draft of this paper and gives three different
interpretations (raw, scoped and typed syntax) related via erasure. He provides scope-and-type
preserving renaming and substitution as well as various generic proofs that they are well behaved
but offers neither a generic notion of semantics, nor generic proof frameworks.

Copello (2017) works with named binders and defines nominal techniques (e.g. name swapping)
and ultimately a-equivalence over a universe of regular trees with binders inspired by Morris’ (2006).

10  CONCLUSION AND FUTURE WORK

Recalling Allais, Chapman, McBride and McKinna’s earlier work (2017) we have started from an
example of a scope-and-type safe language (the simply typed A-calculus), have studied common
invariant preserving traversals and noticed their similarity. After introducing a notion of semantics
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and refactoring these traversals as instances of the same fundamental lemma, we have observed
the tight connection between the abstract definition of semantics and the shape of the language.

By extending a universe of datatype descriptions to support a notion of binding, we have given a
generic presentation of syntaxes with binding as well as a large class of scope-and-type safe generic
programs acting on all of them: from renaming and substitution, to normalisation by evaluation,
and the desugaring of new constructors added by a language transformer. The code accompanying
the paper also demonstrates how to generically write a printer or a scope-checker elaborating
values of a raw syntax using strings as variable names into scope-safe ones.

We have seen how to construct generic proofs about these generic programs. We first introduced
a Simulation relation showing what it means for two semantics to yield related outputs whenever
they are fed related input environments. We then built on our experience to tackle a more involved
case: identifying a set of constraints guaranteeing that two semantics run consecutively can be
subsumed by a single pass of a third one.

We have put all of these results into practice by using them to solve the (to be published)
POPLMark Reloaded challenge which consists of formalising strong normalisation for the simply
typed A-calculus via a logical-relation argument. This also gave us the opportunity to try our
framework on larger languages by tackling the challenge’s extensions to sum types and Godel’s
System T.

Finally, we have demonstrated that this formalisation can be re-used in other domains by seeing
our syntaxes with binding as potentially cyclic terms. Their unfolding is a non-standard semantics
and we provide the user with a generic notion of bisimilarity to reason about them.

The diverse influences leading to this work suggest many opportunities for future research.

Our example of the elaboration of an enriched language to a core one, and ACMM’s implementa-
tion of a Continuation Passing Style conversion function raises the question of how many such
common compilation passes can be implemented generically.

An extension of McBride’s theory of ornaments (2017) could provide an appropriate framework to
highlight the connection between various languages, some being seen as refinements of others. This
is particularly evident when considering the informative typechecker (see the accompanying code)
which given a scoped term produces a scoped-and-typed term by type-checking or type-inference.

Our work on the POPLMark Reloaded challenge highlights a need for generic notions of congru-
ence closure which would come with guarantees (if the original relation is stable under renaming
and substitution so should the closure). Similarly, the “evaluation contexts” corresponding to a syn-
tax could be derived automatically by building on the work of Huet (1997) and Abbott, Altenkirch,
McBride and Ghani (2005), allowing us to revisit previous work based on concrete instances of
ACMM such as McLaughlin, McKinna and Stark (2018).

Finally, now knowing how to generically describe syntaxes and their well behaved semantics,
we can start asking what it means to define well behaved judgments. Why stop at helping the user
write their specific language’s meta-theory when we could study meta-meta-theory?
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