
Observed Communication Semantics for
Classical Processes

Robert Atkey

MSP Group, University of Strathclyde
robert.atkey@strath.ac.uk

Abstract. Classical Linear Logic (CLL) has long inspired readings of
its proofs as communicating processes. Wadler’s CP calculus is one of
these readings. Wadler gave CP an operational semantics by selecting
a subset of the cut-elimination rules of CLL to use as reduction rules.
This semantics has an appealing close connection to the logic, but does
not resolve the status of the other cut-elimination rules, and does not
admit an obvious notion of observational equivalence. We propose a new
operational semantics for CP based on the idea of observing communi-
cation. We use this semantics to define an intuitively reasonable notion
of observational equivalence. To reason about observational equivalence,
we use the standard relational denotational semantics of CLL. We show
that this denotational semantics is adequate for our operational seman-
tics. This allows us to deduce that, for instance, all the cut-elimination
rules of CLL are observational equivalences.

1 Introduction

Right from Girard’s introduction of Classical Linear Logic (CLL) [16], it has ap-
peared to offer the tantalising hope of a “Curry-Howard for Concurrency”: a log-
ical basis for concurrent computation, analogous to the standard Curry-Howard
correspondence between intuitionistic logic and sequential computation in typed
λ-calculi [10,18]. To realise this hope, Abramsky proposed a programme of “Pro-
cesses as Proofs” [2] in the early nineties. Abramsky [1] and Bellin and Scott [7]
interpreted CLL proofs as terms in process calculi, matching (Cut)-reduction
to process reduction. However, these correspondences interpret CLL proofs in
an extremely restricted set of processes – those which never deadlock and never
exhibit racy or nondeterministic behaviour – and so their correspondences could
reasonably be criticised as not really capturing concurrency. Ehrhard and Lau-
rent [14] attempted to remedy this problem by demonstrating a correspondence
between a finitary π-calculus and Differential Linear Logic. However, their work
was forcefully criticised by Mazza [23], who points out that there are crucial
differences in how both systems model nondeterminism, and further states:

[...] all further investigations have failed to bring any deep logical
insight into concurrency theory, in the sense that no concurrent primi-
tive has found a convincing counterpart in linear logic, or anything even

2

remotely resembling the perfect correspondence between functional lan-
guages and intuitionistic logic. In our opinion, we must simply accept
that linear logic is not the right framework for carrying out Abramsky’s
“proofs as processes” program (which, in fact, more than 20 years after
its inception has yet to see a satisfactory completion).

Despite the apparent failure of Abramsky’s programme for concurrency, there
has recently been interest in using Linear Logic as a basis for calculi of struc-
tured communication, also known as session types. Session types were originally
proposed by Honda [17] in the context of the π-calculus as a way to ensure
that processes conform to a protocol. The linear logic-based study of session
types was initiated by Caires and Pfenning [9], who presented an assignment of
π-calculus terms to sequent calculus proofs of Intuitionistic Linear Logic (ILL)
that interprets the connectives of ILL as session types in the sense of Honda.
The fundamental ideas of Caires and Pfenning were later adapted by Wadler to
CLL [35,36], yielding a more symmetric system of “Classical Processes” (CP).

Wadler presents CP as a calculus with an associated reduction relation, and
shows that there is a type preserving translation into Gay and Vasconcelos’
functional language with session-typed communication [15]. This translation was
later shown to also preserve reduction semantics, and to be reversible, by Lindley
and Morris [20], establishing that CP can be seen as a foundational calculus for
session-typed communication.

In this paper, we take a more direct approach to CP. We treat CP as a
programming language in its own right by endowing it with an operational se-
mantics, a notion of observational equivalence, and a denotational semantics.
We do this for several reasons: i) if CLL is intended as a logical foundation for
programming with structured communication, there ought to be a way of inter-
preting CP processes as executable artefacts with observable outputs, which, as
we argue below, Wadler’s reduction semantics does not; ii) establishing a theory
of observational equivalence for CP resolves the status of the (Cut)-elimination
rules on non-principal cuts by reading them as observational equivalences; and
iii) we can use the rich theory of denotational semantics for CLL (see, e.g.,
Melliès [25]) to reason about observational equivalence in CP. We further envis-
age that the introduction of denotational semantics into the theory of CP and
session types will lead to further development of CP as a foundational calculus
for session-typed communication.

1.1 Problems with Wadler’s Reduction Semantics for CP

Our starting point is in asking the following question:

What is the observable output of a CP process?

The semantics proposed by Wadler [36] defines a reduction relation between CP
processes, derived from the Cut-elimination rules for principal cuts. For example,
processes that transmit and receive a choice interact via the following rule:

νx.(x[i].P | x.case(Q0, Q1)) =⇒ νx.(P | Qi)

3

Here, a shared communication channel is established by the νx.(− | −) construct,
which is the syntax for the (Cut) rule. The x[i].P emits a bit i along channel x
and continues as P , while x.case(Q0, Q1) receives a bit along x and proceeds as
Q0 or Q1 according to the value of that bit.

A problem arises with CP processes that have free channels that are not
connected to any other process. Since CP uses π-calculus notation, there is a
relatively rigid left-to-right sequentialisation of actions. This means that the
presence of attempts to communicate along unconnected channels can block
other communication. An example is the following process, where communication
along the unconnected x′ channel blocks the communication across x:

νx.(x′[0].x[1].P | x.case(Q0, Q1))

This arrangement corresponds to (Cut)-elimination for a “non-principal” cut,
i.e. the formula being cut in is not the last one introduced on both sides. In these
cases, (Cut)-elimination commutes the offending rule past the (Cut) rule:

x′[0].νx.(x[1].P | x.case(Q0, Q1))

The rules that perform these rearrangements that do not correspond to any
actual communication are referred to as “commuting conversions”. They serve
to bubble “stuck” communication to the outermost part of a process term.

With the reduction rules as proposed, we have two answers to our question.
If a CP process P has no free channels, then we can always apply reduction rules
corresponding to actual interaction, but we will never see the results of any of
these interactions. Since CP is strongly normalising (a property it inherits from
CLL [3]), all closed processes have the same termination behaviour, so this does
not distinguish them. (CP, as presented by Wadler, does not admit completely
closed processes unless we also include the (Mix0) rule, as we do here.)

Alternatively, if a CP process P has free channels, then we can use the
commuting conversion rules to move the stuck prefixes to the outermost layer.
We could then either proceed to eliminate all (Cut)s deeper in the process term,
or we could halt immediately, in the style of weak reduction in the λ-calculus.

This approach is appealing because it corresponds to the similar approach
to defining the result of λ-calculus/proof-term reduction in sequential program-
ming. We could also define a natural equivalence between CP processes in terms
of barbed bisimulations [26], using the topmost action as the barb. However, in
a multi-output calculus like CP, we run into ambiguity. The process:

νx.(y[0].x[1].P | z[0].x.case(Q0, Q1))

can be converted in two steps to:

y[0].z[0].νx.(x[1] | x.case(Q0, Q1)) or z[0].y[0].νx.(x[1] | x.case(Q0, Q1))

Intuitively, these processes are equivalent. Processes connected to distinct chan-
nels in CP are always independent so it is not possible for any observer to

4

correlate communication over the channels y and z and to determine the dif-
ference between these processes. We could treat all CP processes quotiented by
these permutations, but that would presuppose these equivalences, rather than
having them induced by the actual behaviour of CP processes. (Bellin and Scott
do such an identification in [7], pg. 14, rule (1).) If we were to define obser-
vational equivalence of CP processes via barbed bisimulation of CP processes
up to permutations, then we would be effectively building the consequences of
linearity into the definition of equivalence, rather than deducing them.

Another approach to resolving the non-determinism problem is to restrict
processes to having one free channel that is designated as “the” output channel.
With only one channel there can be no ambiguity over the results of the ordering
of commuting conversions. This is the path taken in Caires and Pfenning’s [9]
ILL-based formalism. Pérez et al. [27] define a notion of observational equiva-
lence for Caires and Pfenning’s system based on a Labelled Transition System
(LTS) over processes with one free channel. CLL, and hence CP, do not have
a notion of distinguished output channel. Indeed, it is not immediately obvious
why a process dealing with multiple communication partners ought to designate
a particular partner as “the one” as Caires and Pfenning’s system does.

1.2 A Solution: Observed Communication Semantics

We appear to have a tension between two problems. CP processes need partners
to communicate with, but if we connect two CP processes with the (Cut) rule we
cannot observe what they communicate! If we leave a CP process’s channels free,
then we need reduction rules that do not correspond to operationally justified
communication steps, and we admit spurious non-determinism unless we make
ad-hoc restrictions on the number of free channels.

Our solution is based on the idea that the observed behaviour of a collection
of processes is the data exchanged between them, not their stuck states. In se-
quential calculi, stuck computations are interpreted as values, but this viewpoint
does not remain valid in the world of message-passing communicating processes.

We propose a new operational semantics for CP on the idea of “visible”
applications of the (Cut) rule that allow an external observer to see the data
transferred. We define a big-step evaluation semantics that assigns observations
to “configurations” of CP processes. For example, the configuration:

`c x[1].x[] |x x.case(x().0, x().0) :: · | x : 1⊕ 1

consists of a pair of CP processes x[1].x[] and x.case(x().0, x().0) that will com-
municate over the public channel x, indicated by the |x notation. The split typing
context on the right hand side indicates that there are no unconnected channels,
·, and one observable channel x : 1⊕ 1.

Our semantics assigns the observation to (1, ∗) to this configuration:

(x[1].x[] |x x.case(x().0, x().0)) ⇓ (1, ∗)

This observation indicates that “1” was transferred, followed by “end-of-session”.

5

Observations in our operational semantics are only defined for configurations
with no free channels. Hence we do not have the problem of processes getting
stuck for lack of communication partners, and the rules of our operational se-
mantics (Figure 3) are only concerned with interactions and duplication and
discarding of servers. There is no need for non-operational steps.

Our operational semantics enables us to define observational equivalence be-
tween CP processes in the standard way: if two processes yield the same observed
communications in all contexts, then they are observationally equivalent (Defi-
nition 1). We will see that the (Cut)-elimination rules of CLL, seen as equations
between CP terms are observational equivalences in our sense (Section 5).

Proving observational equivalences using our definition directly is difficult,
for the usual reason that the definition quantifies over all possible contexts.
Therefore, we define a denotational semantics for CP processes and configu-
rations, based on the standard relational semantics for CLL (Section 3). This
denotational semantics affords us a compositional method for assigning sets of
potential observable communication behaviours to CP processes and configura-
tions. In Section 4 we show that, on closed configurations, the operational and
denotational semantics agree, using a proof based on ⊥⊥-closed Kripke logi-
cal relations. Coupled with the compositionality of the denotational semantics,
adequacy yields a sound technique for proving observational equivalences.

1.3 Contributions

This paper makes three contributions to logically-based session types:

1. In Section 2, we define a communication observing semantics for Wadler’s CP
calculus. This semantics assigns observations to “configurations” of processes
that are communicating over channels. The data communicated over these
channels constitutes the observations an external observer can make on a
network of processes. Our semantics enables a definition of observational
equivalence for CP processes that takes into account the restrictions imposed
by CP’s typing discipline.

2. In Section 4, we show that the standard “folklore” relational semantics of
CLL proofs (spelt out in Section 3) is adequate for the operational seman-
tics via a logical relations argument. Adequacy means that we can use the
relational semantics, which is relatively straightforward to calculate with, to
reason about observational equivalence. An additional conceptual contribu-
tion is the reading of the relational semantics of CLL in terms of observed
communication between concurrent processes.

3. We use the denotational semantics to show that all of the standard Cut-
elimination rules of CLL are observational equivalences in our operational
semantics, in Section 5. This means that the Cut-elimination rules can be
seen as a sound equational theory for reasoning about observational equiva-
lence. We also show that permutations of communications along independent
channels are observational equivalences.

In Section 7, we assess the progress made in this paper and point to areas for
future work.

6

2 Observed Communication Semantics for CP

2.1 Classical Processes

Wadler’s CP is a term language for sequent calculus proofs in Girard’s Classical
Linear Logic (CLL), with a syntax inspired by the π-calculus [31].

Formulas The formulas of CLL are built by the following grammar:

A,B ::= 1 | ⊥ | A⊗B | A`B | A⊕B | A&B | !A | ?A

The connectives of CLL are collected into several groupings, depending on their
proof-theoretic behaviour. As we shall see, these groupings will also have rele-
vance in terms of their observed communication behaviour.

The connectives 1, ⊥, ⊗ and ` are referred as the multiplicatives, and ⊕ and
& are the additives. Multiplicatives correspond to matters of communication
topology, while the additives will correspond to actual data transfer. The ! and
? connectives are referred to as the exponential connectives, because they allow
for unrestricted duplication of the multiplicative structure. Another grouping of
the connectives distinguishes between the positive connectives 1, ⊗, ⊕, and !
that describe output, and the negative connectives ⊥, `, & and ? that describe
input. Positive and negative are linked via duality : each A has a dual A⊥:

1⊥ = ⊥ ⊥⊥ = 1
(A⊗B)⊥ = A⊥ `B⊥ (A`B)⊥ = A⊥ ⊗B⊥
(A⊕B)⊥ = A⊥ &B⊥ (A&B)⊥ = A⊥ ⊕B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

The key to the structure of the CP calculus is that CLL formulas are types
assigned to communication channels. Duality is how we transform the type of
one end of a channel to the type of the other end. Hence the swapping of positive
and negative connectives: we are swapping descriptions of input and output.

Example The additive connective ⊕ indicates the transmission of a choice be-
tween two alternative sessions. Using the multiplicative unit 1 to represent the
empty session, we can build a session type/formula representing transmission of
a single bit, and its dual representing the receiving of a single bit:

Bit = 1⊕ 1 Bit⊥ = ⊥&⊥

With these, we can build the type of a server that accept arbitrarily many
requests to receive two bits and return a single bit:

Server = !(Bit⊥ ` Bit⊥ ` Bit ⊗ 1)

We read this type as making the following requirements on a process: the outer
! indicates that it must allow for arbitrarily many uses; it then must receive two

7

Structural

` x↔ y :: x : A, y : A⊥ (Ax)
` P :: Γ, x : A ` Q :: ∆,x : A⊥

` νx.(P |Q) :: Γ,∆
(Cut)

` 0 ::
(Mix0)

Multiplicative

` x[] :: x : 1
(1)

` P :: Γ

` x().P :: Γ, x : ⊥
(⊥)

` P :: Γ, y : A ` Q :: ∆,x : B

` x[y].(P |Q) :: Γ,∆, x : A⊗B
(⊗)

` P :: Γ, y : A, x : B

` x(y).P :: Γ, x : A`B
(`)

Additive

` P :: Γ, x : Ai

` x[i].P :: Γ, x : A0 ⊕A1

(⊕i)
` P :: Γ, x : A0 ` Q :: Γ, x : A1

` x.case(P,Q) :: Γ, x : A0 &A1

(&)

Exponential

` P :: ?Γ, y : A

` !x(y).P :: ?Γ, x : !A
(!)

` P :: Γ, y : A

` ?x[y].P :: Γ, x : ?A
(?)

` P :: Γ, x1 : ?A, x2 : ?A

` P{x1/x2} :: Γ, x1 : ?A
(C)

` P :: Γ

` P :: Γ, x : ?A
(W)

Fig. 1. Classical Processes

bits, transmit a bit, and then signal the end of the session. We obtain the type
of a compatible client by taking the dual of this type:

Client = Server⊥ = ?(Bit ⊗ Bit ⊗ Bit⊥ `⊥)

We read this as requirements that are dual to those on the server: the ? indicates
that it can use the server as many times as necessary, whereupon it must transmit
two bits, receive a bit and receive an end of session signal.

Processes Processes in CP communicate along multiple named and typed chan-
nels, which we gather into contexts Γ = x1 : A1, . . . , xn : An where the channel
names xi are all distinct, and we do not care about order.

The syntax of processes in CP is given by the grammar:

P,Q ::= x↔ x′ | νx.(P |Q) | 0 | x[] | x().P | x[x′].(P |Q) |
x(x′).P | x[i].P | x.case(P,Q) | ?x[x′].P | !x(x′).P where i ∈ {0, 1}

The rules defining CP are given in Figure 1. They define a judgement ` P ::
Γ , indicating that P is well-typed with respect to type assignment Γ . We differ
from Wadler by writing P to the right of the `; it is not an assumption.

8

The rules are divided into four groups. The first group are the structural
rules: (Ax) introduces a process linking two channels, note the use of duality
to type the two ends of the link; (Cut) establishes communication between two
processes via a hidden channel x, again note the use of duality; and (Mix0) is
the nil process which performs no communication over no channels.

The second group contains the multiplicative rules. Following Wadler’s no-
tation, square brackets [· · ·] indicate output and round brackets (· · ·) indicate
input. Thus (1) introduces a process that outputs an end-of-session signal and
dually (⊥) introduces a process that inputs such. Likewise, (⊗) introduces a pro-
cess that outputs a fresh channel name for a forked-off process P to communicate
on, and dually (`) inputs a channel name for it to communicate on in the future.
Neither of these pairs communicates any unexpected information. By duality, if
a ⊗ process is going to send a channel and fork a process, then it is communicat-
ing with a ` process that is ready to receive a channel and communicate with
that process. In our semantics in Section 2.3, multiplicative connectives affect
the structure of observations, but not their information content.

Processes that communicate information are introduced by the additive rules
in the third group. The process introduced by (⊕i) transmits a bit i along the
channel x, and continues using x according to the type Ai. Dually, (&) introduces
processes that receive a bit, and proceed with either P or Q given its value.

The final group covers the exponential rules. The rule (!) introduces an in-
finitely replicable server process that can communicate according to the type A
on demand. To ensure that this process is infinitely replicable, all of the chan-
nels it uses must also be connected to infinitely replicable servers, i.e., channels
of type ?Ai. We indicate the requirement that all the channels in Γ be of ?’d
typed by the notation ?Γ . Processes introduced by the (?) rule query a server
process to obtain a new channel for communication. The exponentials are given
their power by the structural rules (C) and (W). Contraction, by rule (C) allows
a process to use the same server twice. Weakening, by the rule (W) allows a
process to discard a channel connected to a server.

Example As a programming language, CP is very low-level. We make use of
the following syntactic sugar (from [4]) for transmitting and receiving bits along
channels of type Bit and Bit⊥:

x[0].P
def
= x[y].(y[0].y[] | P)

x[1].P
def
= x[y].(y[1].y[] | P)

case x.{0 7→ P ; 1 7→ Q} def
= x.case(x().P, x().Q)

Using these abbreviations, we can write an implementation of our Server type
that computes the logical AND of a pair of bits:

` !x(y).y(p).y(q).case p.{
0 7→ case q.{0 7→ y[0].y[]; 1 7→ y[0].y[]};
1 7→ case q.{0 7→ y[0].y[]; 1 7→ y[1].y[]}} :: x : Server

9

` P :: Γ

`c P :: Γ | ·
(cfgProc)

`c 0 :: · | ·
(cfg0)

`c C1 :: Γ1, x : A | Θ1 `c C2 : Γ2, x : A⊥ | Θ2

`c C1 |x C2 :: Γ1, Γ2 | Θ1, Θ2, x : A
(cfgCut)

`c C :: Γ | Θ
`c C :: Γ, x : ?A | Θ

(cfgW)
`c C :: Γ, x1 : ?A, x2 : ?A | Θ
`c C{x1/x2} :: Γ, x1 : ?A | Θ

(cfgC)

Fig. 2. Configurations of Classical Processes

This process creates an infinitely replicable server via (!), receives two channels
via (`), receives two bits along them, and in each case transmits the appropriate
returned value and signals end of session. A dual client process is written so:

` ?x[y].y[1].y[1].case y.{0 7→ y().0; 1 7→ y().0} :: x : Client

This process contacts a server, sends the bit 1 twice, and then, no matter the
outcome, receives the end of session signal and halts.

2.2 Configurations

The well-typed process judgement ` P :: Γ relates processes P to unconnected
channels Γ . When processes communicate via the (Cut) rule, that commu-
nication is invisible to external observers: the common channel x is removed
from the context. In order to make communication visible, we introduce con-
figurations of processes. A configuration `c C :: Γ | Θ has unconnected chan-
nels Γ and connected but observable channels Θ. Observable channel contexts
Θ = x1 : A1, . . . , xn : An are similar to normal channel contexts Γ , except
that we identify contexts whose type assignments are the same up to duality.
Thus, as observable channel contexts, x : A ⊗ B, y : C ⊕ D is equivalent to
x : A` B, y : C &D. We make this identification because the CLL connectives
encode two things: i) the form of the communication and ii) its direction (i.e.,
whether it is positive or negative). When observing communication, we are not
interested in the direction, only the content. Hence identification up to duality.

Configurations are defined using the rules in Figure 2. The rule (cfgProc)
treats processes as configurations with unconnected channels and no publicly
observable channels. The (cfgCut) rule is similar to the (Cut) rule in that it puts
two configurations together to communicate, but here the common channel is
moved to the observable channel context instead of being hidden. The remainder
of the rules, (cfg0), (cfgW), and (cfgC) are the analogues of the structural rules
of CP, lifted to configurations. The rule (cfgC) is required to contract channel
names appearing in two separate processes in a configuration, and (cfgW) is
required for weakening even when there are no processes in a configuration.

10

There are no contraction or weakening rules for observable contexts Θ. Such
contexts record connected channels, which cannot be discarded or duplicated.

We define a structural congruence C1 ≡ C2 on configurations, generated by
commutativity and associativity (where permitted by the typing) for |x, with 0
as the unit. Structural congruence preserves typing.

A configuration with no unconnected channels, `c C :: · | Θ, is called a closed
configuration of type Θ. Closed configurations will be our notion of complete
systems: the observed communication semantics we define below in Section 2.4
is only defined for closed configurations.

Example Continuing our example from above, we can connect the server process
ServerP to the client process ClientP in a configuration with a visible commu-
nication channel x, using the (cfgCut) rule:

`c ServerP |x ClientP :: · | x : Server

Note that this configuration also has typing `c ServerP |x ClientP :: · | x : Client
due to the conflation of dual types in observation contexts.

2.3 Observations

Our observed communication semantics assigns observations to closed configu-
rations. The range of possible observations is defined in terms of the types of the
channels named in Θ. As stated above, observations only track the data flowing
across a communication channel, not the direction. Therefore, the positive and
negative connective pairs each have the same sets of possible observations:

J1K = J⊥K = {∗}
JA⊗BK = JA`BK = JAK× JBK
JA0 ⊕A1K = JA0 &A1K = Σi∈{0,1}. JAiK
J!AK = J?AK =Mf (JAK)

where Mf (X) denotes finite multisets with elements from X. We will use the ∅
for empty multiset,] for multiset union, and *a1, . . . , an+ for multiset literals.

The sets of possible observations for a given observation context Θ = x1 :
A1, . . . , xn : An are defined as the cartesian product of the possible observations
for each channel: JΘK = Jx1 : A1, . . . , xn : AnK = JA1K× · · · × JAnK.

2.4 Observed Communication Semantics

Observable evaluation is defined by the rules in Figure 3. These rules relate closed
configurations `c C :: · | Θ with observations θ ∈ JΘK. To derive C ⇓ θ is to say
that execution of C completes with observed communication θ. For convenience,
in Figure 3, even though observations θ are tuples with “anonymous” fields, we
refer to the individual fields by the corresponding channel name. The rules in
Figure 3 makes use of the shorthand notation C[−] to indicate that the matched
processes involved in each rule may appear anywhere in a configuration.

11

0 ⇓ ()
(Stop)

C[C′{x/y}] ⇓ θ[x 7→ a]

C[x↔ y |y C′] ⇓ θ[x 7→ a, y 7→ a]
(Link)

C[P |x Q] ⇓ θ[x 7→ a]

C[νx.(P |Q)] ⇓ θ
(Comm)

C[0] ⇓ θ
C[0] ⇓ θ

(0)
C[P] ⇓ θ

C[x[] |x x().P] ⇓ θ[x 7→ ∗]
(1⊥)

C[P |y (Q |x R)] ⇓ θ[x 7→ a, y 7→ b]

C[x[y].(P |Q) |x x(y).R] ⇓ θ[x 7→ (a, b)]
(⊗`)

C[P |x Qi] ⇓ θ[x 7→ a]

C[x[i].P |x x.case(Q0, Q1)] ⇓ θ[x 7→ (i, a)]
(⊕&)

C[P |y Q] ⇓ θ[y 7→ a]

C[!x(y).P |x ?x[y].Q] ⇓ θ[x 7→ *a+]
(!?)

C[C′] ⇓ θ
C[!x(y).P |x C′] ⇓ θ[x 7→ ∅]

(!W)

C[!x1(y).P |x1 (!x2(y).P |x2 C
′)] ⇓ θ[x1 7→ α, x2 7→ β]

C[!x1(y).P |x1 C
′{x1/x2}] ⇓ θ[x1 7→ α] β]

(!C)
C′ ⇓ θ C ≡ C′

C ⇓ θ
(≡)

Fig. 3. Observed Communication Semantics

The first rule, (Stop), is the base case of evaluation, yielding the trivial
observation () for the empty configuration. The next three rules, (Link), (Comm),
and (0) describe the behaviour of the processes introduced by the (Ax), (Cut)
and (Mix0) rules respectively. (Link) evaluates links via substitution of channel
names; and the observed communication across the link is shared between the
two channels. (Comm) evaluates two processes communicating over a private
channel by evaluating them over a public channel and then hiding it. (0) evaluates
the empty process 0 by turning it into the empty configuration 0.

The rules (1⊥), (⊗`), (⊕&) and (!?) describe how processes introduced by
dual pairs of rules interact across public channels, and the observed communica-
tion that results. For (1⊥), the trivial message ∗ is sent. For (⊗`), communication
that occured across two independent channels is grouped into one channel. For
(⊕&), a single bit, i is transmitted, which is paired with the rest of the commu-
nication. For (!?), an observation arising from a single use of a server is turned
into a multiset observation with a single element.

The rules (!W) and (!C) describe how server processes are discarded or du-
plicated when they have no clients or multiple clients respectively. In terms of
observed communication, these correspond to multiset union (]) and the empty
multiset (∅), respectively. Finally, the (≡) rule states that configuration seman-
tics is unaffected by permutation of processes (we have elided the matching
reordering within θ, following our convention of using channel names to identify
parts of an observation).

12

Example Our operational semantics assigns the following observation to the
configuration we built at the end of Section 2.2:

(ServerP |x ClientP) ⇓ (*((1, ∗), (1, ∗), (1, ∗), ∗)+)

We observe the two 1-bits sent by the client, the 1-bit returned by the server,
and the final ∗ indicating end of session. The additional ∗s accompanying each
bit are an artifact of our encoding of bits as the formula 1⊕ 1.

2.5 Observational Equivalence

Observational equivalence between a pair of processes is defined as having the
same set of observations in all typed contexts. By its definition in terms of typed
contexts CP [−], our definition of observational equivalence takes into account
the (in)abilities of typed processes to interact with each other. In particular,
the inability of CP processes to distinguish permutations of actions on distinct
channels yields a family of observational equivalences (Figure 8).

Our definition of observational equivalence is defined in terms of typed con-
texts CP [−], which consist of configurations and processes with a single (typed)
hole. Compared to the configuration contexts C[−] in Figure 3, configuration-
process contexts allow the hole to appear within a process.

Definition 1. Two processes ` P1, P2 :: Γ are observationally equivalent, writ-
ten P1 ' P2, if for all configuration-process contexts CP [−] where `c CP [P1] ::
· | Θ and `c CP [P2] :: · | Θ, and all θ ∈ JΘK, CP [P1] ⇓ θ ⇔ CP [P2] ⇓ θ.

Reasoning about observational equivalence is difficult, due to the quantification
over all contexts. In the next two sections, we present a denotational semantics
of CP which is sound for reasoning about observational equivalence.

3 Denotational Semantics of CP

The observed communication semantics of the previous section assigns obser-
vations to closed configurations. To reason about open configurations and pro-
cesses, and hence observational equivalence, we require a semantics that assigns
observations to processes and open configurations. We do this via a denotational
semantics that interprets processes and open configurations as relations between
the possible observations on each of their channels. Since CP processes are a
syntax for CLL proofs, our denotations of processes will be identical to the re-
lational semantics of proofs in CLL (see, for example, Barr [6]). We extend this
semantics to configurations by interpreting them as relations between observa-
tions on their unconnected channels and observations on their connected chan-
nels. Compared to other denotational semantics for process calculi (e.g. [30,32]),
this semantics is notable in its non-use of traces, synchronisation trees, or other
temporally ordered formalism to record the I/O behaviour of processes. This is
due to the linearity constraints imposed by the typing rules inherited from CLL,

13

which enforce the invariant that distinct channels are completely independent.
A trace-based semantics would impose an ordering on actions performed by pro-
cesses which is not observable by a CP context. This “temporal-obliviousness”
speaks to the point that CP is about structured communication determined by
types, not about concurrency. We return to this in Section 5 when we discuss the
observational equivalences between processes that permute independent actions.

In Section 4, we will see that on closed configurations the operational seman-
tics and the denotational semantics agree.

3.1 Semantics of Formulas

The semantics of formulas does not take into account whether data is being
transmitted or received; the relational semantics of CLL is sometimes referred
to as “degenerate” in this sense. We discuss this further in Section 3.4. For now,
we use the same interpretation of formulas as we did for observation contexts in
Section 2.3:

J1K = J⊥K = {∗}
JA⊗BK = JA`BK = JAK× JBK
JA0 ⊕A1K = JA0 &A1K = Σi∈{0,1}. JAiK
J!AK = J?AK =Mf (JAK)

The sets of possible observations for a given context Γ = x1 : A1, . . . , xn : An

are again defined as the cartesian product of the sets for each of the Ai:

JΓ K = Jx1 : A1, . . . , xn : AnK = JA1K× · · · × JAnK

3.2 Semantics of Processes

The basic idea of the semantics of processes is that if (a1, . . . , an) ∈ J` P :: Γ K,
then (a1, . . . , an) is a possible observed behaviour of P along its unconnected
channels. So, to every ` P :: Γ , we assign a subset of the interpretation of Γ :

J` P :: Γ K ⊆ JΓ K

by induction on the derivation of ` P :: Γ . The (Ax) rule is interpreted by the
diagonal relation, indicating that whatever is observed at one end of the linked
channels is observed at the other:

J` x↔ y :: x : A, y : A⊥K = {(a, a) | a ∈ JAK}

The (Cut) rule is interpreted by taking observations from both processes that
share a common observation along the shared channel:

J` νx.(P |Q) :: Γ,∆K = {(γ, δ) | (γ, a) ∈ J` P :: Γ, x : AK,
(δ, a) ∈ J` Q :: ∆,x : A⊥K}

The (Mix0) rule is interpreted as the only possible observation in an empty
context:

J` 0 ::K = {∗}

14

The multiplicative units observe trivial data:

J` x[] :: x : 1K = {(∗)}
J` x().P :: Γ, x : ⊥K = {(γ, ∗) | γ ∈ J` P :: Γ K}

For the multiplicative binary connectives, the (⊗) rule is interpreted by combin-
ing the interpretations of its two subprocesses into a single observation; while
the (`) rule is interpreted by pairing the observations on two channels into one.

J` x[y].(P |Q) :: Γ,∆, x : A⊗BK = {(γ, δ, (a, b)) | (γ, a) ∈ J` P :: Γ, y : AK,
(δ, b) ∈ J` Q :: ∆,x : BK}

J` x(y).P :: Γ, x : A`BK = {(γ, (a, b)) | (γ, a, b) ∈ J` P :: Γ, y : A, x : BK}

For the additive connectives, sending bits via the (⊕i) rules is interpreted by
prepending that bit on to the observation on that channel; and receiving a bit
via (&) is interpreted by taking the union of possible observations:

J` x[i].P :: Γ, x : A0 ⊕A1K = {(γ, (i, a)) | (γ, a) ∈ J` P :: Γ, x : AiK}
J` x.case(P0, P1) :: Γ, x : A0 &A1K

=
⋃

i∈{0,1}{(γ, (i, a)) | (γ, a) ∈ J` Pi :: Γ, x : AiK}

For the exponential connectives, a “server” process introduced by the (!) rule
is interpreted as the multiset of k-many observations of its underlying process,
taking the union of their auxillary observations on the context ?Γ . A “client”
process introduced by (?) makes a singleton multiset’s worth of observations:

J` !x(y).P :: ?Γ, x : !AK = {(
⊎k

j=1 α
1
j , . . . ,

⊎k
j=1 α

n
j , *a1, . . . , ak+) |

∀i ∈ {1, . . . , k}.
(α1

i , . . . , α
n
i , ai) ∈ J` P :: ?Γ, y : AK}

J` ?x[y].P :: Γ, x : ?AK = {(γ, *a+}) | (γ, a) ∈ J` P :: Γ, y : AK}

The exponential structural rules dictate how singleton observations from client
processes are combined, or channels are discarded. Contraction (C) is interpreted
via multiset union, and weakening (W) is interpreted by the empty multiset:

J` P{x1/x2} :: Γ, x1 : ?AK = {(γ, α1] α2) |
(γ, α1, α2) ∈ J` P :: Γ, x1 : ?A, x2 : ?AK}

J` P :: Γ, x : ?AK = {(γ, ∅) | γ ∈ J` P :: Γ K}

When these rules are put into communication with servers generated by (!) they
will dictate the multiplicity of uses of the server process.

Example We compute the denotation of the process ServerP from our running
example to be the set of arbitrarily sized multisets of possible interactions with
the the underlying process:

JServerPK = {*a1, . . . , ak+ | ∀i.ai ∈ S}

15

where the underlying process’s denotation includes all possible 22 possibilities
for inputs and relates them to the corresponding output (their logical AND):

S = {((b1, ∗), (b2, ∗), (b1 ∧ b2, ∗), ∗) | b1 ∈ {0, 1}, b2 ∈ {0, 1}}

The client’s denotation is a singleton multiset (recording the fact that it uses
the server only once). Dually to the server’s denotation, the first two bits are
determined but the last one is completely undetermined because we cannot know
what the response from the server will be.

JClientPK = {*((1, ∗), (1, ∗), (b, ∗), ∗)+ | b ∈ {0, 1}}

3.3 Semantics of Configurations

The denotational semantics of configurations extends the semantics of processes
to include the connected channels. Configurations `c C :: Γ | Θ are assigned sub-
sets of JΓ K×JΘK. The idea is that, if ((a1, . . . , an), (b1, . . . , bn)) ∈ J`c C :: Γ | ΘK,
then (a1, . . . , an) and (b1, . . . , bn) are a possible observed behaviour of C along
its unconnected and connected channels respectively. We assign denotations to
each configuration by structural recursion on their derivations:

J`c 0 :: · | ·K = {(∗, ∗)}
J`c P :: Γ | ·K = {(γ, ∗) | γ ∈ J` P :: Γ K}
J`c C1 |x C2 :: Γ1, Γ2 | Θ1, Θ2, x : AK =

{((γ1, γ2), (θ1, θ2, a)) | ((γ1, a), θ1) ∈ J`c C1 :: Γ1, x : A | Θ1K,
((γ2, a), θ2) ∈ J`c C2 :: Γ2, x : A⊥ | Θ2K}

J`c C :: Γ, x : ?A | ΘK = {((γ, ∅), θ) | (γ, θ) ∈ J`c C :: Γ | ΘK}
J`c C{x1/x2} :: Γ, x1 : ?A | ΘK =

{((γ, a1] a2), θ) | ((γ, a1, a2), θ) ∈ J`c C :: Γ, x1 : ?A, x2 : ?A | ΘK}

The interpretation of (cfg0), (cfgC), and (cfgW) are similar to the analogous
rules for processes. The interpretation of (cfgCut) is also similar, except that the
observation on the shared channel is retained. The interpretation of (cfgProc)
lifts interpretations of processes up to configurations with no connected channels.

Example Using the above rules, we compute the denotation of our example
configuration linking our server to its client:

J`c ServerP |x ClientP :: · | x :: ServerK = {*((1, ∗), (1, ∗), (1, ∗), ∗)+}

The denotation is the set with the single observation we computed in Section 2.4
for this configuration. In Section 4, we will see that this is no accident.

3.4 More precise semantics?

As we noted in Section 3.1, the relational semantics of CLL assigns the same
interpretation to the positive and negative variants of each connective. Thus,

16

the semantics of formulas do not model the direction of data flow for inputs
and outputs. The logical relations we will define in Section 4 will refine the
semantics of formulas to identify subsets of the observations possible for each
formula that are actually feasible in terms of the input/output behaviour of
connectives, but it is also possible to perform such a refinement purely at the
level of the denotational semantics. Girard’s motivating semantics for CLL was
coherence spaces [16], which can be seen as a refined version of the relational
semantics where particular distinguished subsets, cliques, are identified as the
possible denotations of processes. The defining property of coherence spaces is
that for every clique α in a coherence space and every clique β in its dual,
the intersection α ∩ β has at most one element. The coherence space semantics
can be extended to configurations by stipulating that subsets X assigned to
configurations must satisfy the property that if (γ1, θ1) and (γ2, θ2) are both in
X, then whenever γ1 and γ2 are coherent (i.e., {γ1, γ2} is a clique), then θ1 = θ2.
The semantics for configurations in Section 3.3 satisfies this property, and the
adequacy proof in the next section goes through unchanged.

Operationally, this means that CP processes can only interact in at most one
way. Therefore, using a coherence space semantics would consistute a semantic
proof of determinacy for CP with our semantics. It might be possible to go
further and use Loader’s totality spaces [22], which stipulate that cliques in dual
spaces have exactly one element in their intersection, to also prove termination.
However, the construction of exponentials in totality spaces is not clear.

4 Adequacy

We now present our main result: on closed configurations, the operational and de-
notational semantics agree. Consequently, we can use the denotational semantics
to reason about observational equivalences between CP processes (Section 5).

Theorem 1. If `c C :: · | Θ, then C ⇓ θ iff θ ∈ J`c C :: · | ΘK.

The forwards direction of this theorem states that if an observation can be gener-
ated by the evaluation rules, then it is also within the set of possible observations
predicted by the denotational semantics. This is straightfoward to prove by in-
duction on the derivation of C ⇓ θ. The backwards direction, which states that
the denotational semantics predicts evaluation, is more complex and occupies
the rest of this section.

4.1 Agreeability via ⊥⊥-Closed Logical Relations

We adapt the standard technique for proving adequacy for sequential languages
[28] and use a logical relation to relate open configurations with denotations. For
each channel name x and CLL formula A, we use ternary relations that relate
observable contexts, denotations, and configurations, which we call agreeability
relations:

X ⊆ ΣΘ:ObsCtxt. P(JAK× JΘK)× Cfg(x : A | Θ) (1)

17

where ObsCtxt is the set of observable contexts, P is the power set, and Cfg(x :
A | Θ) is the set of well-typed configurations `c C :: x : A | Θ. We are interested
in special agreeability relations: those that are closed under double negation.

Negation Given an agreeability relation X for a channel x : A, its negation
X⊥ is an agreeability relation for x : A⊥. Intuitively, if X identifies a set of
configurations and denotations with some property, then X⊥ is the set of con-
figurations and denotations that “interact well” with the ones in X. For our
purposes, “interact well” means that the communication we observe when the
two configurations interact is predicted by their associated denotations.

Definition 2 (Negation). Let X be a relation for x : A as in (1). Its negation
X⊥ is a relation for x : A⊥, defined as:

X⊥ = {(Θ′, α′, C ′) | ∀(Θ,α,C) ∈ X, θ, θ′, a.
(a, θ) ∈ α ∧ (a, θ′) ∈ α′ ⇒ (C |x C ′)⇓(θ, θ′, a)}

We are interested in agreeability relations that are ⊥⊥-closed: X⊥⊥ = X. These
are related denotations and configurations that “interact well with anything
that interacts well with them”. This kind of double-negation closure was used
by Girard [16] to construct the Phase Space semantics of CLL and to show
weak normalisation. Ehrhard notes that double-negation closure is a common
feature of many models of CLL [13]. Double-negation, (·)⊥⊥, has the following
properties, which mean that it is a closure operator [12]:

Lemma 1. 1. X ⊆ X⊥⊥;
2. If X ⊆ Y , then Y ⊥ ⊆ X⊥;
3. X⊥⊥⊥ = X⊥.

By (3), X⊥⊥ is automatically ⊥⊥-closed for any agreeability relation X.

Duplicable and Discardable We generalise the duplicable and discardable capa-
bility of !’d processes (the (!C) and (!W) rules) to arbitrary configurations with
one free channel of !’d type:

Definition 3 (Duplicable and Discardable). A configuration `c C :: x :
!A | z1 : !B1, . . . , zn : !Bn is

1. duplicable if, for all `c C ′ :: Γ, x : ?A⊥, x′ : ?A⊥ | Θ,

D[(C ′ |x C) |x′ C{x′/x, z′1/z1, . . . , z′n/zn}] ⇓

θ

[
x 7→ α, z1 7→ α1,. . . ,zn 7→ αn,
x′ 7→ α′,z′1 7→ α′1,. . . ,z

′
n 7→ α′n

]
implies

D[C ′{x/x′} |x C] ⇓ θ[x 7→ α] α′, z1 7→ α1] α′1, . . . , zn 7→ αn] α′n]

2. discardable if, for all `c C ′ :: Γ | Θ, D[C ′] ⇓ θ implies that D[C ′ |x C] ⇓
θ[x 7→ ∅, z1 7→ ∅, . . . , zn 7→ ∅].

18

Jx : 1K = {(·, {∗}, C) | C ≡ x[]}⊥⊥

Jx : ⊥K = Jx : 1K⊥

Jx : A⊗BK = {((Θ′, Θ), α, C) | C ≡ (· · · (x[x′].(P ′|P) |y′
1
D′

1) · · · |yn Dn),

α = {((a, b), θ′, θ) | (a, θ′) ∈ β′, (b, θ) ∈ β},
(Θ′, β′, (· · · (P ′ |y′

1
D′

1) · · · |y′
n
D′

n)) ∈ Jx′ : AK,
(Θ, β, (· · · (P |y1 D1) · · · |yn Dn)) ∈ Jx : BK}⊥⊥

Jx : A`BK = Jx : A⊥ ⊗B⊥K⊥

Jx : A0 ⊕A1K = {(Θ,α,C) | C ≡ (· · · (x[i].P |y1 D1) · · · |yn Dn),
α = {((i, a), θ) | (a, θ) ∈ β},

(Θ, β, (· · · (P |y1 D1) · · · |yn Dn)) ∈ Jx : AiK}⊥⊥

Jx : A0 &A1K = Jx : A⊥
0 ⊕A⊥

1 K⊥

Jx : !AK = {(?Θ,α,C) | C ≡ (· · · (!x(x′).P |y1 D1) · · · |yn Dn),

α = {(*a1, . . . , ak+,
⊎k

i=1 θi) | (ai, θi) ∈ β},
(?Θ, β, (· · · (P |y1 D1) · · · |yn Dn)) ∈ Jx′ : AK,
C duplicable and discardable}⊥⊥

Jx : ?AK = Jx : !A⊥K⊥

Fig. 4. ⊥⊥-Closed Agreeability Relations relating denotations and configurations

The definition of duplicability uses the (cfgC) rule to ensure that the second
configuration is well-typed. Likewise, discardability uses the (cfgW) rule. The
next lemma states that configurations built from duplicable and discardable
parts are themselves duplicable and discardable. We will use this in the proof of
Lemma 4, below, when showing that processes of the form !x(y).P agree with
their denotations after they have been closed by connecting their free channels
to duplicable and discardable configurations.

Lemma 2. Let ` P :: x1 : ?A1, . . . xn : ?An, x
′ : A be a process, and let 〈`c

Ci :: xi : !Ai | ?Θi〉1≤i≤n be duplicable and discardable configurations. Then the
configuration

`c (· · · (!x(x′).P |x1
C1) · · · |xn

Cn) :: x : !A | ?Θ1, x1 : ?A1, · · · , ?Θn, xn : ?An

is duplicable and discardable.

Interpretation of Process Types Figure 4 defines a⊥⊥-closed agreeability relation
on x : A for each CLL proposition A by structural recursion. We only need
definitions for the positive cases, relying on negation for the negative cases.
We ensure that all the positive cases are ⊥⊥-closed by explicitly doing so. The
negative cases are the negations of the positive cases, and hence are automatically
⊥⊥-closed by Lemma 1.

The general method for each definition in Figure 4 is to define what the
“ideal” configuration inhabitant and denotation of each type looks like, and
then use ⊥⊥-closure to close that relation under all possible interactions. In
the case of x : 1, there is one possible process, x[], and denotation, ∗. For the
x : A⊗B case, ideal inhabitants are composed of two inhabitants of the types A

19

and B (processes P , P ′ plus their associated support processes Di and D′i). In
the x : A0 ⊕ A1 case, ideal inhabitants are processes that are inhabitants of Ai

after outputing some i. For the exponentials, x : !A, the ideal inhabitant is one
whose auxillary resources are all duplicable and discardable (indicated by the
?Θ). In each case, the associated denotations are determined by the denotational
semantics defined in Section 3.

Agreeable Processes The definition of Jx : AK defines what it means for configu-
rations with one free channel to agree with a denotation. We use this definition
to define what it means for a process to agree with its denotation by connect-
ing it to configurations and denotations that are related and stating that the
communications predicted by the denotations is matched by evaluation:

Definition 4. A process ` P :: x1 : A1, . . . , xn : An is agreeable if for all

(Θ1, α1, C1) ∈ Jx1 : A1K⊥, . . . , (Θn, αn, Cn) ∈ Jxn : AnK⊥,

if (a1, . . . , an) ∈ J` P :: x1 : A1, . . . , xn : AnK and (a1, θ1) ∈ α1, . . . , (an, θn) ∈
αn, then

(· · · (P |x1
C1) · · · |xn

Cn) ⇓ (θ1, a1, . . . , θn, an)

Closing an agreeable process so that it has one free channel yields an inhab-
itant of the semantic type of the free channel:

Lemma 3. If the process ` P :: x1 : A1, . . . , xn : An, x : A is agreeable, then for
all (Θ1, β1, C1) ∈ Jx1 : A1K⊥, . . . , (Θn, βn, Cn) ∈ Jxn : AnK⊥, it is the case that

((Θ1, x1 : A1, . . . , Θn, xn : An), α, (· · · (P |x1
C1) · · · |xn

Cn)) ∈ Jx : AK

where
α = {(a, θ1, a1, . . . , θn, an)|(a1, . . . , an, a) ∈ JP K, (a1, θ1) ∈ β1, . . . , (an, θn) ∈ βn}

For all processes, when connected to well-typed configurations, their denotational
semantics predicts their behaviour:

Lemma 4. All processes ` P :: Γ are agreeable.

Proof. (Sketch) By induction on the derivation of ` P :: Γ . The structural
rules ((Ax), (Cut), (Mix0)) all involve relatively straightforward unfoldings of
the definitions. The rest of the rules follow one of two patterns, depending on
whether they are introducing a negative or positive connective. For the negative
connectives, ⊥,`,&, ?, and for the contraction and weakening rules, we are using
(cfgCut) to connect the configuration composed of P and configurations for the
other free channels with a triple (Θ,α,C) that is a semantic inhabitant of the
negation of a negative type. To proceed, we use the fact that the positive types
are all defined via double-negation closure to deduce the following:

∀(Θ′, α′, C ′).
(∀(Θ′′, α′′, C ′′) ∈ “ideal”. (Θ′, α′, C ′)⊥(Θ′′, α′′, C ′′))⇒

(Θ,α,C)⊥(Θ′, α′, C ′)

20

where “ideal” indicates the defining property of the negation of the formula
being introduce, as defined in Figure 4, and −⊥− indicates the property that
the denotational semantics correctly predicts the operational semantics when
Cut-ing two configurations. Thus we can reason as if the triple (Θ,α,C) is an
“ideal” inhabitant of the negation of the introduced type.

For the positive connectives, 1,⊗,⊕, !, the situation is slightly simpler. By
point (3) of Lemma 1, we deduce that, if (Θ,α,C) is the interacting process of
the negation of the introduced type, then:

∀(Θ′, α′, C ′) ∈ “ideal”. (Θ′, α′, C ′)⊥(Θ,α,C)

Therefore, our job is to prove that the newly introduced process conforms to
the “ideal” specification introduced in Figure 4. This is mostly straightforward,
save for the (!) case, where we need an auxillary induction over the context ?Γ
to deduce that all the configurations connected to these channels are themselves
duplicable and discardable.

Agreeable Configurations We now extend the definition of agreeability from pro-
cesses to configurations. After we show that all configurations are agreeable, the
special case of this definition for closed processes will give us the backwards
direction of Theorem 1 (Corollary 1).

Definition 5. A configuration `c C :: x1 : A1, . . . , xn : An | Θ is agree-
able if for all (Θ1, α1, C1) ∈ Jx1 : A1K⊥, . . . , (Θn, αn, Cn) ∈ Jxn : AnK⊥, and
(a1, . . . , an, θ) ∈ J`c C :: x1 : A1, . . . , xn : An | ΘK and (a1, θ1) ∈ α1, . . . , and
(an, θn) ∈ αn, then (· · · (C |x1

C1) · · · |xn
Cn) ⇓ (θ, θ1, a1, . . . , θn, an).

Lemma 5. All configurations `c C :: Γ | Θ are agreeable.

Proof. By induction on the derivation of `c C :: Γ | Θ. Lemma 4 is used to han-
dle the (cfgProc) case, and all the other cases are similar to the corresponding
case in the proof of Lemma 4.

When Γ is empty, Lemma 5 yields the backwards direction of Theorem 1:

Corollary 1. If `c C :: · | Θ and θ ∈ J`c C :: · | ΘK, then C ⇓ θ.

5 Observational Equivalences

Theorem 1 enables us to predict the behaviour of processes without having to
first embed them in a closing configuration. In particular, we can use it as a
method for proving observational equivalences:

Corollary 2. If ` P1, P2 :: Γ and JP1K = JP2K, then P1 ' P2.

Proof. For any closing configuration context CP [−] and observation θ, we have:

CP [P1] ⇓ θ ⇔ θ ∈ JCP [P1]K by Theorem 1
⇔ θ ∈ JCP [P2]K since JP1K = JP2K
⇔ CP [P2] ⇓ θ by Theorem 1

21

` P :: Γ, x : A

` νx.(P |x↔ y) ' P{y/x} :: Γ, y : A

` P :: Γ, x : A ` Q :: ∆,x : A⊥, y : B ` R :: Σ, y : B⊥

` νx.(P |νy.(Q|R)) ' νy.(νx.(P |Q)|R) :: Γ,∆,Σ

` P :: Γ, x : A ` Q :: ∆,x : A⊥

` νx.(P |Q) ' νx.(Q|P) :: Γ,∆

Fig. 5. Observational Equivalences arising from permutation of cuts

We now use this corollary to show that the cut elimination rules of CLL and
permutation rules yield observational equivalences for our operational semantics.
Since we have used the standard relational semantics of CLL, which is known to
be equationally sound for cut-elimination [25], all these statements are immedi-
ate. The force of Corollary 2 is that these rules also translate to observational
equivalences for our independently defined operational semantics.

Cut-elimination Rules Figure 5 shows the rules arising from the interaction of
(Cut) with itself and the (Ax) rule: (Cut) is associative and commutative, and
has (Ax) as an identity element. These rules amount to the observation that one
can construct a category from CLL proofs (see Melliès [25], Section 2).

Figure 6 shows the rules arising from elimination of “principal cuts”: (Cut)
rule applications that are on a formula and its dual that are introduced by the
two immediate premises. Oriented left-to-right, and restricted to top-level (i.e.,
not under a prefix), these are the rules that are taken as the reduction rules of
CP by Wadler. They are also the inspiration for our evaluation rules in Figure 3.
However, here these rules are observational equivalences, so we can use them
anywhere in process to replace two communicating processes with the result of
their communication. Figure 7 presents the rules for eliminiating non-principal
cuts: (Cut) rule applications where the cut formula is not the most recently in-
troduced one. These rules are also called “commuting conversion” rules because
they commute input/output prefixes with applications of the (Cut) rule in or-
der to expose potential interactions. The fact that these are now observational
equivalences formalises the informal statement given by Wadler in Section 3.6 of
[36] that these rules are justified for CP. Note that the semantics we presented in
Section 2.4 does not make use of commuting conversions. It only requires imme-
diate interactions between process. Since there are no channels left unconnected,
there is no way for a process to get stuck.

Permutation of Independent Channels Figure 8 presents a set of observational
equivalence rules arising from permutation of communication along independent
channels. We have omitted the type information to save space. The admissibility
of these rules is an indication of the relative weakness of CP contexts to make

22

` P :: Γ

` νx.(x[]|x().P) ' P :: Γ

` P :: Γ, y : A ` Q :: ∆,x : B ` R :: Σ, y : A⊥, x : B⊥

` νx.(x[y].(P |Q)|R) ' νy.(P |νx.(Q|R)) :: Γ,∆,Σ

` P :: Γ, x : Ai ` Q0 :: ∆,x : A⊥
0 ` Q1 :: ∆,x : A⊥

1

` νx.(x[i].P | x.case(Q0, Q1)) ' νx.(P |Qi) :: Γ,∆

` P :: ?Γ, y : A ` A :: ∆, y : A⊥

` νx.(!x(y).P |?x[y].Q) ' νy.(P |Q) :: ?Γ,∆

` P :: ?Γ, y : A ` Q :: ∆,x : ?A, x′ : ?A

` νx.(!x(y).P |Q{x/x′}) ' νx.(!x(y).P |νx′.(!x′(y).P |Q)) :: ?Γ,∆

` P :: ?Γ, y : A ` Q :: ∆

` νx.(!x(y).P |Q) ' Q :: ∆

Fig. 6. Observational Equivalences arising from elimination of principal cuts

observations on a process. If a process has a access to a pair of channels, the
processes connected to the other ends of those channels must be independent,
and so cannot communicate between themselves to discover which one was com-
municated with first. This is why the denotational semantics of CP that we
defined in Section 3 does not explain processes’ behaviour in terms of traces as
is more common when giving denotation semantics to process calculi [30]. The
typing constraints of CP mean that there is no global notion of time: the only
way that a CP process can “know” the past from the future is by receiving a
bit of information via the (&) rule. Everything else that a CP process does is
pre-ordained by its type.

There are a large number of equations in Figure 8 due to the need to account
for the permutation of each kind of prefix with itself and with every other prefix.
The (⊗) rule is particularly bad due to the presence of two sub-processes, either
of which may do perform the permuted action.

6 Related Work

Wadler’s papers introducing CP, [35] and [36], contain discussions of work related
to the formulation of CP as a session-typed language derived from CLL, and how
this relates to session types. Here, we discuss work related to logical relations and
observational equivalences for session-typed calculi, and the use of denotational
semantics for analysing the proofs of CLL.

23

` P :: Γ, y : A, z : C ` Q :: ∆,x : B ` R :: Σ, z : C⊥

` νz.(x[y].(P |Q)|R) ' x[y].(νz.(P |R)|Q) :: Γ,∆,Σ, x : A⊗B

` P :: Γ, y : A ` Q :: ∆,x : B, z : C ` R :: Σ, z : C⊥

` νz.(x[y].(P |Q)|R) ' x[y].(P |νz.(Q|R)) :: Γ,∆,Σ, x : A⊗B

` P :: Γ, y : A, x : B, z : C ` Q :: ∆, z : C⊥

` νz.(x(y).P | Q) ' x(y).νz.(P |Q) :: Γ,∆, x : A`B

` P :: Γ, x : Ai, z : C ` Q :: ∆, z : C⊥

` νz.(x[i].P |Q) ' x[i].νz.(P |Q) :: Γ,∆, x : A0 ⊕A1

` P :: Γ, x : A, z : C ` Q :: Γ, x : B, z : C ` R :: ∆, z : C⊥

` νz.(x.case(P,Q)|R) ' x.case(νz.(P |R), νz.(Q|R)) :: Γ,∆, x : A&B

` P :: ?Γ, y : A, z : ?C ` Q :: ?∆, z : !C⊥

` νz.(!x(y).P |Q) ' !x(y).νz.(P |Q) :: ?Γ, ?∆,x : !A

` P :: Γ, y : A, z : C ` Q :: ∆, z : C⊥

` νz.(?x[y].P |Q) ' ?x[y].νz.(P |Q) :: Γ,∆, x : ?A

` P :: Γ, z : C ` Q :: ∆, z : C⊥

` νz.(x().P | Q) ' x().νz.(P |Q) :: Γ,∆, x : ⊥

Fig. 7. Observational Equivalences arising from elimination of non-principal cuts (com-
muting conversions)

Just as the Iron Curtain during the Cold War lead to the same work being
done twice, once in the East and once in the West, the existence of two logically-
based session-typed concurrency formalisms, one based on Intuitionistic Linear
Logic (ILL) [9], and one based on Classical Linear Logic, means that analogous
work is performed on both sides. (Indeed, ILL has both left and right rules for
each connective, meaning that working with ILL-based formalisms already dou-
bles the amount of work one needs to do.) Notions of observational equivalence
and logical relations for πDILL have already been studied by Pérez et al. [27].
Pérez et al. use logical relations to prove strong normalisation and confluence for
their session-typed calculus based on ILL, and define a notion of observational
equivalence between session-typed processes, based on bisimulation. They prove
observational equivalences based on the (Cut)-elimination rules of their calculus,
analogous to ones we proved in the previous section.

As we noted in the introduction Pérez et al. define an LTS over stuck pro-
cesses with one free output channel. They use this to coinductively define their
notion of observational equivalence. This means that to prove individual equiv-

24

` x().x′().P ' x′().x().P
` x().x′[y′].(P |Q) ' x′[y′].(x().P |Q)
` x().x′[y′].(P |Q) ' x′[y′].(P |x().Q)
` x().x′(y′).P ' x′(y′).x().P
` x().x′[i].P ' x′[i].x().P
` x().x′.case(P,Q) ' x′.case(x().P, x().Q)
` x().?x′[y′].P ' ?x′[y′].x().P
` x[y].(x′[y′].(P |Q)|R) ' x′[y′].(x[y].(P |R)|Q)
` x[y].(x′[y′].(P |Q)|R) ' x′[y′].(P |x[y].(Q|R))
` x[y].(P |x′[y′].(Q|R)) ' x′[y′].(Q|x[y].(P |R))
` x[y].(x′(y′).P |Q) ' x′(y′).x[y].(P |Q)
` x[y].(P |x′(y′).Q) ' x′(y′).x[y].(P |Q)
` x[y].(x′[i].P |Q) ' x′[i].x[y].(P |Q)
` x[y].(P |x′[i].Q) ' x′[i].x[y].(P |Q)
` x[y].(x′.case(P,Q)|R) ' x′.case(x[y].(P |R), x[y].(Q|R))
` x[y].(P |x′.case(Q,R)) ' x′.case(x[y].(P |Q), x[y].(P |R))
` x[y].(?x′[y′].P |Q) ' ?x′[y′].x[y].(P |Q)
` x[y].(P |?x′[y′].Q) ' ?x′[y′].x[y].(P |Q)
` x(y).x′(y′).P ' x′(y′).x(y).P
` x(y).x′[i].P ' x′[i].x(y).P
` x(y).x′.case(P,Q) ' x′.case(x(y).P, x(y).Q)
` x(y).?x′[y′].P ' ?x′[y′].x(y).P
` x[i].x′[j].P ' x′[j].x[i].P
` x[i].x′.case(P,Q) ' x′.case(x[i].P |x[i].Q)
` x[i].?x′[y′].P ' ?x′[y′].x[i].P
` x.case(x′.case(P,Q), x′.case(R,S)) ' x′.case(x.case(P,R), x.case(Q,S))
` x.case(?x′[y′].P, ?x′[y′].Q) ' ?x′[y′].x.case(P,Q)
` ?x[y].?x′[y′].P ' ?x′[y′].?x[y].P

Fig. 8. Permutation of communication along independent channels

alences requires the construction of the appropriate bisimulation relation. In
contrast, our denotational technique for proving equivalences is much more ele-
mentary, involving only simple set theoretic reasoning. Moreover, their technique
requires additional proofs that their definition of observational equivalence is a
congruence, a fact that is immediate in our definition.

Pérez et al. go further than we have done in also proving that their calculus
is strongly normalising and confluent, using a logical relations based proof. As
we discussed in Section 3.4, it is possible to use a coherence space semantics to
prove determinacy, and we conjecture that totality spaces can prove termination.

⊥⊥-closed relations are a standard feature of proofs in the meta-theory of
Linear Logic: for example weak normalisation proofs by Girard [16] and Baelde
[5] and strong normalisation proofs by Accattoli [3]. They have also been used
for parametricity results in polymorphically typed π-calculi [8]. An innovation
in this paper is the use of Kripke ⊥⊥-closed relations to account for the contexts
Θ describing the possible observations on configurations.

25

7 Conclusions and Future Work

We have introduced an operational semantics for Wadler’s CP calculus that
agrees with the standard relational semantics of CLL proofs. We have been
able to show that the (Cut)-elimination rules of CLL are precisely observational
equivalences with respect to our operational semantics. We view this work as a
crucial step in treating CP as a foundational language of structured communi-
cation. We now highlight some areas of research that we have opened up.

Refined Denotational Semantics for CP As we discussed in Section 3.4, there
is a close connection between semantics of CLL that assign cliques to proofs
and the operational properties of the corresponding processes. Further refine-
ments of the relational semantics, beyond coherence spaces, such as Loader’s
totality spaces [22] and Ehrhard’s Finiteness spaces [13], should yield insights
into the operational behaviour of CP and its extensions with features such as
non-determinism. Laird et al. [19]’s weighted relational semantics interprets pro-
cesses as semiring-valued matrices. This could be used to model a variant of CP
with complexity measures. Probabilistic Coherence Spaces, introduced by Danos
and Ehrhard [11], are another refinement that model probabilistic computation.

Recursive Types for CP In this paper, we have only investigated the basic fea-
tures of CP. Extensions of CP with recursive types, based on the work in CLL
by Baelde [5], have been carried out by Lindley and Morris [21]. Extension of
our operational semantics and the denotational semantics with recursive types
is an essential step in turning CP into a more realistic language for structured
communication. Constructing concurrency features on CP may be possible by
allowing racy interleaving of clients and servers expressive via recursive types.

Dependent Types for CP More ambitiously, we intend to extend CP with de-
pendent types. Dependent types for logically-based session-typed calculi have al-
ready been investigated by Toninho, Caires and Pfenning [33] and Toninho and
Yoshida [34]. However, these calculi enforce a strict separation between data
and communication: there are session types Πx:τ.A(x) and Σx:τ.A(x) which
correspond to receiving or transmitting a value of value type τ . Taking inspi-
ration from McBride’s investigation of the combination of linear and dependent
types [24], we envisage a more general notion of session-dependent session type
(x : A)BB, where the value of x in B is determined by the actual observed data
transferred in the session described by A. This type is a dependent generalisation
of Retoré’s “before” connective [29]. To make this idea work, we need a notion
of observed communication in CP, which the observed communication semantics
proposed in this paper provides.

Acknowledgements

Thanks to Sam Lindley, J. Garrett Morris, Conor McBride and Phil Wadler for
helpful discussions and comments on this paper. This work was partly funded
by a Science Faculty Starter Grant from the University of Strathclyde.

26

References

1. S. Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993.

2. Samson Abramsky. Proofs as processes. Theor. Comput. Sci., 135(1):5–9, April
1992.

3. Beniamino Accattoli. Linear logic and strong normalization. In 24th International
Conference on Rewriting Techniques and Applications, RTA 2013, June 24-26,
2013, Eindhoven, The Netherlands, pages 39–54, 2013.

4. Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation confers concurrency.
In Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella, editors, A List
of Successes That Can Change the World: Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday, Lecture Notes in Computer Science, 2016.

5. David Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput.
Logic, 13(1):2:1–2:44, January 2012.

6. Michael Barr. *-autonomous categories and linear logic. Mathematical Structures
in Computer Science, 1(2):159–178, 1991.

7. Gianluigi Bellin and Philip J. Scott. On the π-Calculus and linear logic. Theoretical
Computer Science, 135(1):11–65, 1994.

8. Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the pi-calculus.
In Proc. FOSSACS’03, 2003.

9. Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In CONCUR. Springer, 2010.

10. Haskell B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Science, 20:584–590, 1934.

11. Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model
of higher-order probabilistic computation. Inf. Comput., 209(6):966–991, 2011.

12. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2nd edition, 2002.

13. Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Sci-
ence, 15(4):615–646, 2005.

14. Thomas Ehrhard and Olivier Laurent. Interpreting a finitary pi-calculus in differ-
ential interaction nets. Inf. Comput., 208(6):606–633, 2010.

15. Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(01):19–50, 2010.

16. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–101, 1987.
17. Kohei Honda. Types for dyadic interaction. In CONCUR. Springer, 1993.
18. William A. Howard. The formulae-as-types notion of construction. In Jonathan P.

Seldin and J. Roger Hindley, editors, To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, Boston, MA, 1980. Academic Press.

19. Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted
relational models of typed lambda-calculi. In 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28,
2013, pages 301–310, 2013.

20. Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In
ESOP 2015, pages 560–584, 2015.

21. Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for
session types. In ICFP, 2016. To appear.

22. Ralph Loader. Linear logic, totality and full completeness. In Proceedings of the
Ninth Annual Symposium on Logic in Computer Science (LICS ’94), Paris, France,
July 4-7, 1994, pages 292–298, 1994.

27

23. Damiano Mazza. The true concurrency of differential interaction nets. Mathemat-
ical Structures in Computer Science, 2015. To appear.

24. Conor McBride. I got plenty o’ nuttin’. In A List of Successes That Can Change the
World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
pages 207–233, 2016.

25. Paul-André Melliès. Categorical semantics of linear logic. In Pierre-Louis Curien,
Hugo Herbelin, Jean-Louis Krivine, and Paul-André Melliès, editors, Interac-
tive Models of Computation and Program Behavior, number 27 in Panoramas et
Synthèses. Société Mathématique de France, 2009.

26. Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, edi-
tor, Automata, Languages and Programming: 19th International Colloquium Wien,
Austria, July 13–17, 1992 Proceedings, pages 685–695, Berlin, Heidelberg, 1992.
Springer Berlin Heidelberg.

27. Jorge A. Pérez, Lus Caires, Frank Pfenning, and Bernardo Toninho. Linear logical
relations and observational equivalences for session-based concurrency. Information
and Computation, 239:254 – 302, 2014.

28. Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput.
Sci., 5(3):223–255, 1977.

29. Christian Retoré. Pomset logic: a non-commutative extension of classical linear
logic. In In proceedings of TLCA’97, volume 1210 of Lecture Notes in Computer
Science, pages 300–318, 1997.

30. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
31. Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes.

Cambridge University Press, 2001.
32. Ian Stark. A fully abstract domain model for the pi-calculus. In Proceedings, 11th

Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, July 27-30, 1996, pages 36–42, 1996.

33. Bernardo Toninho, Lúıs Caires, and Frank Pfenning. Dependent session types via
intuitionistic linear type theory. In Proceedings of the 13th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming,
July 20-22, 2011, Odense, Denmark, pages 161–172, 2011.

34. Bernardo Toninho and Nobuko Yoshida. Certifying data in multiparty session
types. In A List of Successes That Can Change the World - Essays Dedicated to
Philip Wadler on the Occasion of His 60th Birthday, pages 433–458, 2016.

35. Philip Wadler. Propositions as sessions. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’12. ACM, 2012.

36. Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.

	Observed Communication Semantics for Classical Processes

