
Resource Constrained Programming
with Full Dependent Types

Robert Atkey
Strathclyde University, Glasgow

robert.atkey@strath.ac.uk

CCS Colloquium, Augusta University
20th November 2020



Dependent Type Theory is both

— Programming Language

— Proof Language



Dependent Type Theory is both

— Programming Language
So we can write programs

— Proof Language



Dependent Type Theory is both

— Programming Language
So we can write programs

— Proof Language
and reason about them



Dependent Type Theory is both

— Programming Language
So we can write programs

— Proof Language
and reason about them

but only the “extensional behaviour”



What if we want to reason about computational complexity?

Having predicates for complexity won’t work:

Ptime : (Nat → Nat) → Set

Allows the theory to distinguish extensionally equivalent functions.



What if we want to reason about computational complexity?

Having predicates for complexity won’t work:

Ptime : (Nat → Nat) → Set

Allows the theory to distinguish extensionally equivalent functions.



What if we want to reason about computational complexity?

Two ideas:

— Implicit: all functions are in a fixed complexity class (e.g., Ptime)

— Explicit: types tell us what the complexity is.



What if we want to reason about computational complexity?

Two ideas:

— Implicit: all functions are in a fixed complexity class (e.g., Ptime)

— Explicit: types tell us what the complexity is.



This talk

— Implicit and explicit typed complexity analysis for Dependent Type Theory

Challenges

— Nice systems for implicit and explicit complexity

— Integrating them with dependent types



Two Implicit Ptime systems



Requirements

— Extension of typed 𝜆-calculus; higher order
— No impredicative polymorphism (no Church encodings)
— Proper datatypes (definitely no Church encodings)

Forget dependent types for now

— Simply typed 𝜆-calculus

— A natural number type Nat, zero, suc with an iterator

Γ ⊢ Mz : A Γ, x : A ⊢ Ms : A Γ ⊢ N : Nat
Γ ⊢ iter(Mz, x. Ms,N) : A



Requirements

— Extension of typed 𝜆-calculus; higher order
— No impredicative polymorphism (no Church encodings)
— Proper datatypes (definitely no Church encodings)

Forget dependent types for now

— Simply typed 𝜆-calculus

— A natural number type Nat, zero, suc with an iterator

Γ ⊢ Mz : A Γ, x : A ⊢ Ms : A Γ ⊢ N : Nat
Γ ⊢ iter(Mz, x. Ms,N) : A



Easily yields exponential time:

iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

computes 2N

Culprits

— Duplication of the higher order value f
— Construction of new numbers



Easily yields exponential time:

iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

computes 2N

Culprits

— Duplication of the higher order value f
— Construction of new numbers



Linearity?

Disallows:
iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

because f is used twice.

But
Can write:

dup : Nat ⊸ Nat ⊗ Nat
dup x = iter((zero, zero), (m, n).(suc m, suc n), x)

— add : Nat ⊸ Nat ⊸ Nat is linear.
— mul : Nat ⊸ Nat ⊸ Nat can be written using dup, add.
— exp : Nat ⊸ Nat ⊸ Nat can be written using dup,mul.
— Get exponential time.



Linearity?

Disallows:
iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

because f is used twice.

But
Can write:

dup : Nat ⊸ Nat ⊗ Nat
dup x = iter((zero, zero), (m, n).(suc m, suc n), x)

— add : Nat ⊸ Nat ⊸ Nat is linear.
— mul : Nat ⊸ Nat ⊸ Nat can be written using dup, add.
— exp : Nat ⊸ Nat ⊸ Nat can be written using dup,mul.
— Get exponential time.



Linearity?

Disallows:
iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

because f is used twice.

But
Can write:

dup : Nat ⊸ Nat ⊗ Nat
dup x = iter((zero, zero), (m, n).(suc m, suc n), x)

— add : Nat ⊸ Nat ⊸ Nat is linear.

— mul : Nat ⊸ Nat ⊸ Nat can be written using dup, add.
— exp : Nat ⊸ Nat ⊸ Nat can be written using dup,mul.
— Get exponential time.



Linearity?

Disallows:
iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

because f is used twice.

But
Can write:

dup : Nat ⊸ Nat ⊗ Nat
dup x = iter((zero, zero), (m, n).(suc m, suc n), x)

— add : Nat ⊸ Nat ⊸ Nat is linear.
— mul : Nat ⊸ Nat ⊸ Nat can be written using dup, add.

— exp : Nat ⊸ Nat ⊸ Nat can be written using dup,mul.
— Get exponential time.



Linearity?

Disallows:
iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

because f is used twice.

But
Can write:

dup : Nat ⊸ Nat ⊗ Nat
dup x = iter((zero, zero), (m, n).(suc m, suc n), x)

— add : Nat ⊸ Nat ⊸ Nat is linear.
— mul : Nat ⊸ Nat ⊸ Nat can be written using dup, add.
— exp : Nat ⊸ Nat ⊸ Nat can be written using dup,mul.

— Get exponential time.



Linearity?

Disallows:
iter(suc, f. 𝜆x. f(f(x)),N) zero : Nat

because f is used twice.

But
Can write:

dup : Nat ⊸ Nat ⊗ Nat
dup x = iter((zero, zero), (m, n).(suc m, suc n), x)

— add : Nat ⊸ Nat ⊸ Nat is linear.
— mul : Nat ⊸ Nat ⊸ Nat can be written using dup, add.
— exp : Nat ⊸ Nat ⊸ Nat can be written using dup,mul.
— Get exponential time.



Linearity + No constructors

— Can’t write dup or add (or mul or exp)

— Iterable Nat:
— Not constructible
— Has an iterator

— Non-iterable Nat◦:
— Constructible
— Case analysis

Γ1 ⊢ Mz : A Γ2, x : Nat◦ ⊢ Ms : A Γ3 ⊢ N : Nat◦

Γ1, Γ2, Γ3 ⊢ case(Mz, x. Ms,N) : A



Linearity + No constructors

— Can’t write dup or add (or mul or exp)

— Iterable Nat:
— Not constructible
— Has an iterator

— Non-iterable Nat◦:
— Constructible
— Case analysis

Γ1 ⊢ Mz : A Γ2, x : Nat◦ ⊢ Ms : A Γ3 ⊢ N : Nat◦

Γ1, Γ2, Γ3 ⊢ case(Mz, x. Ms,N) : A



Linearity + No constructors

— Can’t write dup or add (or mul or exp)

— Iterable Nat:
— Not constructible
— Has an iterator

— Non-iterable Nat◦:
— Constructible
— Case analysis

Γ1 ⊢ Mz : A Γ2, x : Nat◦ ⊢ Ms : A Γ3 ⊢ N : Nat◦

Γ1, Γ2, Γ3 ⊢ case(Mz, x. Ms,N) : A



Is this enough?

— Only source of iterable Nat is the input
— So only linear time in the size of the Nat “fuel” provided
— To get polytime, allow duplication of variables of type Nat.

Completeness

— Given a step function s : Tape ⊸ Tape, and a N-polynomial p(n) = Σaini

— n iterations: iter(𝜆x.x, f .𝜆x. s(f x), n) : Tape ⊸ Tape
— n2 iterations: iter(𝜆x.x, f .𝜆x. iter(𝜆x.x, f.𝜆x. s(f x), n), n) : Tape ⊸ Tape
— ni iterations…
— Addition by composition



Is this enough?

— Only source of iterable Nat is the input
— So only linear time in the size of the Nat “fuel” provided
— To get polytime, allow duplication of variables of type Nat.

Completeness

— Given a step function s : Tape ⊸ Tape, and a N-polynomial p(n) = Σaini

— n iterations: iter(𝜆x.x, f .𝜆x. s(f x), n) : Tape ⊸ Tape
— n2 iterations: iter(𝜆x.x, f .𝜆x. iter(𝜆x.x, f.𝜆x. s(f x), n), n) : Tape ⊸ Tape
— ni iterations…
— Addition by composition



Recovering Constructibility?

— This system works, but is restricted to everything being driven by Nat-iteration
— Some programs are more easily expressible by iteration over trees, etc.



Martin Hofmann’s LFPL: principle of “conservation of iterability”

— A special type ^, representing a chunk of iterability
— Required for construction:

zero : ^ ⊸ Nat suc : ^ ⊸ Nat ⊸ Nat

— Recovered on iteration:

Γ1, d : ^ ⊢ Mz : A d : ^, x : A ⊢ Ms : A Γ2 ⊢ N : Nat
Γ1, Γ2 ⊢ iter(d. Mz, d x. Ms,N) : A

— Extends easily to other datatypes



Iterating a step function

— Assume we have a function s : Tape ⊸ Tape
one step of a Turing machine

— Linear
(n
1
)
iterations:

I1 = 𝜆(n, t).iter(d. (zero(d), t),
d (n, t). (suc(d, n), s t),
n)

: Nat ⊗ Tape ⊸ Nat ⊗ Tape

—
(n
2
)
iterations:

I2 = 𝜆(n, t).iter(d. (zero(d), t),
d (n, t). let (n, t) = I1(n, t) in (suc(d, n), s(t)),
n)

: Nat⊗Tape ⊸ Nat⊗Tape

—
(n
3
)
iterations: Iterate the above



Iterating a step function

— Obtain a
(n
k

)
iterator for any k

— And get the original number back as an output

— Chain them together to get any polynomial:

p(n) =
k∑
i=0

pi

(
n
k

)
— So we get polytime completeness



Explicit Complexity



Amortised Resource Analysis — (Hofmann & Jost, POPL 2003)

— Reinterpret ^ as the cost of a step of iteration

— Inspired by Tarjan’s amortised complexity analyis
— storing potential inside data structures

— Building a Nat still requires ^s:

zero : ^ ⊸ Nat suc : ^ ⊸ Nat ⊸ Nat

— But iteration no longer gives you them back:

Γ1 ⊢ Mz : A x : A ⊢ Ms : A Γ2 ⊢ N : Nat
Γ1, Γ2 ⊢ iterA(Mz, x.Ms,N) : A

— Back to linear time…



More flexibility

— Annotate data structures with number of ^s per constructor

Natp

— Duplication:
Natp1+p2 ⊸ Natp1 ⊗ Natp2

— Hofmann & Jost (2001) used linear programming to infer the ps



Regaining polynomial time — (Hoffmann & Hofmann, ESOP 2010)

— Annotate with sequences of naturals:

Nat(p1,...,pk)

— Interpretation is that
k∑
i=1

pi

(
n
i

)
is the number of ^s is attached to a natural n.

— Iterator:
Γ1 ⊢ Mz : A
n : Nat(p1+p2,p2+p3,...,pk) , d : ^p1 , x : A ⊢ Ms : A
Γ2 ⊢ N : Nat(p1+1,...,pk)

Γ1, Γ2 ⊢ iter(Mz, n d x.Ms,N) : A



Regaining polynomial time — (Hoffmann & Hofmann, ESOP 2010)

— Annotate with sequences of naturals:

Nat(p1,...,pk)

— Interpretation is that
k∑
i=1

pi

(
n
i

)
is the number of ^s is attached to a natural n.

— Iterator:
Γ1 ⊢ Mz : A
n : Nat(p1+p2,p2+p3,...,pk) , d : ^p1 , x : A ⊢ Ms : A
Γ2 ⊢ N : Nat(p1+1,...,pk)

Γ1, Γ2 ⊢ iter(Mz, n d x.Ms,N) : A



Adapting these systems to dependent types



Dependency and Accountancy



In Martin-Löf Type Theory

x1 : S1, . . . , xn : Sn ⊢ M : T

variables x1, . . . , xn are mixed usage



In Martin-Löf Type Theory

x1 : S1, . . . , xn : Sn ⊢ M : T

variables x1, . . . , xn are mixed usage



n : Nat, x : Fin(n) ⊢ x : Fin(n)

x is used computationally

n is used logically



n : Nat, x : Fin(n) ⊢ x : Fin(n)

x is used computationally

n is used logically



n : Nat, x : Fin(n) ⊢ x : Fin(n)

x is used computationally

n is used logically



In Linear Logic

x1 : X1, . . . , xn : Xn ⊢ M : Y

the presence of a variable x records its usage
each xi must be “used” by M exactly once

Enables:
1. Insight into computational behaviour
2. e.g., time complexity



In Linear Logic

x1 : X1, . . . , xn : Xn ⊢ M : Y

the presence of a variable x records its usage
each xi must be “used” by M exactly once

Enables:
1. Insight into computational behaviour
2. e.g., time complexity



In Linear Logic

x1 : X1, . . . , xn : Xn ⊢ M : Y

the presence of a variable x records its usage
each xi must be “used” by M exactly once

Enables:
1. Insight into computational behaviour
2. e.g., time complexity



n : Nat, x : Fin(n) ⊢ x : Fin(n)

Can we read this judgement linearly?

▷ n appears in the context, but is not used computationally

▷ n appears twice in types

Is n even used at all?



n : Nat, x : Fin(n) ⊢ x : Fin(n)

Can we read this judgement linearly?

▷ n appears in the context, but is not used computationally

▷ n appears twice in types

Is n even used at all?



n : Nat, x : Fin(n) ⊢ x : Fin(n)

Can we read this judgement linearly?

▷ n appears in the context, but is not used computationally

▷ n appears twice in types

Is n even used at all?



n : Nat, x : Fin(n) ⊢ x : Fin(n)

Can we read this judgement linearly?

▷ n appears in the context, but is not used computationally

▷ n appears twice in types

Is n even used at all?



n : Nat | x : Fin(n) ⊢ x : Fin(n)

▷ Separate intuitionistic / unrestricted uses and linear uses

▷ Types can depend on intuitionistic data, but not linear data

(Barber, 1996)
(Cervesato and Pfenning, 2002)
(Krishnaswami, Pradic, and Benton, 2015)
(Vákár, 2015)



n : Nat | x : Fin(n) ⊢ x : Fin(n)

▷ Separate intuitionistic / unrestricted uses and linear uses

▷ Types can depend on intuitionistic data, but not linear data

(Barber, 1996)
(Cervesato and Pfenning, 2002)
(Krishnaswami, Pradic, and Benton, 2015)
(Vákár, 2015)



n : Nat | x : Fin(n) ⊢ x : Fin(n)

▷ Separate intuitionistic / unrestricted uses and linear uses

▷ Types can depend on intuitionistic data, but not linear data

(Barber, 1996)
(Cervesato and Pfenning, 2002)
(Krishnaswami, Pradic, and Benton, 2015)
(Vákár, 2015)



n : Nat | x : Fin(n) ⊢ x : Fin(n)

▷ Separate intuitionistic / unrestricted uses and linear uses

▷ Types can depend on intuitionistic data, but not linear data

(Barber, 1996)
(Cervesato and Pfenning, 2002)
(Krishnaswami, Pradic, and Benton, 2015)
(Vákár, 2015)



Quantitative Coeffect calculi:

x1
𝜌1
: S1, . . . , xn

𝜌n
: Sn ⊢ M : T

▷The 𝜌i record usage from some semiring R
. 1 ∈ R — a use
. 0 ∈ R — not used
. 𝜌1 + 𝜌2 — adding up uses (e.g., in an application)
. 𝜌1𝜌2 — nested uses

(Petricek, Orchard, and Mycroft, 2014)
(Brunel, Gaboardi, Mazza, and Zdancewic, 2014)
(Ghica and Smith, 2014)



Quantitative Coeffect calculi:

x1
𝜌1
: S1, . . . , xn

𝜌n
: Sn ⊢ M : T

▷The 𝜌i record usage from some semiring R
. 1 ∈ R — a use
. 0 ∈ R — not used
. 𝜌1 + 𝜌2 — adding up uses (e.g., in an application)
. 𝜌1𝜌2 — nested uses

(Petricek, Orchard, and Mycroft, 2014)
(Brunel, Gaboardi, Mazza, and Zdancewic, 2014)
(Ghica and Smith, 2014)



Quantitative Coeffect calculi:

x1
𝜌1
: S1, . . . , xn

𝜌n
: Sn ⊢ M : T

▷The 𝜌i record usage from some semiring R
. 1 ∈ R — a use
. 0 ∈ R — not used
. 𝜌1 + 𝜌2 — adding up uses (e.g., in an application)
. 𝜌1𝜌2 — nested uses

(Petricek, Orchard, and Mycroft, 2014)
(Brunel, Gaboardi, Mazza, and Zdancewic, 2014)
(Ghica and Smith, 2014)



Can we adapt this idea to dependent types?

McBride’s idea:
▷ allow 0-usage data to appear in types.

(McBride, 2016)

x1
𝜌1
: S1, . . . , xn

𝜌n
: Sn ⊢ M

𝜎
: T

where 𝜎 ∈ {0, 1}.
▷ 𝜎 = 1 — the “real” computational world
▷ 𝜎 = 0 — the types world

(allowing arbitrary 𝜌 yields a system where substitution is inadmissible (Atkey, 2018))

Zero-ing is an admissible rule:
Γ ⊢ M 1

: T

0Γ ⊢ M 0
: T

allowing promotion to the type world.



Can we adapt this idea to dependent types?

McBride’s idea:
▷ allow 0-usage data to appear in types.

(McBride, 2016)

x1
𝜌1
: S1, . . . , xn

𝜌n
: Sn ⊢ M

𝜎
: T

where 𝜎 ∈ {0, 1}.
▷ 𝜎 = 1 — the “real” computational world
▷ 𝜎 = 0 — the types world

(allowing arbitrary 𝜌 yields a system where substitution is inadmissible (Atkey, 2018))

Zero-ing is an admissible rule:
Γ ⊢ M 1

: T

0Γ ⊢ M 0
: T

allowing promotion to the type world.



Can we adapt this idea to dependent types?

McBride’s idea:
▷ allow 0-usage data to appear in types.

(McBride, 2016)

x1
𝜌1
: S1, . . . , xn

𝜌n
: Sn ⊢ M

𝜎
: T

where 𝜎 ∈ {0, 1}.
▷ 𝜎 = 1 — the “real” computational world
▷ 𝜎 = 0 — the types world

(allowing arbitrary 𝜌 yields a system where substitution is inadmissible (Atkey, 2018))

Zero-ing is an admissible rule:
Γ ⊢ M 1

: T

0Γ ⊢ M 0
: T

allowing promotion to the type world.



Can we adapt this idea to dependent types?

McBride’s idea:
▷ allow 0-usage data to appear in types.

(McBride, 2016)

x1
𝜌1
: S1, . . . , xn

𝜌n
: Sn ⊢ M

𝜎
: T

where 𝜎 ∈ {0, 1}.
▷ 𝜎 = 1 — the “real” computational world
▷ 𝜎 = 0 — the types world

(allowing arbitrary 𝜌 yields a system where substitution is inadmissible (Atkey, 2018))

Zero-ing is an admissible rule:
Γ ⊢ M 1

: T

0Γ ⊢ M 0
: T

allowing promotion to the type world.



Zero-ing is admissible

Γ ⊢ M 1
: T

0Γ ⊢ M 0
: T

means that every linear term has an “extensional” counterpart (or constitutent)

which can be used at type checking time to construct types

has the effect of making the linear system a restriction of the intuitionistic



A suitable semiring for affine linearity?

— Carrier: {0, 1, 𝜔}
— Ordered: 𝜔 < 1 < 0

— Operations:

+ 0 1 𝜔

0 0 1 𝜔
1 1 𝜔 𝜔
𝜔 𝜔 𝜔 𝜔

· 0 1 𝜔

0 0 0 0
1 0 1 𝜔
𝜔 0 𝜔 𝜔

— Would admit an unrestricted ! modality.



Strict resource counting

— Carrier: N

— Ordered: · · · < 2 < 1 < 0

— Operations: normal operations on N



Diamonds

Γ ⊢
0Γ ⊢ ^

Ty-Dia
0Γ ⊢

0Γ ⊢ ∗ 0
: ^

Tm-Dia

— In the 𝜎 = 0 fragment, ^s are free.



LFPL

— Natural number introduction

Γ ⊢ d 𝜎
: ^

Γ ⊢ zero(d) 𝜎
: Nat

Γ ⊢ d 𝜎
: ^ Γ ⊢ n 𝜎

: Nat

Γ ⊢ succ(d, n) 𝜎
: Nat



LFPL

— Natural number elimination (𝜎 = 1 case)

0Γ, x : Nat ⊢ A
Γ1, d

1
: ^ ⊢ Mz

1
: A{zero(∗)/x}

d
1
: ^, n

0
: Nat, r 1

: A{n/x} ⊢ Ms
1
: A{succ(∗, n)/x}

Γ2 ⊢ N
1
: Nat

Γ1 + Γ2 = Γ

Γ ⊢ iter(x.A, d.Mz, d n r.Ms,N)
1
: A{N/x}

— Crucial: n is not available for computational use in Ms.



Encoding lists

— Define (in 𝜎 = 0 fragment):

Vec A : Nat → Set

by iteration on the natural number.

— Lists:
List A = (n 1

: Nat) ⊗ Vec A n



Amortised Analysis

— Unrestricted introduction rules for natural numbers:

Γ ⊢

Γ ⊢ zero 𝜎
: Nat

Γ ⊢ N 𝜎
: Nat

Γ ⊢ suc(N) 𝜎
: Nat

— Postulate:

^ (p1,...,pk) : Nat → Set

Γ ⊢ n 0
: Nat

Γ ⊢ ∗ 0
: ^ (p1,...,pk) (n)

— with:

split : (n 0
: Nat) → ^ (p1+p′1,...,pk+p′k) (n) ⊸ ^ (p1,...,pk) (n) ⊗ ^ (p′1,...,p′k) (n)

join : (n 0
: Nat) → ^ (p1,...,pk) (n) ⊗ ^ (p′1,...,p′k) (n) ⊸ ^ (p1+p′1,...,pk+p′k) (n)

shift : (n 0
: Nat) → ^ (p1,...,pk) (suc(n)) ⊸ ^ (p1+p2,...,pk) (n)



Amortised Analysis

— Natural number elimination (𝜎 = 1 case)

0Γ, x 0
: Nat ⊢ A

Γ1 ⊢ Mz
1
: A{zero/x}

n
1
: Nat, r 1

: A{n/x} ⊢ Ms
1
: A{succ(n)/x}

Γ2 ⊢ N
1
: Nat

Γ3 ⊢ D
1
: ^ (1) (N)

Γ1 + Γ2 + Γ3 = Γ

Γ ⊢ iter(x.A,Mz, n r.Ms,N,D) : A{N/x}

— n is available for use in Ms

— Pay up front for the iteration with D

— Get nested iteration by passing in enough ^s to pay for it

A[n] = ^ (p1,...,pk) (n) ⊸ B[n]



Semantic Interpretation : Soundness



Realisability for ICC (Dal Lago & Hofmann, 2011)

Resource monoids

— Let N−∞ be category with objects N ∪ {−∞} and m → n if m ≤ n, with −∞ ≤ n
— Strict symmetric monoidal category with (+, 0)

— A resource monoid M is a N−∞-enriched strict symmetric monoidal category.

— (M, +, 0) is a commutative monoid
— 0 ≤ M(𝛼, 𝛼)
— M(𝛼, 𝛽) ∈ N−∞ is the difference between 𝛼 and 𝛽
— M(𝛼, 𝛽) +M(𝛽, 𝛾) ≤ M(𝛼, 𝛾)
— M(𝛼, 𝛽) ≤ M(𝛼 + 𝛾, 𝛽 + 𝛾)



Realisability for ICC (Dal Lago & Hofmann, 2011)

Resource monoids

— Let N−∞ be category with objects N ∪ {−∞} and m → n if m ≤ n, with −∞ ≤ n
— Strict symmetric monoidal category with (+, 0)

— A resource monoid M is a N−∞-enriched strict symmetric monoidal category.

— (M, +, 0) is a commutative monoid
— 0 ≤ M(𝛼, 𝛼)
— M(𝛼, 𝛽) ∈ N−∞ is the difference between 𝛼 and 𝛽
— M(𝛼, 𝛽) +M(𝛽, 𝛾) ≤ M(𝛼, 𝛾)
— M(𝛼, 𝛽) ≤ M(𝛼 + 𝛾, 𝛽 + 𝛾)



Resource monoids

Linear time:

— M = N

— Differencing:

M(n,m) =
{
m − n n ≤ m
−∞ otherwise

— Wrinkle: counts recursion steps, not the actual number of steps.



Resource Monoids: Polynomial time (for LFPL)

— M ∋ (n, p), where
— n ∈ N is the amount of iterability (number of ^s)
— p is a polynomial with N coefficients
— (n, p) + (m, q) = (n +m, p + q).
— Cost differencing:

M((n, p), (m, q)) =

q(m) − p(m) n ≤ m and (q − p) is non-negative

and non-decreasing ≥ m
−∞ otherwise



Resource Monoids: Polynomial time (for Constructor-free System)

— M ∋ (n, p), where
— n ∈ N is the amount of iterability (number of ^s)
— p is a polynomial with N coefficients
— (n, p) + (m, q) = (max n m, p + q).
— Cost differencing:

M((n, p), (m, q)) =

q(m) − p(m) n ≤ m and (q − p) is non-negative

and non-decreasing ≥ m
−∞ otherwise

— Hofmann and Dal Lago used this resource monoid for Lafont’s Soft Linear Logic.



Cost model

— Assume a model of computation with a cost model:

e, 𝜂 ⇓k v

step count k, expressions e ∈ E, values v ∈ V .



Interpretation of Types and Terms

— Types are interpreted by (|X|, |=X) where:
— |X| is a set
— |=X ⊆ (M ×V) × |X|.

— Functions f : X → Y:
— f : |X| → |Y|
— exists e ∈ E, 𝛾 ∈ M, such that
— for all 𝛼, v, x.

(𝛼, v) |=X x implies
exists 𝛽, k, v′ s.t.

e, [v] ⇓k v′,
(𝛽, v′) |=Y f(x),
k ≤ M(𝛼 + 𝛾, 𝛽)



Some types

In the amortised system:
— ^ = ({∗}, (n, ∗) |=^ ∗ ⇔ n ≥ 1)

In LFPL:
— ^ = ({∗}, ((n, p), ∗ |=^ ∗ ⇔ n ≥ 1, p ≥ 0)
— Nat = (N, ((n, p), n |=^ m) ⇔ n ≥ m, p ≥ 0)

In the constructor free system:
— Nat = (N, ((n, p), n |=^ m) ⇔ n ≥ m, p ≥ 0)



Summary



▷Quantitative Type Theory for Complexity Analysis

▷ Careful combination of dependency and linearity

▷ Dependent Types for reasoning about programs

▷ Dependent Types for reasoning about complexity (in the explicit system)

Related Work
▶ Sized types

Used for controlling well foundedness
For complexity analysis require “tick” monads

▶ Gaboardi and Dal Lago: Linear Dependent Types for ICC
Dependent Types only for counting time

▶ Future:
▶ LAL, EAL, BLL, Logspace, …
▶ Polytime mathematics?



▷Quantitative Type Theory for Complexity Analysis

▷ Careful combination of dependency and linearity

▷ Dependent Types for reasoning about programs

▷ Dependent Types for reasoning about complexity (in the explicit system)

Related Work
▶ Sized types

Used for controlling well foundedness
For complexity analysis require “tick” monads

▶ Gaboardi and Dal Lago: Linear Dependent Types for ICC
Dependent Types only for counting time

▶ Future:
▶ LAL, EAL, BLL, Logspace, …
▶ Polytime mathematics?


