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1 INTRODUCTION
Type Theory is often claimed to be ideal for Computer Science, combining programming and proof

in one unifying system, so a happy programmer can verify while they program, and program while

they verify. From a broader Computer Science view, however, Type Theory lacks the ability to

talk about the very thing that makes Computer Science interesting – the fact that computation is

everywhere bounded by the resources in time and space that we can afford to give it.

Typically, Type Theory only speaks of the public face that programs present to the world – if you

input things like this, you get things that look like that – but cannot bring itself to mention the true

cost of programs’ execution. One can encode costs by embedding another programming language

in Type Theory, for example [Guéneau et al. 2018], or one can synthesise costs by treating resource

counting as a computational effect, for example [Danielsson 2008; Niu et al. 2022], but neither of

these capture the intrinsic costs of the programs we write in Type Theory. These techniques deliver

only conspicuous consumption, not speaking of the real resources consumed.

In this paper, we propose a method for extending dependent Type Theory with a means for con-

straining the intrinsic computational complexity of programs written in the theory. We concentrate

on linear type systems that soundly and completely capture polynomial time computation, the

commonly used standard for feasible resource usage, and extend these systems to dependent types.

The additional expressivity of dependent types allows us use these characterisations of polytime to
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further functionally characterise the classes of non-deterministic and bounded-error probabilistic

polynomial time.

We use techniques from Implicit Computational Complexity theory, which provides intrinsic

characterisations of complexity classes in terms of logical systems or programming languages.

We review the techniques that we use in Section 2. To adapt these systems to dependent types,

we use Quantitative Type Theory (QTT) [Atkey 2018; McBride 2016], a combination of linear and

dependent types. We review QTT in Section 3.

Our long-term goal is to combine the extensional reasoning of Type Theory with intensional

reasoning about the resources intrinsically consumed by programs. This paper is a first step

along this path, which we hope will lead both to practical systems for reasoning about programs’

resource usage as well as their extensional behaviour, and to theoretical use as a form of synthetic

computational complexity theory. We discuss these possibilities further in Section 7.

1.1 Contributions and Content
This paper makes the following contributions to the theory and use of linear dependent type theory

and implicit computational complexity:

(1) We formulate two systems that combine linear type theory for polytime computation with

full dependent types, using Quantitative Type Theory. The systems are presented in Section 3.

The linear typing discipline required for enforcing polytime is provided by QTT, but we also

need to carefully add constructs for non-iterable datatypes (Section 3.2) and the two kinds of

natural number iterator that we consider (Section 3.3 and Section 3.4). Porting the natural

number iterators from the simply typed to the dependently typed setting requires careful

annotation of the rules to ensure that the correct information is available for type checking,

while also not allowing too much information to be made available at runtime that would

violate the polytime soundness property. A further contribution of this paper is the addition

of reflection types to QTT, Section 3.5, which allow statements about polytime realisability

to be reflected into types.

(2) We demonstrate the utility of the combination of polytime and dependent types in Section 4.

Just as in the simply typed world, we have an expressive language for writing polytime

programs. With the additional power of dependent types, we can also prove properties of

these programs. A simple example is proving that a polytime sorting program actually sorts.

Using QTT reflection, we can go further and represent the class of polytime problems, with

polytime reductions between them, as dependent pairs (Section 4.2). Our final examples use

dependent types to give monadic presentations of the complexity classes of Non-deterministic

Polynomial (NP) time and Bounded-error Probabilistic Polynomial (BPP) time. Since these

classes rely on specific semantic correctness criteria, it is not possible to capture them in a

simply typed system for polytime.

(3) We prove the polytime soundness of our systems via a realisability argument in Section 5

and Section 6. Our construction is an extension of the amortised complexity realisability

constructions of Dal Lago and Hofmann [2011]. We extend their work to our dependently

typed setting, and also give a realisability interpretation of datatypes directly, instead of

via second-order impredicative encodings. The technical content of these sections has been

formalised in the Agda proof assistant [Norell 2008], and is included in the associated artefact

[Atkey 2023].

Before we get to the contributions above, we present, in Section 2, two linear simply typed

systems for polytime, adaptations of systems already present in the literature. Our paper concludes

with a discussion of further related work and the outlook for future work in Section 7.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 76. Publication date: January 2024.



Polynomial Time and Dependent Types 76:3

2 AFFINE LINEAR TYPING AND POLYTIME
Not long after Girard introduced Linear Logic [Girard 1987], it was observed that its resource

sensitivity could be turned to describing computational complexity classes by purely logical means.

Typically, a logical system is described for which the process of reducing a proof to a normal form

(often by cut elimination) is guaranteed to always be accomplished within a certain complexity

bound. Moreover, the system is usually proven to be complete for the relevant complexity class by

constructing a simulation of some known representation. Such systems that characterise polytime

include Bounded Linear Logic (BLL), which uses explicit polynomials in the formulas [Girard

et al. 1992] and Soft Affine Logic (SAL) [Lafont 2004], which does not explicitly represent time

information in formulas, but uses a restricted form of Linear Logic’s !modality instead. Light Linear

Logic (LLL) [Girard 1998] is another “counting-free” system for polytime.

Viewing logical systems though the Curry-Howard correspondence, the idea arises that one could

define functional programming languages that characterise complexity classes such as polytime.

SAL has been transformed into a programming language by Baillot and Mogbil [2004], and likewise

for LLL by Baillot et al. [2010]. Hofmann [1999] proposed a new programming language, Linear

Functional Programming Language (LFPL), that uses a novel “payment” system to track iteration.

There are at least two ways that a functional programming language can be seen as representing

polynomial time, differing in how the size of the problem to be computed is measured. One approach

is to consider closed expressions, combining the program with its input, and computation of the

result is polynomial time in the combined size. A second approach is that the input is “externally”

provided, where we consider open terms with a free variable representing the input. So a judgement

𝑥 : Nat ⊢ 𝑀 : 𝐴 declares a program that computes results of type 𝐴 in time polynomial in the size

of the natural number 𝑥 . We take this latter approach in this paper.

With a view to extending to dependent types in Section 3, we take an approach slightly different

to much of the polytime linear logic literature. We use explicit datatypes and eliminators, rather

than using impredicative encodings via universal types. We are closer to Hofmann’s original LFPL

(though not a later presentation of it by Dal Lago and Hofmann [2011]) than BLL, SAL or LLL.

In this section, we review the use of linear types to capture polytime by presenting two systems,

one based on ideas from SAL and the second more explicitly based on LFPL.

2.1 Affine Linear 𝜆-Calculus
For this section, the affine linear 𝜆-calculus we will use will have linear functions and ⊗-products.
Contexts are treated up to permutation of entries, so uses of exchange are implicit.

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥.𝑀 : 𝐴 ⊸ 𝐵

Γ1 ⊢ 𝑀 : 𝐴 ⊸ 𝐵 Γ2 ⊢ 𝑁 : 𝐴

Γ1, Γ2 ⊢ 𝑀 𝑁 : 𝐵

Γ1 ⊢ 𝑀 : 𝐴 Γ2 ⊢ 𝑁 : 𝐵

Γ1, Γ2 ⊢ (𝑀, 𝑁 ) : 𝐴 ⊗ 𝐵

Γ1 ⊢ 𝑀 : 𝐴 ⊗ 𝐵 Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑁 : 𝐶

Γ1, Γ2 ⊢ let (𝑥,𝑦) = 𝑀 in𝑁 : 𝐶

These rules are standard, so we do not describe them further except to note how affine linear typing

uses presence or absences in a context to control resource usage. If a variable is in the context it

must be used at most once (variables that are not used are absorbed by the additional context in

the variable rule). The fact that this discipline interferes with dependent types is one of the reasons

we turn to QTT when we wish to add dependent types in Section 3.
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2.2 No Recursion, Only Case Analysis
It is not too difficult to see that reduction of linear 𝜆-terms always takes a number of steps linearly

proportional to the size of the term. This is because every 𝛽-redex substitutes each term into at

most one variable, reducing the size of the term by one each time.

We can increase the expressivity, but not the computational complexity, of the system by adding

datatypes that do not allow iteration. These can be used for representation but not for driving

computation. We include the rules here to show how linearity must be preserved in these rules and

to foreshadow their dependently typed counterparts in Section 3.2. The first type is the booleans,

which are non-recursive and so would not allow iteration anyway:

⊢ true, false : Bool
Γ1 ⊢ 𝑀 : Bool Γ2 ⊢ 𝑁1 : 𝐴 Γ2 ⊢ 𝑁2 : 𝐴

Γ1, Γ2 ⊢ if 𝑀 then𝑁1 else𝑁2 : 𝐴

The if-then-else rule is careful to ensure that the resources used by the eliminated Bool and the

resources used by the chosen branch are accounted for separately. The two branches must have the

same resource usage.

Construction and case analysis of lists are given by the following rules:

⊢ nil : List(𝐴)
Γ1 ⊢ 𝑀 : 𝐴 Γ2 ⊢ 𝑁 : List(𝐴)
Γ1, Γ2 ⊢ cons(𝑀, 𝑁 ) : List(𝐴)

Γ1 ⊢ 𝑀 : List(𝐴) Γ2 ⊢ 𝑁1 : 𝐵 Γ2, ℎ : 𝐴, 𝑡 : List(𝐴) ⊢ 𝑁2 : 𝐵

Γ1, Γ2 ⊢ match𝑀 {nil ↦→ 𝑁1; cons(ℎ, 𝑡) ↦→ 𝑁2} : 𝐵
We can construct lists arbitrarily but only do case analysis on them. If we wish to explore a list to a

arbitrary depth it must be driven by a type we can iterate over.

With booleans and lists, we can construct several other useful types. For example, to simulate

Turing machines, one can construct a Tape type as a Zipper (Huet [1997]) List(Bool) ⊗ Bool ⊗
List(Bool), representing a position on the tape with the items before, under, and after the head.

2.3 The Cons-free System
Polynomial time is usually seen as a proxy for “feasible” computation. On the face of it, there does

not seem to be any particular reason why polynomials have anything to do with feasibility. However,

one can arrive at the definition of polynomial time in three steps, by assuming that (i) iterating

over the whole input is feasible; (ii) if two computations are feasible, then so is their composition;

and (iii) performing a feasible computation for every element of the input is also feasible. It is the

last point that allows complexities of arbitrary polynomial degree to be constructed (we will see

this in action in the completeness construction below and soundness proofs in Section 6).

Following these ideas, let us assume that the input is a natural number, so we assume that there

is some type of natural numbers Nat. For point (i), we must be able to iterate over these natural

numbers, so we use a linear iterator defined by this typing rule:

⊢ 𝑀𝑧 : 𝐴 𝑥 : 𝐴 ⊢ 𝑀𝑠 : 𝐴 Γ ⊢ 𝑁 : Nat

Γ ⊢ rec𝑁 {zero ↦→ 𝑀𝑧 ; succ(𝑥) ↦→ 𝑀𝑠 } : 𝐴
Note that in the zero,𝑀𝑧 , and sucessor,𝑀𝑠 , cases, the context is empty to ensure that these cases

may be invoked as many times as required. Point (ii) above is automatically satisfied by being in

a typed 𝜆-calculus, where it is difficult to stop functions from being composable. For point (iii),

the iterator as given does not allow us to nest iterations. Once the natural number input 𝑛 has

been used for an iteration, the linear typing discipine prevents us from using it again (note the two

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 76. Publication date: January 2024.



Polynomial Time and Dependent Types 76:5

separate contexts Γ1, Γ2 in the rule for application). In order to allow nested iterations, we add an

operator to duplicate numbers:

Γ ⊢ 𝑀 : Nat

Γ ⊢ dupNat𝑀 : Nat ⊗ Nat

Somewhat surprisingly, this system is now sound and complete for polynomial time. Crucially,

this depends on the two things we have not allowed. First, we have disallowed the construction

of new natural numbers via the zero and succ constructors1. If we were to permit this, then we

could use iteration over the input to construct addition, multiplication (by repeated addition), and

then exponentials (by repeated multiplication). We therefore refer to this system as the Cons-free

system. Because we cannot construct values of type Nat within the system, complete programs in

this system are open terms as we explained at the start of this section.

The second prohibited feature is the ability to duplicate values of function type, even though we

have allowed duplication of iterable naturals. If we were to allow this, then we would be able to

sneak in a form of constructors for natural numbers by encoding them as eliminators that duplicate

a function for every succ step.
We will see in Section 6.2 that this system is sound for polytime by a realisability argument.

Completeness can be seen more directly by constructing a function that iterates a function for

a statically known polynomial number of times in the size of the input. Assume that we have a

known polynomial 𝑝 (𝑛) = 𝑐𝑑𝑛
𝑑 + · · · + 𝑐0 of degree 𝑑 with natural number coefficients and some

single step function 𝑓 : St ⊸ St over a state type St that runs to completion for input of size 𝑛 in

𝑝 (𝑛) steps. Then, using the iterator above we can iterate 𝑓 over a Nat representing the size of the

input:

𝐼1 : Nat ⊸ St ⊸ St

𝐼1 = 𝜆𝑛.𝜆𝑠.rec𝑛 {zero ↦→ 𝑠; succ(𝑠) ↦→ 𝑓 𝑠}
To achieve higher degrees, we can use dupNat to nest iterations:

𝐼𝑘+1 : Nat ⊸ St ⊸ St

𝐼𝑘+1 = 𝜆𝑛.𝜆𝑠.let (𝑛, 𝑛′) = dupNat𝑛 in

rec𝑛 {zero ↦→ 𝑠; succ(𝑠) ↦→ 𝐼𝑘 𝑛
′ 𝑠}

By further use of dupNat and composition to handle addition of polynomials, the function 𝑓 can

now be iterated 𝑝 (𝑛) many times, where 𝑛 is the inputNat. Thus, the Cons-free system can represent

all polytime computations.

2.4 Diamond Trading with LFPL
The Cons-free system is sound and complete for polytime, but is quite awkward from the point of

view of functional programming. It allows us to iterate over natural numbers that come from the

input but does not allow us to build further values to do iteration on. For example, if our input is a

list, then we cannot transform it into a binary search tree and then flatten it, we must always refer

back to the original natural number input. Even dividing the input into two halves to be treated

separately is difficult.

A more flexible system was proposed by Hofmann [1999]. Instead of completely prohibiting

construction of data, the Linear Functional Programming Language (LFPL) allows construction if it

1
Actually, zero would be acceptable, as well as any constant natural number. It is only unrestricted use of succ that is
dangerous.
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is paid for by values of type ^ (“diamonds”):

Γ ⊢ 𝑀 : ^

Γ ⊢ zero(𝑀) : Nat
Γ1 ⊢ 𝑀 : ^ Γ2 ⊢ 𝑁 : Nat

Γ1, Γ2 ⊢ succ(𝑀, 𝑁 ) : Nat
To construct a zero, we must have a ^ to pay for it, and likewise, to construct a succ we must

pay a ^. We can think of ^s as an unit of iterable data. Iterability is “saved up” in data during

construction, and released during iteration. Diamonds cannot be created by a program itself, for

the same reason that constructors were prohibited in the Cons-free system, but they are released

from iterable data during iteration. The LFPL natural number iterator has the following typing rule:

𝑑 : ^ ⊢ 𝑀𝑧 : 𝐴 𝑑 : ^, 𝑥 : 𝐴 ⊢ 𝑀𝑠 : 𝐴 Γ ⊢ 𝑁 : Nat

Γ ⊢ rec𝑁 {zero(𝑑) ↦→ 𝑀𝑧 ; succ(𝑑, 𝑥) ↦→ 𝑀𝑠 } : 𝐴
The difference with the Cons-free iterator above is that the zero and succ cases now both have an

additional binding of type ^. This allows some form nesting of iterations: during an iteration over

the input, the program can accumulate ^s to use for iteration over substructures that are smaller

than the current point in the iteration. A construction, due to Aehlig and Schwichtenberg [2002],

illustrates how this leads to all polytime computations. As above, we assume a polynomial 𝑝 (𝑛)
and a step function 𝑓 : St ⊸ St that needs to be iterated 𝑝 (𝑛) times. We construct a linear iterator:

𝐼1 : (Nat ⊗ St) ⊸ (Nat ⊗ St)
𝐼1 = 𝜆(𝑛, 𝑠). rec𝑛 {zero(𝑑) ↦→ (zero(𝑑), 𝑠);

succ(𝑑, (𝑛, 𝑠)) ↦→ (succ(𝑑, 𝑛), 𝑓 𝑠)}
Note that this iterator returns the natural number input as well as the new state. LFPL does not

allow duplication of iterable inputs, so we must always reconstruct it if we want to do further

iteration. Addition of polynomials is accomplished by composition of iterators. To raise the degree,

we again use a nesting iterator:

𝐼𝑘+1 : (Nat ⊗ St) ⊸ (Nat ⊗ St)
𝐼𝑘+1 = 𝜆(𝑛, 𝑠). rec𝑛 {zero(𝑑) ↦→ (zero(𝑑), 𝑠);

succ(𝑑, (𝑛, 𝑠)) ↦→ let (𝑛, 𝑠) = 𝐼𝑘 (𝑛, 𝑠) in (succ(𝑑, 𝑛), 𝑠)}
Unlike in the Cons-free system, this iterator does not raise the degree of the nested iterator di-

rectly. Rather, the iterator 𝐼𝑘 on the input 𝑛 performs

(
𝑛
𝑘

)
iterations. As observed by Aehlig and

Schwictenberg, this is sufficient because the binomials form a basis for the vector space of all

polynomials.

Despite this slightly more involved completeness construction, the advantage of LFPL is that it

is now easy to have arbitrary iterable datatypes and to transform between them. We need only

take the introduction and elimination rules for any inductive datatype and add ^ premises to the

introduction rules and ^ bindings to the eliminators.

3 POLYTIME QUANTITATIVE TYPE THEORY
We have now seen the Cons-free and LFPL systems for capturing polytime by means of linear

typing and restricted iteration. We now look to extend these systems to include dependent types by

building upon Quantitative Type Theory (QTT) [Atkey 2018; McBride 2016]. This section reviews

QTT and describes how we have adapted it to the polytime systems we saw in the previous section.

3.1 Quantitative Type Theory
Integrating linear and dependent types is not straightforward due to the conflict between the linear

typing discipline regarding presence of a variable as only bestowing the right to use it once, and
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the dependent typing regime that uses variables both in types (for specification purposes) and in

terms (for computational purposes), syntactically yielding multiple uses of the same variable.

QTT is a system that resolves this conflict by recording usage of variables with annotations from

a semiring. It sits in the general area of systems that use semiring annotations to measure resource

usage [Brunel et al. 2014; Ghica and Smith 2014; Orchard et al. 2019]. The key feature of QTT, an

insight owing to McBride [2016], is that usage of variables in types counts for 0-usage in terms of

the semiring used. This allows us to use normal type theory as a specification language, while also

enjoying the benefits of linear typing for programs. The term typing judgement of QTT has the

following form:

𝑥1
𝜌1
: 𝑆1, . . . , 𝑥𝑛

𝜌𝑛
: 𝑆𝑛 ⊢ 𝑀 𝜎

: 𝑇

where the annotations 𝜌𝑖 are all from the semiring being used. The annotation 𝜎 is either 0 or 1,

indicating whether we are in the erased (𝜎 = 0) fragment, where all the normal rules of type theory

apply, or the in the non-erased (“present”, “realisable”, 𝜎 = 1) fragment, where a restricted typing

discipline applies. As we shall see below in the cases of Σ-types, iterable types, and LFPL’s ^ type,

the separation of QTT into these two fragments allows an expressive combination of reasoning

using full type theory with the benefits of linear typing.

In the remainder of this sub-section, we describe the core of QTT. As well as the term typing

judgement given above, QTT also has judgements for well-formed contexts (Γ ctxt) and types

(Γ ⊢ 𝑇 type), and definitional equality of types and terms (Γ ⊢ 𝑆 ≡ 𝑇 type and Γ ⊢ 𝑀 ≡ 𝑁
𝜎
: 𝑆). It is

an invariant of the system that types are always well-formed in a context with all annotations 0,

i.e., Γ ⊢ 𝑆 type implies 0Γ = Γ. An important admissible rule of the system, along with weakening

and substitution, is that of 0-ing:

Γ ⊢ 𝑀 1

: 𝑆

0Γ ⊢ 𝑀 0

: 𝑆

This rule allows us to take any term𝑀 in the 𝜎 = 1 fragment and treat it as if it were in the 𝜎 = 0

fragment, and hence use it for specification purposes in types. As we add novel rules to QTT in the

following sections, we will be careful to maintain the admissibility of this rule.

In this section, we give an overview of the rules of QTT. The full rules, including all equality

rules, are presented in Appendix A.

3.1.1 Natural-number Usages. We use an instantiation of QTT with the natural number semiring,

with the usual semiring structure of addition and multiplication. In a mild generalisation of the

original presentation of QTT, we also allow sub-usaging via the reverse ordering on the naturals.

That is, if a variable is marked as usage 𝑛 and 𝑚 ≥ 𝑛, then we can also regard it as usage 𝑚.

This makes the system more like affine linear logic, since𝑚 ⊑ 0
2
for all𝑚, matching the system

in Section 2. We do not have an unrestricted usage 𝜔 , since this would allow the possibility of

unrestricted duplication, and hence violate our polytime soundness properties.

3.1.2 Contexts, Variables, and Conversion. As we saw above, contexts in QTT are comprised of

variable

𝜌
: type triples, where 𝜌 is a natural number indicating how many times the variable 𝑥 is

available for use in a 𝜎 = 1 term. There are two operations on raw contexts: scaling 𝜋Γ, which
multiplies each 𝜌 in Γ by 𝜋 , and addition Γ1 + Γ2, which adds two contexts’ usage annotations

assuming that the lengths and types are equal. Contexts are ordered pointwise Γ′ ⊑ Γ on the usage

annotations (which is the reverse ordering on naturals) The basic usage-annotation discipline of

2
Reverse ordering!
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QTT is demonstrated by the context formation and variable rules:

𝜖 ctxt

Γ ctxt 0Γ ⊢ 𝑆 type

Γ, 𝑥
𝜌
: 𝑆 ctxt

0Γ, 𝑥
𝜎
: 𝑆, 0Γ′ ctxt

0Γ, 𝑥
𝜎
: 𝑆, 0Γ′ ⊢ 𝑥 𝜎

: 𝑆

Γ ⊢ 𝑀 𝜎
: 𝑆 Γ′ ⊑ Γ

Γ′ ⊢ 𝑀 𝜎
: 𝑆

As with most dependent type theories, contexts are built inductively from the empty context 𝜖 and

extension of a context by a variable with a type that is well-formed in the preceding context. Usage

annotations 𝜌 on variables are arbitrary, and types are always judged in a 0-annotated context. The

variable rule marks unused variables as usage 0 and the selected variable with usage 𝜎 .

As usual, definitional equality of types impacts typing of terms via the conversion rule:

Γ ⊢ 𝑀 : 𝑆 0Γ ⊢ 𝑆 ≡ 𝑇 type

Γ ⊢ 𝑀 : 𝑇

Like type formation, definitional equality of types always takes place in 0-d contexts. We will

describe the definitional equality rules for terms of each type as we introduce them. In QTT, it is

possible for the definitional equality of terms to differ between the 𝜎 = 0 and 𝜎 = 1 fragments, as

we will see below.

3.1.3 Π- and Σ-types. QTT’s Π-types have the form (𝑥 𝜌
: 𝑆) → 𝑇 , indicating functions that, in the

𝜎 = 1 fragment, use their arguments 𝜌-many times. The formation, introduction and elimination

rules are similar to the standard ones, except for the addition of usage annotations:

0Γ ⊢ 𝑆 type 0Γ, 𝑥
0

: 𝑆 ⊢ 𝑇 type

0Γ ⊢ (𝑥 𝜌
: 𝑆) → 𝑇 type

Γ, 𝑥
𝜎𝜌
: 𝑆 ⊢ 𝑀 𝜎

: 𝑇

Γ ⊢ 𝜆𝑥 .𝑀 𝜎
: (𝑥 𝜌

: 𝑆) → 𝑇

Γ1 ⊢ 𝑀
𝜎
: (𝑥 𝜌

: 𝑆) → 𝑇 Γ2 ⊢ 𝑁
𝜎 ′
: 𝑆 0Γ1 = 0Γ2 𝜎 ′ = 0 ⇔ (𝜌 = 0 ∨ 𝜎 = 0)

Γ1 + 𝜌Γ2 ⊢ 𝑀 𝑁
𝜎
: 𝑇 [𝑁 /𝑥]

The side conditions on the elimination rule state that (i) both Γ1 and Γ2 erase to the same context, so

their sum is defined; and (ii) the argument 𝑁 is erased (i.e., 𝜎 ′ = 0) iff either the function does not

use its argument, or we are in the 𝜎 = 0 fragment and everything is being erased. In the following,

when we write 𝑆 → 𝑇 for a non-dependent function type, we mean that the argument is to be used

linearly: (𝑥 1

: 𝑆) → 𝑇 , where 𝑥 does not appear in 𝑇 . Π-types support the usual 𝛽𝜂 definitional

equalities in both the 𝜎 = 0 and 𝜎 = 1 fragments.

Σ-types are a little more involved, and demonstrate the flexibility in QTT in allowing additional

power in the 𝜎 = 0 fragment where we do not need to care about polytime realisability. Formation

and introduction are given by the rules:

0Γ ⊢ 𝑆 type 0Γ, 𝑥
0

: 𝑆 ⊢ 𝑇 type

0Γ ⊢ (𝑥 𝜋
: 𝑆) ⊗ 𝑇 type

Γ1 ⊢ 𝑀
𝜎 ′
: 𝑆 Γ2 ⊢ 𝑁

𝜎
: 𝑇 [𝑀/𝑥]

0Γ1 = 0Γ2 𝜎 ′ = 0 ⇔ (𝜋 = 0 ∨ 𝜎 = 0)

𝜋Γ1 + Γ2 ⊢ (𝑀, 𝑁 ) 𝜎
: (𝑥 𝜋

: 𝑆) ⊗ 𝑇

As with Π-types, the first component of a Σ-type is annotated with a usage for how many times

it can be used, and this is respected by the introduction rule. Elimination of Σ-types depends on
whether we are in the 𝜎 = 0 fragment or not. In the 𝜎 = 0 fragment, we are free to disregard usage
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restrictions, and use projections as normal:

Γ ⊢ 𝑀 0

: (𝑥 𝜋
: 𝑆) ⊗ 𝑇

Γ ⊢ fst(𝑀) 0

: 𝑆

Γ ⊢ 𝑀 0

: (𝑥 𝜋
: 𝑆) ⊗ 𝑇

Γ ⊢ snd(𝑀) 0

: 𝑇 [fst(𝑀)/𝑥]

Σ-types are unrestricted in the 𝜎 = 0 fragment, and we can use them as normal for type-theoretic

constructions. In the 𝜎 = 1 fragment, we must take into account the resource content of objects and

use a pattern matching construct; the dependently typed analogue of the ⊗-eliminator in Section 2:

0Γ, 𝑧
0

: (𝑥 𝜋
: 𝐴) ⊗ 𝐵 ⊢ 𝐶

Γ1 ⊢ 𝑀
𝜎
: (𝑥 𝜋

: 𝐴) ⊗ 𝐵 Γ2, 𝑥
𝜎𝜋
: 𝐴,𝑦

𝜎
: 𝐵 ⊢ 𝑁 𝜎

: 𝐶 [(𝑥,𝑦)/𝑧] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ let (𝑥,𝑦) = 𝑀 in 𝑁
𝜎
: 𝐶 [𝑀/𝑧]

QTT also supports a unit type 𝐼 with constructor ∗ and pattern-matching [Atkey 2018]. Σ- and 𝐼
types support the usual 𝛽𝜂 definitional equalities in the 𝜎 = 0 fragment (e.g., fst(𝑀, 𝑁 ) ≡ 𝑀), but

only 𝛽 equalities (i.e., let (𝑥,𝑦) = (𝑀1, 𝑀2) in 𝑁 ≡ 𝑁 [𝑀1/𝑥,𝑀2/𝑦]) in the 𝜎 = 1 fragment. It would

also be sound to support commuting conversions [Barber 1996] for let in the 𝜎 = 1 fragment, but

this would likely bring complications for implementation.

3.1.4 The Identity Type. QTT also supports an extensional equality type with equality reflection:

0Γ ⊢ 𝑆 type 0Γ ⊢ 𝑀 0

: 𝑆 0Γ ⊢ 𝑁 0

: 𝑆

0Γ ⊢ 𝑀 =𝑆 𝑁 type

Γ ⊢ 𝑀 𝜎
: 𝑆

Γ ⊢ refl(𝑀) 𝜎
: 𝑀 =𝑆 𝑀

Γ ⊢ 𝑁 0

: 𝑀1 =𝑆 𝑀2

Γ ⊢ 𝑀1 ≡ 𝑀2

0

: 𝑆

The equality type also has an 𝜂 rule demonstrating refl(𝑀) as the only proof of equality [Hofmann

1997]. Note that equality reflection only targets the𝜎 = 0 fragment, we cannot use equality reflection

to convey realisability information.

3.1.5 Universe. QTT has universe types U, as in standard type theory [Atkey 2018]. For our

examples below, we do not explicitly mark the use of terms of type U as types – i.e., we use

a Russell-style presentation. Universes are where the definitional equality on terms affects the

definitional equality on types.

3.1.6 Data Types. QTT, as we have presented it so far, has no interesting base types to perform

computation on. Following our presentation of the simply typed linear systems in Section 2, we

add two kinds of datatype to QTT. First, in Section 3.2, we add non-iterable datatypes that allow

construction and case analysis, but no recursion. Then, in Section 3.3 we describe how to extend

QTT to be a dependently typed adaptation of the Cons-free system of Section 2.3 by adding a type

of iterable naturals. In Section 3.4 we apply the same treatment to the LFPL-style system.

3.2 Non-iterable Data Types
3.2.1 Booleans. The boolean type for QTT was described in [Atkey 2018]. Booleans offer no

possibility for iteration, but it is useful to see how the QTT rules extend the simply typed rules
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from Section 2.2 before moving to more complex types.

Γ ctxt

Γ ⊢ Bool type

Γ ctxt

0Γ ⊢ true, false 𝜎
: Bool

0Γ1, 𝑥
0

: Bool ⊢ 𝑃 type

Γ1 ⊢ 𝑀
𝜎
: Bool Γ2 ⊢ 𝑁𝑡

𝜎
: 𝑃 [true/𝑥] Γ2 ⊢ 𝑁𝑓

𝜎
: 𝑃 [false/𝑥] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ if𝑥.𝑃 𝑀 then 𝑁𝑡 else 𝑁𝑓
𝜎
: 𝑃 [𝑀/𝑥]

The introduction rules for booleans both use a 0-d context, indicating that construction of boolean

values is free. Elimination of booleans via a dependently typed if-then-else is more subtle with

its resource usage. The boolean to be eliminated must be constructed in a context Γ1, while the
two branches are constructed in context Γ2. Since only one of the branches will be used, sharing

resources between the branches is expected. Booleans and their eliminator obey the usual 𝛽 laws

for definitional equality: if𝑥.𝑃 true then 𝑁𝑡 else 𝑁𝑓 ≡ 𝑁𝑡 , and similarly for false.
One might wonder how, since constructing booleans is 0-cost by their introduction rules, the

Γ1 context will ever be non-0. This is resolved by observing that booleans may be the output of

processes that consume time (e.g., the iteration constructs defined below), and so Γ1 will represent
a requirement that the necessary resource is provided.

3.2.2 Lists. Lists are a little more complex than booleans, because the cons constructor takes two
arguments, so their resource usage must be combined. The type formation and introduction rules

are as follows:

0Γ ⊢ 𝑇 type

0Γ ⊢ List(𝑇 ) type

Γ ⊢ 𝑇 type

0Γ ⊢ nil 𝜎: List(𝑇 )

Γ1 ⊢ 𝑀
𝜎
: 𝑇 Γ2 ⊢ 𝑁

𝜎
: List(𝑇 ) 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ cons(𝑀, 𝑁 ) 𝜎
: List(𝑇 )

Lists do have the potential for iteration by their recursive nature, but in order to ensure the polytime

complexity guarantees we only permit matching without recursion in the 𝜎 = 1 fragment. Here is

the rule for dependently typed case analysis on lists, which also obeys the usual 𝛽-equalities for

case analysis, analogous to the ones for booleans:

0Γ1, 𝑥
0

: List(𝑇 ) ⊢ 𝑃 type Γ1 ⊢ 𝑀
𝜎
: List(𝑇 )

Γ2 ⊢ 𝑁1

𝜎
: 𝑃 [nil/𝑥] Γ2, ℎ

𝜎
: 𝑇, 𝑡

𝜎
: List(𝑇 ) ⊢ 𝑁2

𝜎
: 𝑃 [cons(ℎ, 𝑡)/𝑥] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ match𝑥.𝑃 𝑀 { nil ↦→ 𝑁1; cons(ℎ, 𝑡) ↦→ 𝑁2 }
𝜎
: 𝑃 [𝑀/𝑥]

In the 𝜎 = 0 fragment, however, we are free to iterate on lists because computations in this fragment

are only meant for type-level computation, not for the program itself. Put another way, the type

checker may perform arbitary recursion on lists to type check the program, but the program itself

may not do so without correctly accounting its costs as described in the following sections. The

𝜎 = 0 fragment recursor for lists has the following typing rule, which is the standard dependent

eliminator for lists except that everything annotated as 0 usage.

0Γ, 𝑥
0

: List(𝑇 ) ⊢ 𝑃 type 0Γ ⊢ 𝑀 0

: List(𝑇 )
0Γ ⊢ 𝑁1

0

: 𝑃 [nil/𝑥] 0Γ, ℎ
0

: 𝑇, 𝑡
0

: List(𝑇 ), 𝑝 0

: 𝑃 [𝑡/𝑥] ⊢ 𝑁2

0

: 𝑃 [cons(ℎ, 𝑡)/𝑥]

0Γ ⊢ recList𝑥.𝑃 𝑀 { nil ↦→ 𝑁1; cons(ℎ, 𝑡 ;𝑝) ↦→ 𝑁2 }
0

: 𝑃 [𝑀/𝑥]
This eliminator also obeys the usual 𝛽-equality laws for a list eliminator, using the resource freedom

of the 𝜎 = 0 fragment to duplicate the 𝑁2 term in the cons case.
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3.3 Cons-free Natural Numbers and their Recursor
The datatypes of the previous section still only allow us to write programs in the 𝜎 = 1 fragment

that are constant time in the size of their input. As with the simply typed linear system, if we are

handed a list of an unknown length, we can only explore it to a fixed depth, determined statically

by the program. To write programs that do work proportional to the size of their input, we need

some form of iterable datatype. In both our Cons-free and LFPL-style QTT systems, we use a natural

number datatype.

The Cons-free system cannot allow the programmer to construct natural numbers in the 𝜎 = 1

fragment, as this would violate the complexity guarantees. However, we can use the flexibility of

QTT to allow free construction of naturals in the 𝜎 = 0 fragment, which allows us to use natural

numbers freely in types. Therefore, we have the following introduction rules, only usable in the

𝜎 = 0 fragment:

Γ ctxt

Γ ⊢ zero 0

: Nat

Γ ⊢ 𝑀 0

: Nat

Γ ⊢ succ(𝑀) 0

: Nat

The cons-free system allows free duplication of complete natural numbers. This is accomplished by

a special construct copying the simply linear typed rule we gave above:

Γ ⊢ 𝑀 𝜎
: Nat

Γ ⊢ dupNat(𝑀) 𝜎
: Nat ⊗ Nat

Anyone who has reasoned about the metatheory of, or implemented a type checker for, dependent

types will view this rule with unease as it appears to grant the ability to construct non-canonical

values of pair type, and consequently generate non-canonical naturals. We fix this by adding an

equational rule to the 𝜎 = 0 fragment, ensuring definitionally that dupNat acts as its name implies:

Γ ⊢ 𝑀 0

: Nat

Γ ⊢ dupNat(𝑀) ≡ (𝑀,𝑀) 0

: Nat ⊗ Nat

Note that this rule is well-typed by the 0-needs-0 property of QTT, and the fact that 0 + 0 = 0.

The eliminator for these natural numbers takes the following form. Disregarding the usage

annotations, it has the same type structure as the normal dependently typed recursor for naturals:

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

Γ ⊢ 𝑀 𝜎
: Nat

0Γ ⊢ 𝑁𝑧
𝜎
: 𝑃 [zero/𝑥]

0Γ, 𝑛
0

: Nat, 𝑝
𝜎
: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠

𝜎
: 𝑃 [succ(𝑛)/𝑥]

Γ ⊢ rec𝑥.𝑃 𝑀 {zero ↦→ 𝑁𝑧 ; succ(𝑛;𝑝) ↦→ 𝑁𝑠 }
𝜎
: 𝑃 [𝑀/𝑥]

In the successor case, 𝑁𝑠 , there are two bound variables: 𝑛 for the natural number and 𝑝 for its

induction hypothesis. Note that 𝑛 is required to be usage 0 no matter what 𝜎 is. We need the variable

𝑛 to be present in order to correctly type the induction hypothesis and the conclusion, but it must

be marked as usage 0 to ensure that the resources captured by the number are not duplicated.

This eliminator cannot have a 𝛽-equality in the 𝜎 = 1 fragment because there is no way to

construct any natural numbers to iterate on in this fragment. In the 𝜎 = 0 fragment, this eliminator

obeys the usual 𝛽-equality laws for a natural number recursor. This allows us to use it to compute

and reason about operations on naturals in this fragment.
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The reader is invited to compare this dependently typed rule with the simply typed linear

version in Section 2.3. Removing the 0-annotated parts of the rule, and the type dependency, yield

the exact same rule. Conversely, when 𝜎 = 0, this rule is identical (up to 0-annotations) to the

usual dependently typed recursor for natural numbers, and so we can use it in the types to prove

properties of programs just as we do in normal type theory. We will see in Section 6.2 that this rule

is realisable by polynomial-time computation, and so is sound for polynomial time.

3.4 LFPL-style Diamonds, Natural Numbers, and a Recursor that Gives Back
As explained in Section 2.4, the LFPL system differs from the Cons-free system in that it is possible to

construct natural numbers (and other iterable datatypes), provided one has the necessary diamonds

to pay for the construction. As with the natural number type in the Cons-free system, it ought

not be possible to construct diamonds in the 𝜎 = 1 fragment, as this would amount to the free

distribution of diamonds to all which would lead to a collapse in the complexity guarantees of the

system. It is possible construct diamonds in the 𝜎 = 0, though:

Γ ctxt

0Γ ⊢ ^ type

Γ ctxt

0Γ ⊢ ∗ 0

: ^

Γ ⊢ 𝑀 0

: ^

Γ ⊢ 𝑀 ≡ ∗ 0

: ^

The ^ type also supports an 𝜂-rule in the 𝜎 = 0 fragment, indicating that, in this fragment, it acts

the same as a unit type. This allows us to freely use diamonds in types, and to not have to care

about the identity of particular diamonds, since by this rule all diamonds are definitionally equal
3
.

Construction of natural numbers now requires a ^ for zero and a ^ and a predecessor for succ:

Γ ⊢ 𝑀 𝜎
: ^

Γ ⊢ zero(𝑀) 𝜎
: Nat

Γ1 ⊢ 𝑀
𝜎
: ^ Γ2 ⊢ 𝑁

𝜎
: Nat 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ succ(𝑀, 𝑁 ) 𝜎
: Nat

In the 𝜎 = 0 fragment, we can construct ^s for free, and so construct natural numbers freely as

well just as we did for the Cons-free system above.

The dependently typed recursor for LFPL-style natural numbers again augments the simply

typed linear recursor from Section 2.4 with dependency information:

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

Γ ⊢ 𝑀 𝜎
: Nat

0Γ, 𝑑
𝜎
: ^ ⊢ 𝑁𝑧

𝜎
: 𝑃 [zero(∗)/𝑥]

0Γ, 𝑑
𝜎
: ^, 𝑛

0

: Nat, 𝑝
𝜎
: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠

𝜎
: 𝑃 [succ(∗, 𝑛)/𝑥]

Γ ⊢ rec𝑀 {zero(𝑑) ↦→ 𝑁𝑧 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝑁𝑠 }
𝜎
: 𝑃 [𝑀/𝑥]

We have used ∗ : ^ as the value in the types for the zero and successor cases. By the 𝜂-rule for

diamonds, we could have equally well used the 𝑑 variable that is in scope in each case.

Unlike the natural number iterator in the Cons-free system, this iterator has 𝛽-equalities in both

the 𝜎 = 0 and 𝜎 = 1 fragments. In the succ case, for example, we have:

rec (succ(𝑀𝑑 , 𝑀𝑛)) {zero(𝑑) ↦→ 𝑁𝑧 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝑁𝑠 }
≡ 𝑁𝑠 [𝑀𝑑/𝑑,𝑀𝑛/𝑛, rec𝑀𝑛 {zero(𝑑) ↦→ 𝑁𝑧 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝑁𝑠 }/𝑝]

Note that the fact that the variable 𝑛 in the 𝑁𝑠 term is annotated 0, which allows us to use𝑀𝑛 twice

even when we are in the 𝜎 = 1 fragment.

Just as for the Cons-free system iterator above, in the 𝜎 = 0 fragment this rule is identical to the

usual dependently typed recursor for the natural numbers, so it can be used in the types to reason

3
Fungible, if one wishes to use a monetary metaphor.
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about programs. Moreover, we will see in Section 6.3 that this rule is also sound for polynomial

time in a system with ^s.

3.5 Reflection of Realisability
Our final addition to QTT is reflection of realisability. In QTT thus far, it has been possible to reason

about the non-resourced behaviour of programs. This is because the 0-ing process moving from

the 𝜎 = 1 fragment to the 𝜎 = 0 fragment erases all resource information. This is sufficient for

reasoning about the extensional behaviour of programs via types, but it is useful to be able to make

statements like “this function is realisable in polynomial time” in the types of QTT, something that

is not currently possible with the system we have seen so far.

We remedy this by adding a realisable type to QTT with the following type formation and

introduction and elimination rules:

0Γ ⊢ 𝐴 type

0Γ ⊢ R(𝐴) type

0Γ ⊢ 𝑀 1

: 𝐴

0Γ ⊢ R(𝑀) 𝜎
: R(𝐴)

Γ ⊢ 𝑀 𝜎
: R(𝐴)

Γ ⊢ R−1 (𝑀) 𝜎 ′
: 𝐴

Intuitively, the type R(𝐴) is inhabited whenever the type 𝐴 is realisable in the 𝜎 = 1 fragment of

the system. In particular, the type R(Nat → Nat) is the type of all realisable functions from natural

numbers to natural numbers. In the polynomial time systems we are concerned with here, this is

exactly the type of polynomial functions. Note that in the introduction rule, the premise is required

to be in the 𝜎 = 1 fragment, to ensure that the type is realisable, while in the elimination rule, the

conclusion is in an arbitrary fragment 𝜎 ′
. This flexibility is require to maintain the admissibility of

the 0-ing rule.

The equality rules for R state that the two operations are mutually inverse: R(R−1 (𝑀)) ≡ 𝑀 , in

both fragments, and R−1 (R(𝑀)) ≡ 𝑀 in the 𝜎 = 0 fragment. By congruence, the 𝜎 = 1 fragment’s

definitional equality affects the definitional equality of the 𝜎 = 0 fragment via the R(−) constructor.
With just the rules given here, the type R(𝐴) is no more than a statement that a given type is

realisable with a polytime implementation. This is enough to do the constructions that we present in

the next section, e.g., that polytime functions are closed under composition, but one could imagine

stronger reflection principles that allow deeper logical consequences of polytime realisability to be

proved internally. We discuss this further in Section 7.2.

Readers familiar with Benton [1994]’s Linear/Non-linear system will note that the R(𝐴) con-
structor is the QTT analogue of the right adjont 𝐺 type constructor in that system. The Σ-types
play the role of the left adjoint 𝐹 types, in a similar way to the dependent linear type system of

Krishnaswami et al. [2015].

4 PROGRAMMING AND PROVINGWITH POLYTIME
We now explore the possibilities afforded by the combination of polytime guarantees with the

specification expressivity of dependent types.

4.1 Building Data Types
We have only defined an iterable natural number datatype for both of our systems above. We could

extend both systems to include further iterable inductive types, although in the Cons-free system

this is not particularly useful due to the prohibition of construction. However, sticking with just

the natural numbers, we can use the power of dependent types with a universe to create further

datatypes whose size is measured by some iterable natural number. Iteration on the size yields

iteration over the full datastructure. For example, in the LFPL system, we can define a type of
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iterable lists by pairing a size with a type of elements defined by recursion on the size:

IList𝐴 = (𝑛 1

: Nat) ⊗ (rec𝑥.U 𝑛 {zero(𝑑) ↦→ 𝐼 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝐴 ⊗ 𝑝})

The nil and cons constructors can now be defined in terms of zero and succ, provided the caller sup-
plies sufficient ^s. These definitions live in the 𝜎 = 1 fragment, so we annotate them appropriately:

nil

1

: ^ → IList𝐴

nil𝑑 = (zero(𝑑), ∗)
cons

1

: ^ → 𝐴 → IList𝐴 → IList𝐴

cons𝑑 𝑥 xs = let (𝑛, elems) = xs in (succ(𝑑, 𝑛), (𝑥, elems))

Using the LFPL iterator it is also possible to construct a dependently typed iterator for IList𝐴 values.

Unfortunately, the current types of the LFPL system are not sufficient to type this as a function,

as we have no way of stating that the successor case must be arbitrarily duplicable. Lifting this

restriction by means of some modality is future work. The typing rule for the derived list iterator is:

0Γ ⊢ 𝐴 type 0Γ, 𝑥
0

: IList𝐴 ⊢ 𝑃 type

Γ ⊢ 𝑀 𝜎
: IList𝐴

0Γ, 𝑑
1

: ^ ⊢ 𝑁1

𝜎
: 𝑃 [nil(∗)/𝑥]

0Γ, 𝑑
1

: ^, 𝑥
𝜎
: 𝐴, xs

0

: IList𝐴, 𝑝
𝜎
: 𝑃 [xs/𝑥] ⊢ 𝑁2

𝜎
: 𝑃 [cons(∗, 𝑥, xs)/𝑥]

Γ ⊢ rec𝑥.𝑃 𝑀 {nil(𝑑) ↦→ 𝑁1; cons(𝑑, 𝑥, xs;𝑝) ↦→ 𝑁2}
𝜎
: 𝑃 [𝑀/𝑥]

Note that, in the cons case, we have access to the result of iterating over the tail of the list (𝑝), but

not to the actual tail of the list (xs).

With our list iterator, it is now possible to write interesting polytime programs. For example, the

example used by Hofmann [2003] to demonstrate the expressivity of LFPL is insertion sort. First

we define insertion of a natural into a sorted list:

insert

1

: ^ → Nat → IList Nat → IList Nat

which requires some ingenuity to write to handle the case where we find the place to insert the

item and need access to the remainder of the list. Note that, also, the function consumes a ^ to

construct the new element of the output list, and also that the items in the list are themselves

iterable natural numbers. This is needed to account for the comparisons between elements.

Insertion sort is repeated insertion of elements from an original list into a new list. The new list

is constructed from the ^s yielded by the original list:

insertionSort

1

: IList𝐴 → IList𝐴

The immediate benefit of dependent types in this situation is that it is now possible to state and

prove the correctness property of this sorting procedure. Using the fact that the 𝜎 = 0 fragment

of QTT is exactly normal type theory, we can use normal dependently typed programmming

techniques to establish:

insertionSortCorrect

0

: (xs 1

: IList𝐴) → Sorted(xs, insertionSort xs)

where Sorted(𝑥,𝑦) is some predicate stating that 𝑦 is a sorted permutation of 𝑥 . Note that, despite

the 1 annotation on the Π-type here, we are free to duplicate xs because types are constructed in

the 𝜎 = 0 fragment.
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4.2 Polytime Problems
Define a decision problem to be a pair (𝐴, 𝑃), where 𝐴 is a type in the universe U, and 𝑃 : 𝐴 → U
is a predicate on 𝐴. For what follows, we are only interested in whether or not 𝑃 𝑎 is inhabited

for each 𝑎. Therefore, we use 𝑃 ⇔ 𝑄 to stand for equi-inhabitation of two 𝑃,𝑄 : U, i.e., 𝑃 ⇔ 𝑄 ≡
(𝑃 → 𝑄) × (𝑄 → 𝑃).
We can use the reflection type former defined in Section 3.5 to define a predicate on decision

problems that establishes whether or not they are polytime decision problems. Specifically, we can

state that there is a polytime realisable boolean-value predicate that reports true exactly when the

given element of 𝑎 is in the predicate:

PTIME(𝐴, 𝑃) = (𝑓 1

: R(𝐴 → Bool)) ⊗
(
(𝑎 1

: 𝐴) → (R−1 (𝑓 ) 𝑎 = true) ⇔ 𝑃 𝑎

)
Thus, PTIME(𝐴, 𝑃) is a logical proposition stating that the decision problem (𝐴, 𝑃) is decidable in
polytime. We make three notes about this definition: (i) proofs of PTIME(𝐴, 𝑃), are carried out in

the 𝜎 = 0 fragment, where we have the full power of Type Theory to aid us; (ii) this definition is

intrinsic, in the sense that, whichever of the polytime systems is chosen, proving that a decision

problem is solvable in polytime is a matter of programming, without having to reason directly

about machine models and step counting; and (iii) we have defined problems to have arbitrary

types 𝐴 as domains, rather than bitstrings, and so the notion of size attached to an input is intrinsic

to the type 𝐴 chosen.

We can also declare a type of polytime reductions between problems. A problem (𝐴, 𝑃) can be

polytime reduced to a problem (𝐵,𝑄) if there is an inhabitant of the following type:

(𝐴, 𝑃) Poly⇒ (𝐵,𝑄) = (𝑓 1

: R(𝐴 → 𝐵)) ⊗
(
(𝑎 1

: 𝐴) → 𝑄 (R−1 (𝑓 ) 𝑎) ⇔ 𝑃 𝑎

)
In words, there must be a polytime function 𝑓 that preserves and reflects decisions. With this

definition, it is possible to prove in our systems that polytime computations are closed under

polytime reductions. We note that this definition is, up to the reflection modality, the same as

the definition of cartesian container morphism, well known in dependent type theory [Abbott

et al. 2005], and speaks to a general conception of containers as “problem/solution” pairings and

container morphisms as problem reductions.

4.3 Polytime-based Complexity Classes
The fact that we can characterise polytime decision problems is perhaps to be expected from a

system designed to capture polynomial time realisable programs. However, we can go further

to capture the complexity classes of Non-deterministic Polynomial time (NP) and Probabilistic

Polynomial time (PP), both of which are based on polytime. We do this by augmenting our polytime

functions with additional power in the form of computational effects.

4.3.1 Non-deterministic Polynomial Time. To capture the complexity class NP, we use polynomial

time programs augmented with non-determinism, as one might expect. We will not need to reason

about equality of these non-deterministic programs, so we can represent non-deterministic choices

as binary trees. We suppose a non-iterable datatype defined like so:

dataND (𝐴 : U) : Uwhere
return : 𝐴 → ND𝐴

choice : (Bool → ND𝐴) → ND𝐴

The crucial point here is that the subtrees are represented as a function Bool → ND𝐴. By the

typing rules of QTT, this means that the two branches of this function can share resources (see
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the encoding of the additive product types by Atkey [2018]). Thus, each branch of this tree can be

explored in polynomial time, but not the whole tree itself.

The type ND supports a monad interface via the usual free monad construction, as well as an

effect flip

1

: NDBool providing access to a bit of non-deterministic information. Thus a program of

type 𝐴 → ND𝐵 in the 𝜎 = 1 fragment will be a polytime program with access to an oracle. In the

𝜎 = 0 fragment, we can write a function that resolves non-determinism using a list of booleans.

This function returns nothing if the list of booleans is insufficient to resolve all the choices:

runWithOracle

0

: ND𝐴 → List(Bool) → Maybe𝐴

With these definitions, we can define Non-deterministic Polynomial time as a predicate on problems:

NP(𝐴, 𝑃) = (𝑓 1

: R(𝐴 → ND(Bool))) ⊗(
(𝑎 1

: 𝐴) →
(
(bs 1

: List(Bool)) ⊗ (runWithOracle (R−1 (𝑓 ) 𝑎) bs = just true)
)
⇔ 𝑃 𝑎

)
Thus, a problem is in NP if there is a non-deterministic boolean-valued polynomial time function

that has a path to returning true exactly when the input satisfies the predicate. Moreover, it is a

quick matter of programming to see that problems in NP are closed under the type of polytime

reductions given above.

4.3.2 Bounded-error Probabilistic Polynomial Time. By changing the computation effects supplied

to a program, we can change the complexity class. To capture the class BPP of Bounded-error

Probabilistic Polynomial time [Arora and Barak 2009], we use a (non-iterable) data structure

representing trees of probabilistic choices, where Q[0, 1] is some type of (non-iterable) rationals in

the closed interval [0, 1]:

dataDist (𝐴 : U) : Uwhere
return : 𝐴 → Dist𝐴

choice : Q[0, 1] → (Bool → Dist𝐴) → Dist𝐴

As in the non-deterministic case, a function 𝐴 → Dist𝐵 in the 𝜎 = 1 fragment is a polytime

probabilistic computation. Again, the use of a function type here ensures that each branch of the

tree is constructable in polynomial time, not the whole tree. In the 𝜎 = 0 fragment we can write a

function that computes the probability of a Dist Bool computation being true:

probTrue

0

: Dist Bool → Q[0, 1]

We can now define the class of probabilistic polynomial time decision problems, where the decider

is allowed to make probabilistic choices as long as it is correct with probability at least
2

3
:

BPP(𝐴, 𝑃) = (𝑓 1

: R(𝐴 → Dist(Bool))) ⊗
(
(𝑎 1

: 𝐴) → (probTrue (R−1 (𝑓 ) 𝑎) ≥ 2

3
) ⇔ 𝑃 𝑎

)
Again, problems in BPP are easily seen to be closed under polytime reductions.

Probabilistic Polynomial time has previously been considered in the setting of implicit com-

putational complexity by Dal Lago et al. [2021] and Dal Lago and Toldin [2015]. In both cases,

they must build probabilistic choice into the language, and have difficulty in directly capturing

the class BPP due to its semantic nature, where the correctness of implementation is probabilistic.

With a dependently-typed host language, adding probabilistic choice as an effect and capturing the

semantic constraint of BPP is straightforward.
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5 POLYTIME SOUNDNESS VIA REALISABILITY
In this section and the next, we establish the polytime soundness of our extensions of QTT by

adapting a realisability method due to Dal Lago and Hofmann [2011]. This approach is based on a

three way coupling between abstract mathematical elements (the what), values from a machine

model (the how), and resource potentials (the fuel). Each type in the system is defined as a three

way relation between these elements. The set of abstract elements depends on the type being

interpreted (e.g., types of natural numbers will be defined in terms of the set N). The machine

model is fixed across all types. We describe the particular machine model we use for this paper in

Section 5.1. Potentials are arranged into resource monoids that we define in Section 5.2. Unlike Dal

Lago and Hofmann [2011], we explicitly construct realisers for inductive datatypes (both iterable

and non-iterable) instead of relying on second-order polymorphic encodings and special !-style

modalities. These explicit constructions are essential to construct models of our systems.

Agda Formalisation. The key soundness results in this section have been formalised in the Agda

proof assistant [Norell 2008]. The Agda formalisation can be found in the associated artefact

[Atkey 2023]. After each definition and result we provide a pointer to the Agda modules where the

corresponding formalisation can be found, and note interesting features of the mechanisation.

5.1 Machine Model and Operational Semantics
We demonstrate that every program that can be written in extensions of QTT has the complexity

bounds that we claim by translating QTT terms into an untyped CBV 𝜆-calculus with a costed

operational semantics. The syntax and rules of our target language are given in Figure 1.

Variables are represented as de Bruijn indicies 𝑖, 𝑗 . Expressions 𝐸 ∈ E can be (anonymous)

𝜆-abstractions, unit, pairing and boolean values, variables, sequencing, application, pair elimination,

and conditionals. Note that, with the exception of 𝜆-abstraction and sequencing, expressions never

contain nested expressions; instead referring to variables already defined. Values 𝑉 ∈ V can be

closures clo⟨𝐸, 𝜂⟩, where 𝜂 is an environment for the closure, unit values, pairs and booleans.

Costed evaluation of expressions in environments is defined by a big-step operational semantics

𝐸, 𝜂 ⇓𝑘 𝑉 , where 𝑘 is the number of steps. For simplicity, all operations cost 1 unit, though this

could be generalised to allow for different operations to have different costs. We use 𝜂 [𝑖] to access

the 𝑖th variable in the environment, counting from the right. The evaluation rules are mostly as

one would expect, except for the application rule which includes a self reference to the closure

being invoked, in order to allow recursive definitions.

Agda Formalisation. The machine model is defined in the Agda module MachineModel. We use

an intrinsically well-scoped syntax, which ensures that all variable look up operations are always

well defined.

5.2 Resource Monoids
As we mentioned above, resource potentials are attached to values to represent the amount of

intrinsic potential they have to fuel computation. Resource potentials are organised into resource

monoids. To be able to account for the combined potential attached to composite data and programs

(e.g., pairs, or functions applied to arguments) we will require monoid structure on potentials. The

action of turning potential difference into fuel for computation will be modelled by a difference

function. Finally, we require that our resource monoid contains sufficient elements to fuel constant

time operations. We gather these requirements into a formal definition as follows, which is a slight

reformulation of the resource monoids of Dal Lago and Hofmann [2011]:

Definition 5.1. A resource monoid 𝑀 consists of:
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Syntax

𝑖, 𝑗 ∈ N
𝐸 ∈ E ::= 𝜆𝐸 | ∗ | (𝑖, 𝑗) | true | false | 𝑖 | let𝐸1 in𝐸2 | 𝑖 · 𝑗 | letpair 𝑖 in𝐸 | if 𝑖 𝐸1 𝐸2
𝑉 ∈ V ::= clo⟨𝐸, 𝜂⟩ | ∗ | (𝑉1,𝑉2) | true | false
𝜂 ::= [] | 𝜂 :: 𝑉

Evaluation: Construction

𝜆𝐸, 𝜂 ⇓1 clo⟨𝐸, 𝜂⟩
MkClo

∗, 𝜂 ⇓1 ∗
MkUnit

𝜂 [𝑖] = 𝑉1 𝜂 [ 𝑗] = 𝑉2

(𝑖, 𝑗), 𝜂 ⇓1 (𝑉1,𝑉2)
MkPair

true, 𝜂 ⇓1 true
MkTrue

false, 𝜂 ⇓1 false
MkFalse

Evaluation: Variable access and Sequencing

𝜂 [𝑖] = 𝑣

𝑖, 𝜂 ⇓1 𝑣
Access

𝐸1, 𝜂 ⇓𝑘1 𝑉 𝐸2, (𝜂 :: 𝑉 ) ⇓𝑘2 𝑉 ′

let𝐸1 in𝐸2, 𝜂 ⇓𝑘1+1+𝑘2 𝑉 ′ Seq

Evaluation: Elimination
𝜂 [𝑖] = clo⟨𝐸, 𝜂′⟩ 𝜂 [ 𝑗] = 𝑉 𝐸, (𝜂′ :: clo⟨𝐸, 𝜂′⟩ :: 𝑉 ) ⇓𝑘 𝑉 ′

(𝑖 · 𝑗), 𝜂 ⇓1+𝑘 𝑉 ′ App

𝜂 [𝑖] = (𝑉1,𝑉2) 𝐸, (𝜂 :: 𝑉1 :: 𝑉2) ⇓𝑘 𝑉
letpair 𝑖 in𝐸, 𝜂 ⇓1+𝑘 𝑉

LetPair

𝜂 [𝑖] = true 𝐸1, 𝜂 ⇓𝑘 𝑉
if 𝑖 𝐸1 𝐸2, 𝜂 ⇓1+𝑘 𝑉

IfTrue

𝜂 [𝑖] = false 𝐸2, 𝜂 ⇓𝑘 𝑉
if 𝑖 𝐸1 𝐸2, 𝜂 ⇓1+𝑘 𝑉

IfFalse

Fig. 1. Language with CBV Big-step Costed Evaluation Semantics

(1) A carrier set |𝑀 |, whose elements represent amounts of potential. We use Greek letters 𝛼 , 𝛽 ,

𝛾 to denote elements of a resource monoid.

(2) Commutative monoid structure (⊕, ∅) on |𝑀 |, so we can add potentials.

(3) a difference function 𝑀 : |𝑀 | × |𝑀 | → N−∞, where N−∞ is the natural numbers extended

with a negative infinity −∞ and −∞ + 𝑘 = −∞. A difference 𝑀 (𝛼, 𝛽) = 𝑘 ∈ N means that

starting with potential 𝛼 and ending with potential 𝛽 yields 𝑘 units of fuel. A difference of

−∞ means that 𝛼 contains insufficient potential to reach 𝛽 . Differencing must satisfy:

(a) for all 𝛼 ,𝑀 (𝛼, 𝛼) = 0; and

(b) for all 𝛼, 𝛽,𝛾 ,𝑀 (𝛼, 𝛽) +𝑀 (𝛽,𝛾) ≤ 𝑀 (𝛼,𝛾).
The latter is a “reverse triangle inequality”: the fuel recoverable by moving between potential

levels 𝛼 and 𝛾 via 𝛽 may be less than the fuel recoverable moving from 𝛼 to 𝛾 directly.

(4) Differencing and the commutative monoid structure must satisfy:

(a) 𝑀 (𝛼, 𝛽) ≤ 𝑀 (𝛼 ⊕ 𝛾, 𝛽 ⊕ 𝛾); and
(b) 𝑀 (𝛼, ∅) = 0.

(5) An accounting function acct : N→ |𝑀 | such that for all 𝑘 , 𝑘 ≤ 𝑀 (acct (𝑘), ∅).
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For any resource monoid𝑀 , we can define an action of N on𝑀 as 𝑛 · 𝛼 = 𝛼 ⊕ · · · ⊕ 𝛼 , where the

right-hand side has 𝑛 summands.

Alternative definition. Every resource monoid induces a pre-ordering on its carrier set by 𝛼 ≤ 𝛽

iff 0 ≤ 𝑀 (𝛼, 𝛽). Taking this idea further, we can reformulate a resource monoid as a symmetric

monoidal category enriched in the symmetric monoidal category N−∞, where the monoid structure

is addition. The conditions in the definition above amount to the usual identity and composition

laws for enriched categories. With this reading, we can see the value 𝑀 (𝛼, 𝛽) when it is ≥ 0 as

the possibility of moving from 𝛼 to 𝛽 levels of potential resource with some amount of residual

resource emitted for computation; when it is −∞, moving from 𝛼 to 𝛽 is not possible.

Agda Formalisation. Resource monoids are defined in the module Algebra.ResourceMonoid.
We use a formulation closer to the enriched category theory definition for the actual formalisation,

because it avoids having to treat equality in the monoid structure separately from the induced

preorder on elements. Thinking of proofs involving the resource monoid as a process of finding a

composable sequence of morphisms in a category was a helpful intuition when constructing the

realisability model below.

5.2.1 Specific Resource Monoids. The simplest example of a resource monoid is given by the natural

numbers N, where each number stands directly an amount of stored fuel.

Definition 5.2 (Natural Number Resource Monoid). Monoid structure is given by normal addition.

Differencing is defined as

N(𝑚,𝑛) =
{
𝑚 − 𝑛 𝑚 ≥ 𝑛

−∞ otherwise

and acct (𝑘) = 𝑘 . Note that this is the simplest possible resource monoid due to the requirement

that the acct function must exist.

The differencing operator of the natural number resource monoid can only supply as much fuel

as is contained in the potential. For the two polynomial time systems, we need more sophisticated

structures, both originally presented by Dal Lago and Hofmann. The fundamental idea with both is

to represent potentials as pairs (𝑚, 𝑝), where𝑚 is a natural number and 𝑝 is a polynomial. The

𝑚 tracks the “size” of data as it pertains to the number of times an operation will be repeated by

iterating over it — for example, an iterable natural number will have size equal to itself, but a

non-iterable natural number may be assigned zero size. The polynomial 𝑝 tracks the complexity of

a program as a function of the size of the input. This leads to a differencing operator that evaluates

the polynomial with the size of the data:

Definition 5.3 (Polynomial Resource Monoids). The Max-Polynomial resource monoidMaxPoly

has carrier set consisting of pairs (𝑚, 𝑝) where𝑚 is natural number and 𝑝 is a polynomial with

natural number coefficients. Addition of elements is defined as (𝑚, 𝑝) ⊕ (𝑛, 𝑞) = (𝑚 ⊔ 𝑛, 𝑝 + 𝑞),
where ⊔ is the max operator, with ∅ = (0, 0). Difference is defined as:

MaxPoly((𝑚, 𝑝), (𝑛, 𝑞)) =
{
𝑝 (𝑚) − 𝑞(𝑚) 𝑚 ≥ 𝑛 and ∀𝑘 ≥ 𝑚.𝑝 (𝑘) ≥ 𝑞(𝑘)
−∞ otherwise

MaxPoly accounts for constant time with constant polynomials: acct (𝑘) = (0, 𝜆𝑥 .𝑘).
The Plus-Polynomial resource monoid PlusPoly is defined the same way as MaxPoly except

that the monoid addition adds the natural number components instead of taking their maximum:

(𝑚, 𝑝) ⊕ (𝑛, 𝑞) = (𝑚 + 𝑛, 𝑝 + 𝑞).
It is perhaps easier to see how the differencing operator works in the special case of the difference

MaxPoly((𝑚, 𝑝), (0, 0)) = 𝑝 (𝑚). I.e., if we have code that contains data of size𝑚 and a program
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with complexity 𝑝 , then running the combination with no expectation of remaining potential yields

𝑝 (𝑚) available steps. TheMaxPoly and PlusPoly resource monoids will be used for the Cons-free

and LFPL-style systems respectively, as we explain in Section 6 and show how these resource

monoids yield the required polytime bounds on programs.

Agda Formalisation. TheN resourcemonoid is defined in Algebra.ResourceMonoid.Nat and the
polynomial monoids are both defined in Algebra.ResourceMonoid.Polynomial. The definition
is parameterised by the “size monoid” operation (either ⊔ or +) used to compose sizes.

5.2.2 Resource sub-monoids. The separation between sizes of data and complexity of code in the

polynomial resource monoids motivates the use of resource sub-monoids to ensure that programs

themselves (as opposed to higher order code which may contain closed over data) do not contain

data that can be iterated. We do this by requiring that programs’ potential must come from a

specified resource sub-monoid:

Definition 5.4 (Resource Sub-Monoids). A resource sub-monoid 𝑀0 ⊆ 𝑀 of a resource monoid𝑀

consists of a subset |𝑀0 | ⊆ |𝑀 | that is closed under the monoid operations and acct.

For both MaxPoly and PlusPoly, the elements with zero size component, i.e., of the form (0, 𝑝),
form a resource sub-monoid that we will use for interpreting programs. We will call these sub-

monoids MaxPoly
0
and PlusPoly

0
.

5.3 Models ofQuantitative Type Theory from Indexed Preorders
Atkey [2018] described a general class of QTT models termed Quantitative Categories with Families

(QCwFs). Atkey [2018] constructs QCwFs from certain Linear Combinatory Algebras (LCAs), where

terms in the 𝜎 = 1 fragment are realised by elements of the LCA. However, there is a mistake in

that paper where the interpretation of contexts is stated to be the category of assemblies over the

LCA, where it ought to be the category of sets paired with realisability relations, with no guarantee

that all elements be realisable.

Here, we fix the mistake of Atkey [2018] and provide a more general construction of QCwFs in

terms of indexed linear preorders. We construct indexed linear preorders specific to our polytime

setting below. They could also be constructed from LCAs.

Definition 5.5. A N-linear preorder4 is a preordered set (𝐿, ≤):
(1) a commutative monoid (𝐼 ,− ⊗ −) that is monotone w.r.t. the order;

(2) is closed: there is an operation⊸: 𝐿 × 𝐿 → 𝐿 such that 𝑥 ⊗ 𝑦 ≤ 𝑧 iff 𝑥 ≤ 𝑦 ⊸ 𝑧; and

(3) has a function ! : N→ 𝐿 → 𝐿, to interpret resource requirement adjustments, satisfying:

(a) !0𝑋 ≃ 𝐼 , for discarding;

(b) !𝑚+𝑛𝑋 ≤ (!𝑚𝑋 ) ⊗ (!𝑛𝑋 ), for duplication;
(c) !𝑚!𝑛𝑋 ≤ !𝑚𝑛𝑋 for nesting;

(d) !1𝑋 ≤ 𝑋 for extraction / dereliction;

(e) (!𝑛𝑋 ) ⊗ (!𝑛𝑌 ) ≤ !𝑛 (𝑋 ⊗ 𝑌 ), for distribution; and
(f) 𝑛 ≤ 𝑚 implies !𝑛𝑋 ≤ !𝑚𝑋 , for usage weakening.

The collection of all linear preorders and functions that preserve the order and the operations forms

a category LinPreorder.

An indexed linear preorder 𝐿 : Set
op → LinPreorder is a contravariant function, where we write

𝑓 ∗ : 𝐿(𝐵) → 𝐿(𝐴) for the action of 𝐿 on functions 𝑓 : 𝐴 → 𝐵, such that such that reindexing along

projections has a right adjoint 𝐿Σ𝑎∈𝐴 .𝐵 (𝜋∗
1
𝑋,𝑌 ) � 𝐿𝐴 (𝑋,∀𝐵𝑌 ) that commutes with reindexing.

4
We specialise to the semiring N here, but the same definition works for any suitable semiring R.
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Given an indexed linear preorder 𝐿 : Set
op → LinPreorder, we construct a QCwF model of QTT

with the basic type formers from Section 3.1:

(1) Define a category L of interpretations of contexts with objects that are pairs (𝐴 ∈ Set, 𝑋 ∈
𝐿(𝐴)) and morphisms 𝑓 : (𝐴,𝑋 ) → (𝐵,𝑌 ) that are functions 𝑓 : 𝐴 → 𝐵 such that 𝑋 ≤ 𝑓 ∗𝑌
(this is the Grothendieck category of 𝐿). There is a faithful functor𝑈 : L → Set. The category

L will be used for interpreting contexts in the 𝜎 = 1 fragment of QTT.

(2) Define scaling of objects of L by 𝜋 (𝐴,𝑋 ) = (𝐴, !𝜋𝑋 ), and addition of (𝐴,𝑋 ) and (𝐴,𝑌 ) as
(𝐴,𝑋 ⊗ 𝑌 ).

(3) For each set 𝐴, define the collection of semantic types Ty(𝐴) as the collection of 𝐵 : 𝐴 → Set

and 𝑋 ∈ 𝐿(Σ𝑎∈𝐴 .𝐵(𝑎)). Thus a QTT type consists of an extensional meaning 𝐵 and its

realisability specification 𝑋 .

(4) For each 𝐴 and (𝐵,𝑋 ) ∈ Ty(𝐴), the 𝜎 = 0 fragment terms Tm(𝐴, (𝐵,𝑋 )) are functions

Π𝑎∈𝐴 . 𝐵(𝑎). For each context interpretation (𝐴,𝑋 ) in L and type interpretation (𝐵,𝑌 ) ∈
Ty(𝐴), the 𝜎 = 1 fragment terms RTm((𝐴,𝑋 ), (𝐵,𝑌 )) are functions 𝑓 : Π𝑎∈𝐴 . 𝐵(𝑎) such that

𝑋 ≤ 𝑓
∗
𝑌 , where 𝑓 : 𝐴 → Σ𝑎∈𝐴 . 𝐵(𝑎) is the section associated with 𝑓 .

(5) The empty context is interpreted as ({∗}, 𝐼 ) and context extension (𝐴,𝑋 ).𝑛(𝐵,𝑌 ) (i.e., com-

prehension) by (Σ𝑎∈𝐴 .𝐵(𝑎), 𝜋∗
1
𝑋 ⊗ !𝑛𝑌 ).

(6) Given (𝐴,𝑋 ) ∈ Ty(𝐶) and (𝐵,𝑌 ) ∈ Ty(Σ𝑐∈𝐶 .𝐴(𝑐)), Σ-types are interpreted similarly to

context extension and Π-types are interpreted as (𝜆𝑐. (Π𝑎∈𝐴(𝑐 ) . 𝐵(𝑐, 𝑎)),∀𝐴 (𝑋 ⊸ (ev 𝑓 )∗𝑌 )),
where ev 𝑓 : (Σ𝑐∈𝐶 .𝐴(𝑐)) → (Σ𝑐∈𝐶 .Σ𝑎∈𝐴(𝑐 ) .𝐵(𝑐, 𝑎)) is defined using application of 𝑓 .

(7) Universe and Equality types are interpreted as normal in Set with the realisability component

set to 𝐼 in both cases. Note that the universe of small types includes resource-relevant

realisability information for each type.

(8) Realisability reflection for a type (𝐵,𝑋 ) ∈ Ty(𝐴) is interpreted as the type (𝜆𝑎.{𝑏 ∈ 𝐵(𝑎) | 𝐼 ≤
(𝜆𝑎.(𝑎, 𝑏))∗𝑋 }, 𝐼 ). Thus the set-component of the type is restricted to the elements that are

realisable, while the actual realisability component is the “empty” 𝐼 realisability specification.

Agda Formalisation. The indexed linear preorders are defined in theAgdamodule IndexedLinear.
We have not yet completed a formalisation of the construction of a full model of QTT from an

indexed linear preorder so this part is currently unmechanised.

5.4 Amortised Complexity Realisability Model
Equipped with our underlying costed model of computation (Section 5.1) and a compositional

notion of resource potential (Section 5.2), we can construct models of QTT that witness the resource

and type soundness of our complexity constrained systems. We fix a resource monoid 𝑀 with

sub-monoid𝑀0 and proceed to build an indexed linear preorder of resource accounted realisers.

5.4.1 Indexed Linear Preorder. We now define an indexed linear poset 𝐿 of realisers over Set that

ties together our “mathematical” model of types in Set with our machine model and resource

monoid. This construction is a reformulation of Dal Lago and Hofmann [2011]’s realisability models

to make it suitable for dependent types. For a set𝐴, the carrier of 𝐿(𝐴) is the set of ternary relations
𝑋 ⊆ 𝐴 ×𝑀 ×V and we define the ordering 𝑋 ≤ 𝑌 to hold iff there exists a realising expression

𝐸 ∈ E and potential 𝛾 ∈ 𝑀0 such that for all 𝑎 ∈ 𝐴, 𝛼 ∈ 𝑀 and 𝑣 ∈ V with (𝑎, 𝛼, 𝑣) ∈ 𝑋 , we have

that there exists a result 𝑣 ′ ∈ V , step count 𝑘 ∈ N and result potential 𝛽 ∈ 𝑀 with:

(1) 𝐸, 𝑣 ⇓𝑘 𝑣 ′ (evaluation successfully completes in 𝑘 steps);

(2) (𝑎, 𝛽, 𝑣 ′) ∈ 𝑌 (the result is well-resourced and satisfies 𝑌 ); and

(3) 𝑘 ≤ 𝑀 (𝛼 ⊕ 𝛾, 𝛽) (the step count is within the difference between the initial potential and the

result potential).
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Note that the definition of realisablity is uniform in the element 𝑎 – the realising expression 𝐸

and the potential 𝛾 must work for all 𝑎 – thus the implementation and complexity measure of the

transition being modelled cannot depend on what the input is. Put in implementation terms, the

input 𝑎 is not present at runtime. Moreover note that the potential 𝛾 attached to the expression 𝐸

must come from the sub-monoid𝑀0, indicating that is intended to be data-free, while the potential

𝛼 for the input is from the full monoid𝑀 , so it can contain data and functions.

For 𝑋,𝑌 ∈ 𝐿(𝐴), the required elements for symmetric monoidal closed structure are defined as

follows. For the tensor product 𝑋 ⊗ 𝑌 ∈ 𝐿(𝐴), the realising value must be a pair (𝑣1, 𝑣2) and the

potential of the pair must split into suitable potentials 𝛼1, 𝛼2 for the components. For the residual

𝑋 ⊸ 𝑌 , the realising value must be a closure with potential to, when added to the potential of an

input, compute the output with enough remaining. Note that the potential attached to a closure (𝛼 ,

here) need not be from the sub-monoid 𝑀0. Unlike top-level term interpretations, closures may

contain data.

𝑋 ⊗ 𝑌 = {(𝑎, 𝛼, (𝑣1, 𝑣2)) | ∃𝛼1, 𝛼2. 0 ≤ 𝑀 (𝛼, 𝛼1 ⊕ 𝛼2) ∧ 𝑋 (𝑎, 𝛼1, 𝑣1) ∧ 𝑌 (𝑎, 𝛼2, 𝑣2)}
𝑋 ⊸ 𝑌 = {(𝑎, 𝛼, clo⟨𝐸, 𝜂⟩) | ∀𝛼 ′ ∈ 𝑀, 𝑣,𝑤 ∈ V . 𝑋 (𝑎, 𝛼 ′, 𝑣) ⇒

∃𝑣 ′, 𝑘, 𝛽. 𝐸, (𝜂 :: 𝑤 :: 𝑣) ⇓𝑘 𝑣 ′ ∧ 𝑌 (𝑎, 𝛽, 𝑣 ′) ∧ 𝑘 ≤ 𝑀 (𝛼 ⊕ 𝛼 ′, 𝛽)}
The seemingly useless 𝑤 ∈ V in the formula for 𝑋 ⊸ 𝑌 is a dummy argument standing for the

self-referential reference to the closure used for defining recursive programs.

Each 𝐿(𝐴) has a terminal (i.e. top) element, which is also the unit for ⊗, defined as 𝐼𝐴 = {(𝑎, 𝛼, ∗) |
𝑎 ∈ 𝐴, 𝛼 ∈ 𝑀}. The potential 𝛼 here is unrestricted, so 𝐼𝐴 can consume an arbitrary resource.

N-Graded exponentials in each 𝐿(𝐴) are defined using the action of (N, ≤) on𝑀 defined above.

When 𝑛 > 0, the modality !𝑛 has no effect on realising values. It only serves to alter the resource

potentials. In the 𝑛 = 0, case the realising value must be ∗, in order to satisfy the !0𝑋 � 𝐼 condition

in Definition 5.5 3(a):

!0𝑋 = {(𝑎, 𝛼, ∗) | 𝑎 ∈ 𝐴, 𝛼 ∈ 𝑀}
!𝑛 𝑋 = {(𝑎, 𝛼, 𝑣) | ∃𝛼 ′ . 𝑀 (𝑛 · 𝛼 ′, 𝛼) = 0 ∧ (𝑎, 𝛼 ′, 𝑣) ∈ 𝑋 }

𝐿 also has arbitrary Set-indexed products, realised “lazily” as functions that take dummy argu-

ments. For 𝐴 ∈ Set and 𝐵 ∈ 𝐴 → Set and 𝑋 ∈ 𝐿(Σ𝐴. 𝐵), we define ∀𝐵𝑋 ∈ 𝐿(𝐴) similarly to ⊸
above, but with different resource and indexing requirements:

∀𝐵𝑋 = {(𝑎, 𝛼, clo⟨𝐸, 𝜂⟩) | ∀𝑏, 𝑣 . ∃𝑣 ′, 𝛽, 𝑘 .𝐸, (𝜂 :: 𝑣 :: ∗) ⇓𝑘 𝑣 ′ ∧ 𝑋 ((𝑎, 𝑏), 𝛽, 𝑣 ′) ∧ 𝑘 ≤ 𝑀 (𝛼, 𝛽)}
Note, as with the definition of 𝑋 ≤ 𝑌 above, the realiser closure clo⟨𝐸, 𝜂⟩ must be chosen uniformly

for all 𝑏. This definition also appears to allow arbitrary computation (paid for by 𝛼) to happen when

the realising closure is applied, but the potential 𝛼 will only ever be greater than 𝛽 by enough to

handle the administrative costs of applying the function.

To complete the construction of 𝐿 as an indexed linear preorder, we need to give realisers for

each of the required inequalities in Definition 5.5. In each case, this is a matter of programming

in the language of Section 5.1. For example, transitivity of the order is realised by sequencing of

expressions. The potentials are calculated by counting the steps in the ensuing programs.

Proposition 5.6. 𝐿, with 𝐼 , ⊗,⊸, !𝑛 , and ∀𝐵 defined above, is an indexed linear preorder.

Agda Formalisation. The construction of this indexed linear preorder and the proof of Proposition

5.6 are formalised in the Adga module AmortisedRealisabilityModel.

5.4.2 Non-iterable Data Types. The model of QTT constructed in Proposition 5.6 does not yet

include any useful base types. Iterable types, which are the ones that induce non-constant time

complexities, require specific properties of resource monoids that we introduce in Section 6.
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Before that, we show how to define realisers for the representative examples of non-iterable

types from Section 2.2 and Section 3.2. Booleans are the simplest case, with only two cases and no

chance of iteration. Lists are more complex: we can have non-iterable lists containing iterable data.

Booleans. Fix B = {tt, ff } as our set of boolean elements. We define an element of 𝐿(B) to
represent boolean values:

Bool = {(tt, 𝛼, true) | 𝛼 ∈ 𝑀} ∪ {(ff , 𝛼, false) | 𝛼 ∈ 𝑀}

Thus, the boolean tt is represented by the value true and ff is represented by false. In both cases,

we allow arbitrary potential 𝛼 to be attached.

Realisability of the construction and elimination of booleans amounts to the existence of the

following inequalities. In any preorder 𝐿(𝐴), we have 𝐼𝐴 ≤ tt
∗
Bool and 𝐼𝐴 ≤ ff

∗
Bool (treating

tt and ff as constant functions 𝐴 → B). These inequalities are realised by the corresponding

true/false expression. For conditionals, the types involved are a little more complex to ensure

agreement between boolean manipulations at the Set-level and the realising computations. To get

a realiser for a conditional, we require a set 𝐴, an element 𝑋 ∈ 𝐿(𝐴) (standing for the context) and

an element 𝑌 ∈ 𝐿(𝐴 × B) (standing for the target type) and the existence in 𝐿(𝐴) of inequalities
𝑋 ≤ (𝜆𝑎.(𝑎,tt))∗𝑌 , for the true case, and 𝑋 ≤ (𝜆𝑎.(𝑎, ff ))∗𝑌 , for the false case. When we have all

these, we get in 𝐿(𝐴 × B) an inequality 𝜋∗
1
𝑋 ⊗ 𝜋∗

2
Bool ≤ 𝑌 . This construction suffices to realise the

rules for QTT booleans in Section 3.2.

Lists. Lists are a little more involved, due to the need to explicitly manage a context that applies

to all elements of the list. Let List(𝐵) be the set of lists with elements from a set 𝐵. If we have

𝐴 : Set and 𝐵 : 𝐴 → Set and𝑋 ∈ 𝐿(Σ𝑎 : 𝐴. 𝐵𝑎), then the resourced lists predicate RList(𝑋 ) ∈ 𝐿(Σ𝑎 :

𝐴. List(𝐵𝑎)) must satisfy the equation:

RList(𝑋 ) = {((𝑎, []), 𝛼, (false, ∗)) | 𝛼 ∈ 𝑀}
∪
{((𝑎, 𝑏 :: 𝑏𝑠), 𝛼, (true, (𝑣1, 𝑣2))) |

∃𝛼1, 𝛼2.0 ≤ 𝑀 (𝛼, 𝛼1 ⊕ 𝛼2) ∧ ((𝑎, 𝑏), 𝛼1, 𝑣1) ∈ 𝑋 ∧ ((𝑎, 𝑏𝑠), 𝛼2, 𝑣2) ∈ RList(𝑋 )}

This equation has a least solution, by induction on the length of the list being realised. This definition

is somewhat involved, but in essence states that a list is represented by tagged pairs, where false
represents nil and true represents cons, and that the potential is distributed amongst the elements

of the list as needed.

Agda Formalisation. The construction of realisers for booleans and lists are carried out in the

Agda modules AmortisedModel.Bool and AmortisedModel.List.

6 REALISING ITERATION FOR IMPLICIT POLYNOMIAL TIME
The models constructed in the previous section only allow for constant-time programs to be realised.

To interpret the iterators of the Cons-free and LFPL-style systems, we need to use theMaxPoly and

PlusPoly resource monoids. We do this in this section, where first we establish some operations that

will be useful to see how they capture the nesting of iterations inherent to polytime computation.

6.1 Iteration Resource Monoids
To interpret iteration over a resource monoid (𝑀,𝑀0), we require additional structure, which we

call an Iteration Resource Monoid to account for measurement of the sizes of iterable data structures

and the effects of iteration on potentials.
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6.1.1 Definition. We require:

(1) a function size : N→ 𝑀 that gives the potential of an iterable data structure of a given size;

(2) a function raise : 𝑀 → 𝑀 that raises the (polynomial) degree of some potential; and

(3) a function scale : N ×𝑀 → 𝑀 that scales a potential for a fixed number of iterations.

These functions must satisfy the following properties:

(1) 𝑀0 is closed under the raise operation;

(2) for all 𝛼 and 𝑛, 0 ≤ 𝑀 (raise(𝛼) ⊕ size(𝑛), scale(𝑛, 𝛼) ⊕ size(𝑛)); and
(3) for all 𝛼 ∈ 𝑀0 and 𝑛, 0 ≤ 𝑀 (scale(1 + 𝑛, 𝛼), 𝛼 ⊕ scale(𝑛, 𝛼)).

The first property states that raise is suitable as potential for whole programs, meaning that it does

not make any requirements on the existence of iterable data. Note that we do not require 𝑀0 to

contain size(𝑛) – programs themselves may not contain iterable data, all potential for iteration

must be delivered externally. A useful intuition is that scale(𝑛, 𝛼) represents the potential required
for at most 𝑛 iterations that require potential 𝛼 , whereas raise(𝛼) represents the potential required
for a number of iterations that depends on the context. This is the motivation behind the second

required property, which states that having raise(𝛼) potential implies having scale(𝑛, 𝛼) potential
when the current size is 𝑛. The third property states that scale decomposes as expected on potentials

that do not include any size potential.

Note that scale(𝑛, 𝛼) is not the same as the action 𝑛 ·𝛼 defined in Section 5.2. The latter operation

scales both size and function potential, but the former only scales the function potential.

6.1.2 Polynomial Iteration Resource Monoids. Both of the polymonial resource monoids defined in

Definition 5.3 support the structure of an Iteration Resource Monoid. We define:

(1) size(𝑛) = (𝑛, 0)
(2) raise(𝑛, 𝑝) = (𝑛, 𝑥𝑝)
(3) scale(𝑚, (𝑛, 𝑝)) = (𝑛,𝑚 · 𝑝)

Note that raise does indeed raise the degree of the polynomial involved. Property 2 above is satisfied

because for any polynomial we have (𝑚 · 𝑝) (𝑥) ≤ (𝑥𝑝) (𝑥) whenever𝑚 ≤ 𝑥 .

6.1.3 Realising Iterable Natural Numbers. For any natural number 𝑛, we define its representation

as a value natValue(𝑛) ∈ V by recursion:

natValue(0) = (true, ∗) natValue(1 + 𝑛) = (false, natValue(𝑛))
This representation uses a tagged pair approach similar to our representation of lists in Section 5.4.2.

Using this, we can define what it means for a natural number to be realisable via Nat ∈ 𝐿(N):
Nat = {(𝑛, 𝛼, natValue(𝑛)) | 𝑛 ∈ N, 0 ≤ 𝑀 (𝛼, size(𝑛 + 1))}

So a natural number 𝑛 is realised by the value natValue(𝑛) as long as we have at least size(𝑛 + 1)
potential (we add one to make the LFPL soundness proof easier). This gives us the ability to represent

natural numbers as a type in QTT, but in order to iterate (and construct in the case of LFPL), we

need to construct specific realisers for the Cons-free and LFPL systems.

6.2 The Cons-Free System
The Cons-free system uses theMaxPoly resource monoid, with the distinguished sub-monoid being

those elements that are 0 in the size component. We enumerate the features of the Cons-free system

and justify their realisability with the MaxPoly resource monoid:

(1) Duplication of natural numbers by dupNat(𝑀) is realisable by the expression (0, 0), which
creates a pair by copying the input variable twice. By the cost semantics in Section 5.1, this

takes 1 step of computation (we assume that it is actually implemented via some pointer copy).
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The resource accounting for this realiser works because the size component required for the

output is the maximum of the size components of the two elements, and since 𝑛 ⊔ 𝑛 = 𝑛, we

have enough resources to fulfil this.

(2) Construction of natural numbers is not realisable. In a putative succ rule, we would need to

get an additional unit of size resource from nowhere.

(3) Iteration is realised by constructing a realising expression in the expression language from

the given expressions for the zero and successor cases that uses the in-built recursion of the

language. The proof that resources are correctly accounted for is carried out by induction

on the natural being iterated over. For 𝑛, we require potential scale(𝑛, acct (4) ⊕ 𝛾succ) ⊕
(acct (2) ⊕ 𝛾zero), where 𝛾succ and 𝛾zero are the potentials required by the successor and zero

cases respectively. By Property (2) of iteration resource monoids, above, we know that

raise(acct (4) ⊕𝛾succ) ⊕ (acct (2) ⊕𝛾zero) always dominates this requirement when paired with

the potential size(𝑛) from the input. Therefore, this latter expression, plus some administrative

set up costs, is the required potential for the whole iterator.

Together, we have a soundness result for the Cons-free system, that ensures that every term in the

𝜎 = 1 fragment is realisable by a correct program that terminates in polynomial time for all inputs:

Theorem 6.1 (Soundness for the Cons-free System). If we have a term 𝑛
1

: Nat ⊢ 𝑀
1

: 𝑇 (𝑛)
then there exists a realising expression 𝐸 and polynomial 𝑝 such that for all 𝑛 ∈ N, there exists 𝑣 ∈ V
and 𝑘 ∈ N such that 𝐸, [natValue(𝑛)] ⇓𝑘 𝑣 , 𝑘 ≤ 𝑝 (𝑛) and 𝑣 is a realising value for ⟦𝑀⟧(𝑛) ∈ ⟦𝑇⟧(𝑛).

Agda Formalisation. The realisability of the Cons-free system iterator and the soundness property

of the whole system are formalised in the Agda modules ConsFree and ConsFree.Iterator. The
soundness theorem is a combination of this and the QTT model sketched in Section 5.3.

6.3 The LFPL System
The LFPL system uses the PlusPoly resource monoid, with the distinguished sub-monoid again

being those elements that are 0 in the size component. With this resource monoid, the capabilities

offered at the QTT level are altered:

(1) We can no longer duplicate natural numbers, because Nat ⊗ Nat requires twice as much size

resource as Nat, due to the combining operation on size potentials being addition.

(2) We define the realisability specification for diamonds ^ ∈ 𝐿(1) to be ^ = {(∗, 𝛼, ∗) | 0 ≤
𝑀 (𝛼, size(1))}. Thus, a diamond represents at least one unit of size resource, matching the

intuitive explanation given in Section 2.4.

(3) With this definition of realisability for^s, it is possible to realise the zero and succ constructors
for natural numbers. By the additive combination of size resources we get 1 from the diamond

and 𝑛 + 1 from the predecessor to total 𝑛 + 2 for a new number. Note that, even if we add a ^
type to the Cons-free system, it would still not be possible to realise the constructors, because

we would only have 1 ⊔ (𝑛 + 1) = 𝑛 + 1 size resource for the output.

(4) The construction of the recursor follows a very similar proof to the realisability of Cons-free

iterator, up to some additional work to make sure that the dummy ∗ values representing
the diamond components end up in the right places. This additional work is revealed in the

required potential for the LFPL iterator being raise(acct (8) ⊕ 𝛾succ) ⊕ (acct (2) ⊕ 𝛾zero), so
slightly higher in the successor case.

Soundness for the LFPL system is similar to the Cons-free system, except for a +1 to the input to

the polynomial, to account for the fact that we cost one size unit for the zero constructor.

Theorem 6.2 (Soundness for the LFPL-style System). If we have a term 𝑛
1

: Nat ⊢ 𝑀 1

: 𝑇 (𝑛)
then there exists a realising expression 𝐸 and polynomial 𝑝 such that for all 𝑛 ∈ N, there exists
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𝑣 ∈ V and 𝑘 ∈ N such that 𝐸, [natValue(𝑛)] ⇓𝑘 𝑣 , 𝑘 ≤ 𝑝 (𝑛 + 1) and 𝑣 is a realising value for

⟦𝑀⟧(𝑛) ∈ ⟦𝑇⟧(𝑛).

The proofs of well-accounted realisability for the LFPL iterator, and the Cons-free iterator, could

be adapted to any other inductively defined type that is finitely branching. This is not immediately

necessary, as evidenced by the construction of other datatypes in Section 4.1. Nevertheless, native

tree type where the iterability is proportional to the total number of nodes would be useful.

Agda Formalisation. The realisability of the LFPL system iterator and the soundness property of

the whole system are formalised in the Agda modules LFPL and LFPL.Iterator.

7 RELATED AND FUTUREWORK
We have presented two extensions of Quantitative Type Theory that soundly and completely

capture polynomial time. This allows for an expressive combination of verification and complexity

constrained computation, including characterisations of the classes P, NP, and BPP. We now discuss

related work, and take a look at where the combination of polytime and dependency could take us.

7.1 Related Work
Implicit Computational Complexity with Linear Types. Implicit Computational Complexity [Dal

Lago 2011] is a vast field, so we only survey closely related works. We have already mentioned

the Bounded Linear Logic [Girard et al. 1992], Soft Affine Logic [Lafont 2004], Light Linear Logic

[Girard 1998] and LFPL [Hofmann 1999] systems, which all use linear typing to implicitly capture

polynomial time. Jones [2001] characterises polynomial time using first-order functional programs

without constructors. Thus it shares a method with our Cons-free system, but we use linear typing

to permit controlled use of higher-order functions. Other approaches to polynomial time use

stratification or information flow tracking to ensure that the outputs of iteration may not be used

unrestrictedly to drive further iteration. For example, [Bellantoni and Cook 1992] and [Hainry and

Péchoux 2023]. Below polynomial time, systems have be devised to capture LOGSPACE [Dal Lago

and Schöpp 2016]. Above polynomial time, systems such as Elementary Affine Logic (EAL) capture

all Elementary-time functions [Coppola and Martini 2001].

We have used Dal Lago and Hofmann [2011]’s technique to prove soundness of our extension

of QTT. This technique has been successfully applied to many other linear typing based systems,

such as BLL [Dal Lago and Hofmann 2010a; Hofmann and Scott 2004] and LLL [Dal Lago and

Hofmann 2010b] and EAL. In contrast to most of those systems, we do not use restricted !-modalities

and second order encodings to express datatypes. Our explicit datatype approaches enabled our

combination of dependent types and polynomial time.

Explicit Resource Accounting with Dependent Types. In contrast to the implicit systems, previous

works have constructed systems that give explicit resource bounds via typing. Examples include

Hoffmann et al. [2017]’s Resource Allocated ML (RAML) and Rajani et al. [2021], both of which

are based on ideas of type-based amortised complexity analysis arising from Hofmann [1999]’s

ideas, via the work of Hofmann and Jost [2003]. More details are to be found in the survey paper of

Hoffmann and Jost [2022]. Another approach is to track costs at the value level instead of the types.

Danielsson [2008] describes a system that uses a “tick” effect to count steps of computation, which

can be reasoned about via dependent types. Niu et al. [2022] take this idea further by employing a

modality-based phase separation to ensure that tick counting never interferes with the functional

business of programs. McCarthy et al. [2016] is another tick effect based system in Coq. All of

these tick-counting techniques rely on the programmer correctly annotating the program with tick

effects to count the resource usage they are interested in, in contrast our intrinsic approach.
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Linear and Substructural Dependent Types. We chose QTT as the particular combination of linear

and dependent types for our systems. Other systems include systems such as those by Cervesato

and Pfenning [2002], Krishnaswami et al. [2015], and Vákár [2014] which all use a strict separation

between linear and non-linear variables. This strict separation would mean that we could not as

easily move programs from the linear fragment into the types, as in Section 4. Systems that are

more like QTT in that they do not have a strict separation of variables include those of Moon

et al. [2021], Choudhury et al. [2021], and Abel et al. [2023]. These systems differ from QTT in

that they do not include a complete copy of unrestricted type theory as QTT does in its 𝜎 = 0

fragment, because they all track usage in types as well as terms, so it is not clear how to use them

for unrestricted reasoning as we do with QTT. Fu et al. [2022] present a system that is closer to

QTT but does not include a universe type, which we used in Section 4.3 to be able to characterise

complexity classes as predicates decidable in restricted complexity.

7.2 Future Work
Implementation. We currently lack an implementation of our extension of QTT, which hampers

further investigation of programming and proving with polytime along the lines of Section 4.

Idris 2 [Brady 2021] is an implementation of QTT, but cannot be used directly because its facility

for defining datatypes is too liberal, not making a distinction between iterable and non-iterable

datatypes. A further implementation-focused question is whether or not the term-level polytime

guarantees can be turned to type-level guarantees to guarantee polytime typechecking.

Other Complexity Classes. We have been able to characterise the classes NP and BPP in terms of

our underlying characterisation of P (Section 4.3). It seems straighforward to extend this to related

classes like coNP, RP, etc. It also seems feasible to adapt the techniques presented here to other

complexity classes such as LOGSPACE and ELEMENTARY, given the simply typed linear systems

mentioned above. Complexity classes based on circuits may be more challenging, but we do now

have a way to characterise circuits that are generatable in polynomial time.

Explicit Resource Tracking. Our construction already includes soundness of a systemwith intrinsic

but explicit resource tracking where ^s are used to pay for every step of computation but never

returned, via the natural number resource monoid defined in Section 5.2.1. Investigation of such a

system may yield a system that tracks the intrinsic cost of programs precisely and explicitly.

Towards a Synthetic Computational Complexity Theory? The realisability type R(𝐴) described
in Section 3.5 allows us to internalise the realisability of certain functions into the logical (𝜎 = 0)

fragment of the calculus. However, it is not possible to derive any logical consequences from this

other than turning it back into a function. This limitation becomes acute when trying to prove

results from standard Computational Complexity theory. Even though we can characterise the

class NP, as we did in Section 4.3.1, and it is a “matter of programming” to show that 3-SAT is in

NP, we cannot prove the Cook-Levin theorem that 3-SAT is NP-complete. This is because the proof

relies on obtaining the source code of the program solving an NP problem and then encoding that

program in 3-SAT. To do this in our setting, we would need to internalise the soundness property

(Theorem 6.2) as an axiom, stating that for a realisable polytime function there (merely) exists a

realising expression 𝐸 that completes in polynomial time, and then writing polytime encodings

into 3-SAT. We hope that the addition of such an axiom to our system would lead to an expressive

machine-free Synthetic Computational Complexity Theory, analogous to the Church-Turing axiom

for Synthetic Computability Theory as described by Bauer [2005].
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A TYPING RULES FOR QTT/CONS-FREE AND QTT/LFPL
The judgements of Quantitative Type Theory are as follows:

Γ ctxt contexts

Γ ⊢ 𝑆 type types

Γ ⊢ 𝑆 ≡ 𝑇 type equal types

Γ ⊢ 𝑀 𝜎
: 𝑆 terms

Γ ⊢ 𝑀 ≡ 𝑁
𝜎
: 𝑆 equal terms

In the term and term equality judgements, the usage 𝜎 is either 0 or 1. We use 𝜌 and 𝜋 to range

over arbitrary usages from the semiring 𝑅.

A.1 Context formation

⋄ ctxt
Emp

Γ ctxt 0Γ ⊢ 𝑆

Γ, 𝑥
𝜌
: 𝑆 ctxt

Ext

A.2 Type Equality

0Γ ⊢ 𝑆
0Γ ⊢ 𝑆 ≡ 𝑆

Ty-Eq-Refl

0Γ ⊢ 𝑆 ≡ 𝑇

0Γ ⊢ 𝑇 ≡ 𝑆
Ty-Eq-Symm

0Γ ⊢ 𝑆 ≡ 𝑇 0Γ ⊢ 𝑇 ≡ 𝑈

0Γ ⊢ 𝑆 ≡ 𝑈
Ty-Eq-Tran

as well as congruence rules for each type formation rule (elided), and the universe eliminator.
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A.3 Term Equality

Γ ⊢ 𝑀 𝜎
: 𝑆

Γ ⊢ 𝑀 ≡ 𝑀
𝜎
: 𝑆

Tm-Eq-Refl

Γ ⊢ 𝑀 ≡ 𝑁
𝜎
: 𝑆

Γ ⊢ 𝑁 ≡ 𝑀
𝜎
: 𝑆

Tm-Eq-Symm

Γ ⊢ 𝑀 ≡ 𝑁
𝜎
: 𝑆 Γ ⊢ 𝑁 ≡ 𝑂

𝜎
: 𝑆

Γ ⊢ 𝑀 ≡ 𝑂
𝜎
: 𝑆

Tm-Eq-Tran

as well as congruence rules for each term formation rule (elided), and the specific 𝛽𝜂-equalities for

each type listed below.

A.4 Variables, conversion, sub-usaging

0Γ, 𝑥
𝜎
: 𝑆, 0Γ′ ctxt

0Γ, 𝑥
𝜎
: 𝑆, 0Γ′ ⊢ 𝑥 𝜎

: 𝑆
Var

Γ ⊢ 𝑀 𝜎
: 𝑆 0Γ ⊢ 𝑆 ≡ 𝑇 type

Γ ⊢ 𝑀 𝜎
: 𝑇

Conv

Γ ⊢ 𝑀 𝜎
: 𝑆 Γ′ ⊑ Γ

Γ′ ⊢ 𝑀 𝜎
: 𝑆

Sub

A.5 Π-types
Type formation:

0Γ ⊢ 𝑆 0Γ, 𝑥
0

: 𝑆 ⊢ 𝑇

0Γ ⊢ (𝑥 𝜋
: 𝑆) → 𝑇

Ty-Pi

Introduction and elimination:

Γ, 𝑥
𝜎𝜋
: 𝑆 ⊢ 𝑀 𝜎

: 𝑇

Γ ⊢ 𝜆𝑥.𝑀 𝜎
: (𝑥 𝜋

: 𝑆) → 𝑇
Tm-Lam

Γ1 ⊢ 𝑀
𝜎
: (𝑥 𝜋

: 𝑆) → 𝑇 Γ2 ⊢ 𝑁
𝜎 ′
: 𝑆 0Γ1 = 0Γ2 𝜎 ′ = 0 ⇔ (𝜋 = 0 ∨ 𝜎 = 0)

Γ1 + 𝜋Γ2 ⊢ 𝑀 𝑁
𝜎
: 𝑇 [𝑁 /𝑥]

Tm-App

𝛽𝜂-equalities (as well as congruences):

Γ1, 𝑥
𝜎𝜋
: 𝑆 ⊢ 𝑀 𝜎

: 𝑇 Γ2 ⊢ 𝑁
𝜎 ′
: 𝑆 (𝜎 ′ = 0 ⇔ 𝜋 = 0 ∨ 𝜎 = 0)

Γ1 + 𝜋Γ2 ⊢ (𝜆𝑥.𝑀) 𝑁 ≡ 𝑀 [𝑁 /𝑥] 𝜎
: 𝑇 [𝑁 /𝑥]

Tm-Eq-Pi𝛽

Γ ⊢ 𝑀 𝜎
: (𝑥 𝜋

: 𝑆) → 𝑇

Γ ⊢ 𝜆𝑥 .𝑀 𝑥 ≡ 𝑀
𝜎
: (𝑥 𝜋

: 𝑆) → 𝑇
Tm-Eq-Pi𝜂

A.6 Σ-types
Type formation:

0Γ ⊢ 𝑆 type 0Γ, 𝑥
0

: 𝑆 ⊢ 𝑇 type

0Γ ⊢ (𝑥 𝜋
: 𝑆) ⊗ 𝑇 type

Ty-Tensor

0Γ ctxt

0Γ ⊢ 𝐼 type
Ty-Unit
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Introduction:

Γ1 ⊢ 𝑀
𝜎 ′
: 𝑆 Γ2 ⊢ 𝑁

𝜎
: 𝑇 [𝑀/𝑥] 0Γ1 = 0Γ2 𝜎 ′ = 0 ⇔ (𝜋 = 0 ∨ 𝜎 = 0)

𝜋Γ1 + Γ2 ⊢ (𝑀, 𝑁 ) 𝜎
: (𝑥 𝜋

: 𝑆) ⊗ 𝑇
Tm-Pair

0Γ ctxt

0Γ ⊢ ∗ 𝜎
: 𝐼

Tm-Unit

𝜎 = 0 fragment eliminators:

Γ ⊢ 𝑀 0

: (𝑥 𝜋
: 𝑆) ⊗ 𝑇

Γ ⊢ fst(𝑀) 0

: 𝑆

Tm-Fst

Γ ⊢ 𝑀 0

: (𝑥 𝜋
: 𝑆) ⊗ 𝑇

Γ ⊢ snd(𝑀) 0

: 𝑇 [fst(𝑀)/𝑥]
Tm-Snd

Linear eliminators:

0Γ, 𝑧
0

: (𝑥 𝜋
: 𝐴) ⊗ 𝐵 ⊢ 𝐶 type

Γ1 ⊢ 𝑀
𝜎
: (𝑥 𝜋

: 𝐴) ⊗ 𝐵 Γ2, 𝑥
𝜎𝜋
: 𝐴,𝑦

𝜎
: 𝐵 ⊢ 𝑁 𝜎

: 𝐶 [(𝑥,𝑦)/𝑧] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ let (𝑥,𝑦) = 𝑀 in 𝑁
𝜎
: 𝐶 [𝑀/𝑧]

Tm-Let-Pair

0Γ1, 𝑥
0

: 𝐼 ⊢ 𝐶 type Γ1 ⊢ 𝑀
𝜎
: 𝐼 Γ2 ⊢ 𝑁

𝜎
: 𝐶 [∗/𝑥] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ let ∗ = 𝑀 in 𝑁
𝜎
: 𝐶 [𝑀/𝑥]

Tm-Let-Unit

𝛽-equality for both fragments:

0Γ, 𝑧
0

: (𝑥 𝜋
: 𝐴) ⊗ 𝐵 ⊢ 𝐶 type Γ1 ⊢ 𝑀1

𝜎 ′
: 𝐴 Γ2 ⊢ 𝑀2

𝜎
: 𝐵 [𝑀/𝑥]

𝜎 ′ = 0 ⇔ (𝜋 = 0 ∨ 𝜎 = 0) Γ3, 𝑥
𝜎𝜋
: 𝐴,𝑦

𝜎
: 𝐵 ⊢ 𝑁 𝜎

: 𝐶 [(𝑥,𝑦)/𝑧] 0Γ1 = 0Γ2 = 0Γ3

𝜋Γ1 + Γ2 + Γ3 ⊢ let (𝑥,𝑦) = (𝑀1, 𝑀2) in 𝑁 ≡ 𝑁 [𝑀1/𝑥,𝑀2/𝑦]
𝜎
: 𝐶 [(𝑀1, 𝑀2)/𝑧]

0Γ, 𝑥
0

: 𝐼 ⊢ 𝐶 type Γ ⊢ 𝑁 𝜎
: 𝐶 [∗/𝑥]

Γ ⊢ let ∗ = ∗ in 𝑁 ≡ 𝑁 [∗/𝑥] 𝜎
: 𝐶 [∗/𝑥]

𝛽𝜂-equalities for the 𝜎 = 0 fragment:

0Γ ⊢ 𝑀 0

: 𝑆 0Γ ⊢ 𝑁 0

: 𝑇 [𝑀/𝑥]

0Γ ⊢ fst(𝑀, 𝑁 ) ≡ 𝑀
0

: 𝑆

Eq-Pair-Fst

0Γ ⊢ 𝑀 0

: 𝑆 0Γ ⊢ 𝑁 0

: 𝑇 [𝑀/𝑥]

0Γ ⊢ snd(𝑀, 𝑁 ) ≡ 𝑁
0

: 𝑇 [𝑀/𝑥]
Eq-Pair-Snd

0Γ ⊢ 𝑀 0

: 𝐼

0Γ ⊢ 𝑀 ≡ ∗ 0

: 𝐼

Eq-Unit-𝜂
0Γ ⊢ 𝑀 0

: (𝑥 𝜋
: 𝑆) ⊗ 𝑇

0Γ ⊢ (fst(𝑀), snd(𝑀)) ≡ 𝑀
0

: (𝑥 𝜋
: 𝑆) ⊗ 𝑇

Eq-Pair-𝜂

0Γ, 𝑧
0

: (𝑥 𝜋
: 𝐴) ⊗ 𝐵 ⊢ 𝐶 0Γ ⊢ 𝑀 0

: (𝑥 𝜋
: 𝐴) ⊗ 𝐵 0Γ, 𝑥

0

: 𝐴,𝑦
0

: 𝐵 ⊢ 𝑁 0

: 𝐶 [(𝑥,𝑦)/𝑧]

0Γ ⊢ let (𝑥,𝑦) = 𝑀 in 𝑁 ≡ 𝑁 [fst(𝑀)/𝑥, snd(𝑀)/𝑦] 0

: 𝐶 [𝑀/𝑧]
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A.7 Identity Type
Type formation, introduction, reflection and 𝜂-law:

0Γ ⊢ 𝑆 type 0Γ ⊢ 𝑀 0

: 𝑆 0Γ ⊢ 𝑁 0

: 𝑆

0Γ ⊢ 𝑀 =𝑆 𝑁 type

Ty-Id

Γ ⊢ 𝑀 𝜎
: 𝑆

Γ ⊢ refl(𝑀) 𝜎
: 𝑀 =𝑆 𝑀

Id-Refl

Γ ⊢ 𝑁 0

: 𝑀1 =𝑆 𝑀2

Γ ⊢ 𝑀1 ≡ 𝑀2

0

: 𝑆

Id-Reflect
0Γ ⊢ 𝑃 0

: 𝑀 =𝐴 𝑀

0Γ ⊢ 𝑃 ≡ refl(𝑀) : 𝑀 =𝐴 𝑀
Id-Uniq

A.8 Universe
Type formation:

0Γ ctxt

0Γ ⊢ U type

Ty-U

Introduction (also with introduction rules for all other type formers except U):

Γ ctxt

Γ ⊢ Bool 𝜎: U
Tm-U-Bool

Γ ⊢ 𝑀 𝜎
: U Γ, 𝑥

𝜌
: El(𝑀) ⊢ 𝑁 𝜎

: U

Γ ⊢ (𝑥 𝜋
: 𝑀) ⊗ 𝑁

𝜎
: U

Tm-U-Tensor

. . .

Elimination:

0Γ ⊢ 𝑀 0

: U

0Γ ⊢ El(𝑀) type
Ty-El

Equality:

0Γ ⊢ 𝑀 ≡ 𝑁
0

: U

0Γ ⊢ El(𝑀) ≡ El(𝑁 ) type
Ty-Eq-El-Cong

A.9 Booleans
Formation, introduction, and elimination:

Γ ctxt

Γ ⊢ Bool type

Γ ctxt

0Γ ⊢ true, false 𝜎
: Bool

0Γ1, 𝑥
0

: Bool ⊢ 𝑃 type

Γ1 ⊢ 𝑀
𝜎
: Bool Γ2 ⊢ 𝑁𝑡

𝜎
: 𝑃 [true/𝑥] Γ2 ⊢ 𝑁𝑓

𝜎
: 𝑃 [false/𝑥] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ if𝑥.𝑃 𝑀 then 𝑁𝑡 else 𝑁𝑓
𝜎
: 𝑃 [𝑀/𝑥]

𝛽-equalities:

0Γ, 𝑧
0

: Bool ⊢ 𝑃 Γ ⊢ 𝑀𝑡
𝜎
: 𝑃 [true/𝑧] Γ ⊢ 𝑀𝑓

𝜎
: 𝑃 [false/𝑧]

Γ ⊢ if𝑥.𝑃 true then 𝑁𝑡 else 𝑁𝑓 ≡ 𝑁𝑡
𝜎
: 𝑃 [true/𝑧]

Tm-Eq-True𝛽

0Γ, 𝑧
0

: Bool ⊢ 𝑃 Γ ⊢ 𝑀𝑡
𝜎
: 𝑃 [true/𝑧] Γ ⊢ 𝑀𝑓

𝜎
: 𝑃 [false/𝑧]

Γ ⊢ if𝑥.𝑃 false then 𝑁𝑡 else 𝑁𝑓 ≡ 𝑁𝑓
𝜎
: 𝑃 [false/𝑧]

Tm-Eq-False𝛽
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A.10 Lists
Formation and introduction:

0Γ ⊢ 𝑇 type

0Γ ⊢ List(𝑇 ) type

Γ ⊢ 𝑇 type

0Γ ⊢ nil 𝜎: List(𝑇 )

Γ1 ⊢ 𝑀
𝜎
: 𝑇 Γ2 ⊢ 𝑁

𝜎
: List(𝑇 ) 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ cons(𝑀, 𝑁 ) 𝜎
: List(𝑇 )

Case analysis:

0Γ1, 𝑥
0

: List(𝑇 ) ⊢ 𝑃 type Γ1 ⊢ 𝑀
𝜎
: List(𝑇 )

Γ2 ⊢ 𝑁1

𝜎
: 𝑃 [nil/𝑥] Γ2, ℎ

𝜎
: 𝑇, 𝑡

𝜎
: List(𝑇 ) ⊢ 𝑁2

𝜎
: 𝑃 [cons(ℎ, 𝑡)/𝑥] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ match𝑥.𝑃 𝑀 { nil ↦→ 𝑁1; cons(ℎ, 𝑡) ↦→ 𝑁2 }
𝜎
: 𝑃 [𝑀/𝑥]

𝛽-equalities for case analysis:

0Γ, 𝑥 :

0

: List(𝑇 ) ⊢ 𝑃 type

Γ ⊢ 𝑁1

𝜎
: 𝑃 [nil/𝑥] Γ, ℎ

𝜎
: 𝑇, 𝑡

𝜎
: List(𝑇 ) ⊢ 𝑁2

𝜎
: 𝑃 [cons(ℎ, 𝑡)/𝑥]

Γ ⊢ match𝑥.𝑃 nil { nil ↦→ 𝑁1; cons(ℎ, 𝑡) ↦→ 𝑁2 } ≡ 𝑁1

𝜎
: 𝑃 [nil/𝑥]

Eq-List-Match-Nil

0Γ1, 𝑥 :

0

: List(𝑇 ) ⊢ 𝑃 type

Γ1 ⊢ 𝑀1

𝜎
: 𝑇 Γ2 ⊢ 𝑀2

𝜎
: List(𝑇 ) Γ3 ⊢ 𝑁1

𝜎
: 𝑃 [nil/𝑥]

Γ3, ℎ
𝜎
: 𝑇, 𝑡

𝜎
: List(𝑇 ) ⊢ 𝑁2

𝜎
: 𝑃 [cons(ℎ, 𝑡)/𝑥] 0Γ1 = 0Γ2 = 0Γ3

Γ1 + Γ2 + Γ3 ⊢
match𝑥.𝑃 (cons(𝑀1, 𝑀2))

{ nil ↦→ 𝑁1; cons(ℎ, 𝑡) ↦→ 𝑁2 }
≡ 𝑁2 [𝑀1/ℎ,𝑀2/𝑡]

𝜎
: 𝑃 [cons(𝑀1, 𝑀2)/𝑥]

Eq-List-Match-Cons

𝜎 = 0 recursive eliminator:

0Γ, 𝑥
0

: List(𝑇 ) ⊢ 𝑃 type 0Γ ⊢ 𝑀 0

: List(𝑇 )
0Γ ⊢ 𝑁1

0

: 𝑃 [nil/𝑥] 0Γ, ℎ
0

: 𝑇, 𝑡
0

: List(𝑇 ), 𝑝 0

: 𝑃 [𝑡/𝑥] ⊢ 𝑁2

0

: 𝑃 [cons(ℎ, 𝑡)/𝑥]

0Γ ⊢ recList𝑥.𝑃 𝑀 { nil ↦→ 𝑁1; cons(ℎ, 𝑡 ;𝑝) ↦→ 𝑁2 }
0

: 𝑃 [𝑀/𝑥]

𝛽-equalities for recursion:

0Γ, 𝑥 :

0

: List(𝑇 ) ⊢ 𝑃 type

0Γ ⊢ 𝑁1

0

: 𝑃 [nil/𝑥] 0Γ, ℎ
𝜎
: 𝑇, 𝑡

𝜎
: List(𝑇 ) ⊢ 𝑁2

0

: 𝑃 [cons(ℎ, 𝑡)/𝑥]

0Γ ⊢ recList𝑥.𝑃 nil { nil ↦→ 𝑁1; cons(ℎ, 𝑡 ; 𝑝) ↦→ 𝑁2 } ≡ 𝑁1

0

: 𝑃 [nil/𝑥]
Eq-List-Rec-Nil

0Γ, 𝑥 :

0

: List(𝑇 ) ⊢ 𝑃 type 0Γ ⊢ 𝑀1

0

: 𝑇 0Γ ⊢ 𝑀2

0

: List(𝑇 )
0Γ ⊢ 𝑁1

0

: 𝑃 [nil/𝑥] 0Γ, ℎ
0

: 𝑇, 𝑡
0

: List(𝑇 ) ⊢ 𝑁2

0

: 𝑃 [cons(ℎ, 𝑡)/𝑥]

0Γ ⊢
recList𝑥.𝑃 (cons(𝑀1, 𝑀2)) { nil ↦→ 𝑁1; cons(ℎ, 𝑡 ;𝑝) ↦→ 𝑁2 }
≡ 𝑁2 [𝑀1/ℎ,𝑀2/𝑡,

recList𝑥,𝑝 𝑀2 {nil ↦→ 𝑁1; cons(ℎ, 𝑡 ;𝑝) ↦→ 𝑁2 }/𝑝]

0

: 𝑃 [cons(𝑀1, 𝑀2)/𝑥]

Eq-List-Rec-Cons
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A.11 Cons-Free Naturals
Formation and introduction:

0Γ ctxt

0Γ ⊢ Nat type

Γ ctxt

Γ ⊢ zero 0

: Nat

Γ ⊢ 𝑀 0

: Nat

Γ ⊢ succ(𝑀) 0

: Nat

Duplication:

Γ ⊢ 𝑀 𝜎
: Nat

Γ ⊢ dupNat(𝑀) 𝜎
: Nat ⊗ Nat

Γ ⊢ 𝑀 0

: Nat

Γ ⊢ dupNat(𝑀) ≡ (𝑀,𝑀) 0

: Nat ⊗ Nat

Eliminator:

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

Γ ⊢ 𝑀 𝜎
: Nat

0Γ ⊢ 𝑁𝑧
𝜎
: 𝑃 [zero/𝑥]

0Γ, 𝑛
0

: Nat, 𝑝
𝜎
: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠

𝜎
: 𝑃 [succ(𝑛)/𝑥]

Γ ⊢ rec𝑥.𝑃 𝑀 {zero ↦→ 𝑁𝑧 ; succ(𝑛;𝑝) ↦→ 𝑁𝑠 }
𝜎
: 𝑃 [𝑀/𝑥]

𝛽-equalties (only available in the 𝜎 = 0 fragment):

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

0Γ ⊢ 𝑁𝑧
0

: 𝑃 [zero/𝑥]
0Γ, 𝑛

0

: Nat, 𝑝
0

: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠
0

: 𝑃 [succ(𝑛)/𝑥]

0Γ ⊢ rec𝑥.𝑃 zero {zero ↦→ 𝑁𝑧 ; succ(𝑛; 𝑝) ↦→ 𝑁𝑠 } ≡ 𝑁𝑧
0

: 𝑃 [zero/𝑥]

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

0Γ ⊢ 𝑀 0

: Nat

0Γ ⊢ 𝑁𝑧
0

: 𝑃 [zero/𝑥]
0Γ, 𝑛

0

: Nat, 𝑝
0

: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠
0

: 𝑃 [succ(𝑛)/𝑥]

0Γ ⊢ rec𝑥.𝑃 (succ(𝑀)) {zero ↦→ 𝑁𝑧 ; succ(𝑛;𝑝) ↦→ 𝑁𝑠 }
≡ 𝑁𝑠 [𝑀/𝑛, rec𝑥.𝑃 𝑀 {zero ↦→ 𝑁𝑧 ; succ(𝑛;𝑝) ↦→ 𝑁𝑠 }/𝑝]

0

: 𝑃 [succ(𝑀)/𝑥]

A.12 LFPL Diamonds
Formation, introduction, and 𝜂-law:

Γ ctxt

0Γ ⊢ ^ type

Γ ctxt

0Γ ⊢ ∗ 0

: ^

Γ ⊢ 𝑀 0

: ^

Γ ⊢ 𝑀 ≡ ∗ 0

: ^

A.13 LFPL Naturals
Type formation and introduction:

0Γ ctxt

0Γ ⊢ Nat type

Γ ⊢ 𝑀 𝜎
: ^

Γ ⊢ zero(𝑀) 𝜎
: Nat

Γ1 ⊢ 𝑀
𝜎
: ^ Γ2 ⊢ 𝑁

𝜎
: Nat 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ succ(𝑀, 𝑁 ) 𝜎
: Nat
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Elimination:

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

Γ ⊢ 𝑀 𝜎
: Nat

0Γ, 𝑑
𝜎
: ^ ⊢ 𝑁𝑧

𝜎
: 𝑃 [zero(∗)/𝑥]

0Γ, 𝑑
𝜎
: ^, 𝑛

0

: Nat, 𝑝
𝜎
: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠

𝜎
: 𝑃 [succ(∗, 𝑛)/𝑥]

Γ ⊢ rec𝑀 {zero(𝑑) ↦→ 𝑁𝑧 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝑁𝑠 }
𝜎
: 𝑃 [𝑀/𝑥]

𝛽-equalities, available in both fragments:

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

Γ ⊢ 𝑀 𝜎
: ^

0Γ, 𝑑
𝜎
: ^ ⊢ 𝑁𝑧

𝜎
: 𝑃 [zero(∗)/𝑥]

0Γ, 𝑑
𝜎
: ^, 𝑛

0

: Nat, 𝑝
𝜎
: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠

𝜎
: 𝑃 [succ(∗, 𝑛)/𝑥]

Γ ⊢ rec zero(𝑀) {zero(𝑑) ↦→ 𝑁𝑧 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝑁𝑠 } ≡ 𝑁𝑧 [𝑀/𝑑] 𝜎
: 𝑃 [zero(∗)/𝑥]

0Γ, 𝑥
0

: Nat ⊢ 𝑃 type

Γ1 ⊢ 𝑀𝑑
𝜎
: ^

Γ2 ⊢ 𝑀𝑛
𝜎
: Nat

0Γ, 𝑑
𝜎
: ^ ⊢ 𝑁𝑧

𝜎
: 𝑃 [zero(∗)/𝑥]

0Γ, 𝑑
𝜎
: ^, 𝑛

0

: Nat, 𝑝
𝜎
: 𝑃 [𝑛/𝑥] ⊢ 𝑁𝑠

𝜎
: 𝑃 [succ(∗, 𝑛)/𝑥]

0Γ1 = 0Γ2 = 0Γ

Γ1 + Γ2 ⊢
rec (succ(𝑀𝑑 , 𝑀𝑛)) {zero(𝑑) ↦→ 𝑁𝑧 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝑁𝑠 }
≡ 𝑁𝑠 [𝑀𝑑/𝑑,𝑀𝑛/𝑛, rec𝑀𝑛 {zero(𝑑) ↦→ 𝑁𝑧 ; succ(𝑑, 𝑛;𝑝) ↦→ 𝑁𝑠 }/𝑝]

𝜎
: 𝑃 [succ(∗, 𝑀𝑛)/𝑥]

A.14 Realisability Reflection
Type formation, introduction and elimination:

0Γ ⊢ 𝐴 type

0Γ ⊢ R(𝐴) type

0Γ ⊢ 𝑀 1

: 𝐴

0Γ ⊢ R(𝑀) 𝜎
: R(𝐴)

Γ ⊢ 𝑀 𝜎
: R(𝐴)

Γ ⊢ R−1 (𝑀) 𝜎 ′
: 𝐴

Equalities:

0Γ ⊢ 𝑀 1

: 𝐴

0Γ ⊢ R−1 (R(𝑀)) ≡ 𝑀
𝜎
: 𝐴

0Γ ⊢ 𝑀 𝜎
: R(𝐴)

0Γ ⊢ R(R−1 (𝑀)) ≡ 𝑀
𝜎
: 𝐴
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