
Secure Execution of Mobile Java using Static Analysis and
Proof Carrying Code

Robert Atkey (bob.atkey@ed.ac.uk)
Kenneth MacKenzie (kwxm@inf.ed.ac.uk)

School of Informatics, University of Edinburgh, UK

Christopher Paton (chris@chrispaton.co.uk)

Abstract

We consider the problems raised by the use of mobile code in e-Science. If a user submits a program
for execution on a remote machine then problems can arise if the program misbehaves, for example by
using too much memory or taking too long to execute. We describe methods which can be used to obtain
unforgeable a priori guarantees that a mobile program will behave in a reasonable manner. We have a
prototype implementation that executes mobile code securely within an OGSA-DAI server.

1 Introduction

A crucial aspect of e-Science is the transmis-
sion of executable code to be run on remote
servers. Code migrates to environments that
provide suitable resources for it to execute. Pro-
cessor intensive code is sent to compute clusters
or supercomputers that provide large amounts
of processing power; code that works on mas-
sive data-sets is moved to the data rather than
the other way round, it being far more efficient
that way than to download data to the code. Of-
ten, code moves across administrative borders;
a researcher from Institute A may want submit
a job to be run against data stored by the Univer-
sity of B, where the two organisations have no
prior relationship. The free movement of code
across administrative borders is essential to the
success of the Grid concept, but large security
issues arise when one considers the running of
untrusted code on one’s expensive servers.

If remote users are allowed to execute such
mobile code in a completely unrestricted way
then all kinds of problems can arise for the
server. Some of these are standard security
problems (for example, remote users must be
prevented from deleting files or using a ma-
chine for sending spam email) which can be
dealt with by existing operating system security
techniques. However, some issues are more dif-
ficult to deal with. For example, remote users
may be allowed to create files on a server, but

if too much disk space is used then other users
may be unable to run their programs. Similarly,
if a program uses too much memory, or runs for
too long, then this may also inconvenience other
users. Overuse of such resources1 may be delib-
erate, as happens in a denial-of-service attack,
but they may also be accidental (due to bugs in a
program), or simply unanticipated (because the
programmer can’t tell in advance how their pro-
gram will behave). Overuse of some resource
by a mobile program may cause problems not
just for other users, but also for the author of
the program: if they submit a program which
monopolises some resource then time or money
may be lost with no benefit, and the program-
mer might even lose their rights to execute pro-
grams on a server if they cause too much incon-
venience to others.

Current internet-accessible services that ac-
cept mobile code do of course attempt to protect
themselves from malicious or otherwise unsafe
code. The first line of defence in current prac-
tice is to authenticate the remote client in some
way, ensuring that the code originates from a
trusted source. The vetting of clients is intended
to reduce the possibility of malicious code; and,
should anything go wrong, the authentication

1The term resource is usually used in e-Science to refer
to individual computers within a network or grid, but we
use the word to refer to quantities which are consumed by
a program during execution and which may be regarded as
“costs” incurred by the program.



logs can be used to point the finger of blame.
For some applications, the burden of dis-

tributing authentication credentials to every po-
tential user is too great, or the cost of failure is
very high, so further measures must be taken to
protect against badly behaved code. Typically,
these take the form of dynamic checks on the ex-
ecuting code. This enforces good behaviour by
monitoring the code as it runs; if the code does
something that is not permitted then it is ter-
minated and control returned to the server soft-
ware. There are various techniques for accom-
plishing this, including running the code inside
a virtual machine’s sandbox, running it inside
an entire virtualised machine, or by instrument-
ing the code with checks at critical points. The
disadvantage of this approach is that problems
are only dealt with at the time they would oc-
cur, and handling a violation of security policy
typically results in termination or suspension of
the process. This is not an ideal scenario several
days into a complex batch job.

An alternative approach is to analyse the code
before it is run. The techniques of static anal-
ysis [12] can be applied to programs (either
source code or compiled object code) in order
to predict some aspect of their behaviour prior
to execution. The analysis can either be built in
to a compiler or carried out by a standalone tool.
Some analyses are fully automatic while others
may require some participation by the program-
mer (for example, by adding annotations to the
source code)

Static analysis could thus be used by a server
to determine (conservatively) whether it would
be safe to execute a mobile program which it
had received: code which failed the test would
not be run. A disadvantage of this approach
is that static analyses are often computationally
expensive, meaning that a server could spend
a significant amount of time analysing code,
rather than actually executing the code. Further-
more, static analyses can be complex and diffi-
cult to implement, meaning that either the anal-
ysis could be wrong or bugs in the analysis code
could be exploited by a malicious attacker.

To mitigate these concerns, we use the tech-
nique of proof carrying code (PCC) [11]. With
PCC, static analysis of the code is carried out
by the client. This analysis produces evidence,
in the form of a formalised, machine-checkable
mathematical proof that is checked by the server
before executing the code. Checking proofs is
cheaper than producing them, and proof check-
ers are smaller and less complex than proof gen-

erators.
This paper is a description of the ongoing

work of the ReQueST (Resource Quantification
for e-Science Technologies)2 project at the Uni-
versity of Edinburgh. This project aims to pro-
duce static analyses for Java programs that de-
termine their resource usage and produce inde-
pendently checkable proofs of the resource us-
age properties suitable for PCC.

1.1 Overview

Firstly we will describe a motivating scenario
concerning Java code being sent to a large
database to perform a custom query. We will
base the rest of our discussion on this example.
We will then discuss various methods which can
be used to protect servers against the security
risks inherent in the use of mobile code. After
this, we describe a prototype implementation of
these methods with the OGSA-DAI database ac-
cess software. Finally we will discuss our plans
for future work.

2 Motivating Scenario

In this paper we will concentrate on using Java
bytecode as the format for the code that is to be
sent by the client to be executed on the server.
We have several reasons for this. Java byte-
code is relatively portable between machine ar-
chitectures and operating systems, meaning that
a client does not have recreate the exact op-
erating environment of the server in order to
develop and compile their code. The use of
a platform-independent compiled format rather
than a source code format means that the server
does not have to be complicated with the provi-
sion of compilers and the attendant tools in or-
der to execute client’s code. Also, the security-
conscious design of Java means that it enjoys
properties such as type safety and memory safety
[6] which make it much more amenable to static
analysis techniques than unsafe languages such
as C and FORTRAN.

To motivate the use of mobile Java, we con-
sider the following scenario. A large scientific
database (of the order of hundreds of gigabytes)
resides on a remote server, accessible via the in-
ternet. An e-Scientist wishes to query this data,
extracting items of interest. Unfortunately, the
criteria he wishes to use to filter the data – some

2http://groups.inf.ed.ac.uk/request/



image processing technique perhaps – is not ex-
pressible in the query language of the database
management system that stores the data, but he
does have it coded as a short Java program.

If he cannot upload the code to the server in
order to process the data, our e-Scientist must
download all of the data from the database to
filter it, discarding the data that is not relevant.
However, this may be impractical if the database
is extremely large. The alternative method that
we propose here is to modify the database server
to allow the upload of the compiled Java code to
the server where it can be run against the data.
Only the filtered data (which will hopefully be
much smaller than the full database) is sent back
across the network.

3 Ensuring good behaviour
We consider several approaches to the problem
of guaranteeing that a mobile program behaves
well.

3.1 Runtime Monitoring
The simplest way to ensure good behaviour of a
program is via runtime monitoring (or dynamic
monitoring). Here, the program is executed in
the normal way and its behaviour is monitored
at it runs; if the program misbehaves by (for ex-
ample) using too much memory or taking too
long then it is terminated. This approach has
several points in its favour:

• Most operating systems already have some
built in means of process monitoring and
control, so dynamic monitoring can be car-
ried out with little extra overhead

• Programs are written in the usual way and
no extra work is required on the part of the
programmer

Dynamic monitoring is not without disadvan-
tages however. In particular,

• By the time that it is realised that a program
is misbehaving, it may already have used
up valuable time or space, possibly causing
a degradation of service for other users.

3.2 Static Analysis
Recall that static analysis involves analysing
code before it is run. For properties such
as memory usage, the static analysis approach

has several advantages over dynamic monitor-
ing and profiling. Resource bounds are deduced
from the program itself, and will be guaranteed
to hold for all possible executions of the pro-
gram (assuming that the analysis has been cor-
rectly designed and implemented). This enables
a programmer to be confident that their program
will be well-behaved before they submit it for
remote execution, and they will therefore not be
causing problems of the kind that may arise if
dynamic monitoring is used. Also, the informa-
tion obtained from static analysis can be helpful
both to the programmer (perhaps enabling them
to improve the behaviour of a program) and to
the operators of the remote system (perhaps en-
abling them to make sensible scheduling deci-
sions based on the expected behaviour of the
program).

Many static analysis tools are available for
Java (FindBugs3, Klocwork4 and ESC/Java25

for example) but most of them deal with pro-
gram correctness (for instance, showing that a
program never attempts to dereference a null
pointer or access an array outside its bounds)
rather than resource-related properties.

However, a considerable amount of research
related to static prediction of resource bounds
is currently ongoing, and prototype systems are
beginning to appear. For example:

• The TINMAN system [10] uses a combi-
nation of static and dynamic techniques to
predict and enforce bounds on execution
time and memory usage for mobile C pro-
grams.

• In [7], Hofmann and Jost described a tech-
nique for automatically inferring memory
usage bounds of functional programs. This
was subsequently implemented in the Mo-
bile Resource Guarantees project at the
University of Edinburgh and LMU Munich
[15, 8].

• The first author of the present paper has re-
cently added memory specifications to the
ESC/Java static analysis tool [3].

• The Mobius project6 is presently devel-
oping methods for automatic analysis and
verification of resource bounds for mobile

3http://findbugs.sourceforge.net/
4http://www.klocwork.com/
5http://secure.ucd.ie/products/opensource/

ESCJava2/
6http://mobius.inria.fr/



code in the context of the Java MIDP plat-
form7 for mobile telephones. Static analy-
sis techniques for resource usage have been
studied at INRIA, Rennes [4, 5] and UPM,
Madrid [1, 9].

3.3 Proof Carrying Code
The techniques of static analysis mentioned
above are an improvement on dynamic tech-
niques, but are still not entirely foolproof. For
example, the following problems may arise:

• There may be errors in the design of an
analysis technique.

• There may be errors in the implementation
of an analysis tool.

• A remote user may claim that their pro-
gram satisfies certain bounds, but there is
no guarantee that these claims are correct.
(This can be overcome by running the anal-
ysis on the server prior to execution, but
this may involve an overhead).

These problems may be dealt with using the
technique of Proof-Carrying Code (PCC) [11].
This involves constructing a certificate in the
form of a formal, mechanically verifiable math-
ematical proof that a program P satisfies some
property X. The proof is provided by the code
producer (ideally automatically, by an enhanced
static analyser) and packed together with the
program before being sent to the consumer. The
consumer then checks the program against the
proof, and – if the check is successful – can be
assured that the program does indeed satisfy the
given property. This provides an unforgeable
guarantee: either the proof is valid and does in-
deed demonstrate that P satisfies the property X,
or it is invalid, and the code consumer can reject
P and refuse to run it. Problems of incorrectness
in the design or implementation of the analysis
are also overcome: if for some reason the anal-
ysis comes up with an incorrect answer then it
will be impossible to construct a valid proof that
the answer is actually correct. Figure 1 contains
a schematic illustration of a PCC system.

The advantages of PCC are obtained at a
cost, however. Implementing a PCC system in-
volves designing a mechanisable mathematical
formalisation of the properties of the language
in which one is interested (a formal semantics
[17]), and this requires considerable time and

7http://java.sun.com/products/midp/

expertise. Some means has to be found of ex-
pressing the properties in which one is inter-
ested, and this may require the creation of a
specialised program logic which then has to be
shown to be correct with respect to the seman-
tics. It is also necessary to find a means of pro-
ducing proofs automatically during the process
of program analysis. However, these steps have
to be carried out only once, and the PCC system
can then operate automatically, with little or no
intervention required from the programmer.

The PCC paradigm can provide very strong
guarantees of good behaviour, but there are still
some drawbacks. In particular, a naive ap-
proach can lead to certificates which are very
large and for which the proof-checking phase
on the code consumer is computationally in-
tensive. There are however techniques which
can be used to compress certificates and pro-
vide efficient proof-checkers, but again these re-
quire considerable effort on the part of the im-
plementer of the PCC system.

We hope to build on experience gained in the
earlier Mobile Resource Guarantees project in
which a PCC system which could automatically
predict and certify memory usage properties of
functional programs was developed [15].

4 Prototype Implementation

In order to illustrate the concept of PCC,
we have implemented a very basic prototype
PCC framework that sits within an OGSA-DAI
server. OGSA-DAI (Open Grid Services Archi-
tecture - Data Access and Integration) [2] pro-
vides a web service interface to existing rela-
tional, XML and flat file databases to enable
them to be used by remote users in a Grid
context. Clients interact with an OGSA-DAI
server by uploading perform documents. These
are XML documents that describe actions to
be taken against the database being exposed by
the server. For instance, a client may request
that a particular SQL query is run against the
database, the results converted to CSV, com-
pressed using GZip and sent to a remote FTP
server. In OGSA-DAI parlance, each of the in-
dividual processes involved is called an activity.
The perform document describes how activities
are plugged together to satisfy the client’s re-
quest.

At present, the activities present on the server
are determined by the server administrator. If
a client wants some processing to occur on the



Figure 1: Proof Carrying Code

server, then they must request that this capabil-
ity be added to the server by its administrators.

We have implemented a new activity, called
MobileCodeActivity, that allows the client to
upload their own Java class in bytecode format
to be executed on the server. This code is then
integrated into the pipeline constructed by the
OGSA-DAI server and used to process data on
the server.

4.1 Sending Code

A fragment of a perform document describ-
ing an instance of MobileCodeActivity is
shown in Figure 2. This describes an activity
called mobileCode, which reads its input from
a stream called input and outputs to a stream
called results. These streams can referenced
by other activities within the perform docu-
ment to do other processing on the data. The
classData element contains the actual Java
bytecode that is to be executed, in Base64 en-
coding. The two attributes of the classData
element give the class name (required for Java’s
class loader), and the method to be executed.
The rest of the activity description contains the
certificate describing the resource usage of the
methods in the uploaded class. This is described
below.

In our prototype implementation, the method
to be executed must have a signature of the
form:

String methodName (String input)

The method must take a string as input, and re-
turn a processed string as output. An instan-
tiated MobileCodeActivity reads its input,
converting it to strings if necessary, processes it
using the uploaded code and outputs the result.
The library that we use to handle the loading of
code and applying arbitrary security checks is
described by the third author in [13].

<mobileCodeConfig>

<policy>

<elem label="replace" count="2"/>

</policy>

<externalSpecs>

<externalSpec

methodName

="java.lang.String.replace">

<requires>

<elem label="replace"

count="1"/>

</requires>

<ensures/>

</externalSpec>

</externalSpecs>

</mobileCodeConfig>

Figure 3: Resource Policy
(set by server administrator)

4.2 Resource Policies
To illustrate PCC in this context, our example
uses a simple description of resources in terms
of multisets. We use the multiset {A,A,B} to
specify the a resource consisting of two As and
a B. We express multisets in XML by listing
each of the resources and their multiplicity, e.g.:

<elem label="A" count="2"/>

<elem label="B" count="1"/>

We also allow multisets with infinite multiplic-
ity, with the following XML representation:

<elem label="A" count="infinity"/>

The resource labels are arbitrary strings that
have no intrinsic meaning.

The server administrator sets the resource
policy of an OGSA-DAI server by writing a
configuration file similar to the one shown
in Figure 3. This file describes two things.



<mobileCode name="mobileCode">

<mobileCodeInput from="input"/>

<mobileCodeOutput name="results"/>

<classData className="TestAgent" methodName="replaceNewlines">

yv66vgAAA... [Java .class file in Base64 encoding]

</classData>

[...resource certificate goes here...]

</mobileCode>

Figure 2: Activity Description for Mobile Code

<certificate>

<methodCertificate

methodName="replaceNewlines">

<requires>

<elem label="replace" count="1"/>

</requires>

<ensures/>

</methodCertificate>

<methodCertificate

methodName="replaceNewlines2">

<requires>

<elem label="replace" count="1"/>

</requires>

<ensures/>

<instructionAssertion offset="2">

<elem label="replace" count="1"/>

</instructionAssertion>

</methodCertificate>

</certificate>

Figure 4: Resource Certificate
(uploaded with the code)

Within the policy element is the overall re-
source policy that all uploaded code must ad-
here to. In this case, we specify that all
methods are constrained to require at most
two of the “replace” resource. Within
the externalSpecs element, we describe the
specification of methods that the uploaded
code is allowed to use. In this case, we
only allow access to one external method,
java.lang.String.replace. We specify
that calling this method requires one “replace”
resource (in the requires element), and that it
frees up no resources to be used later on (the
empty ensures element).

4.3 Resource Certificates
In order to convince the server that the code
adheres to its resource policy, the client must

supply a certificate describing the resource be-
haviour of the code that is uploaded. An ex-
ample such certificate is shown in Figure 4.
Each methodCertificate element contains
the certificate for one method. In this exam-
ple, the first method, replaceNewlines, re-
quires one “replace” resource and ensures
nothing. This is consistent with the imple-
mentation of the method calling the method
java.lang.String.replace once. The sec-
ond method is (spuriously, for the purposes of
this example) more complicated. The original
Java of the body of the method is:

for (int i = 0; i < 10; i++) {

input = input;

}

return input.replace (’\n’, ’ ’);

This method obviously does only call
java.lang.String.replace once, but
does so after executing a loop. To convince
our checker that this method is safe to run,
we must supply a loop invariant that specifies
the property that is always preserved by the
loop. This invariant is supplied in the certificate
in the instructionAssertion element.
The instruction at offset 2 in the bytecode is
asserted to require one “replace” resource.
The checker then checks the method by filling
in the resource requirements for every other
instruction in the method.

This process is illustrated in Figure 5. The
left-most column shows the bytecode of the
uploaded method with the certificate provided
by the client. The second column shows
a stage during the completion of the certifi-
cate. The checker starts at the last instruc-
tion of the bytecode. Since this is a re-
turn instruction it takes the stated final re-
source consumption of the method (given by
the ensures element in the certificate) and
puts this as a precondition of this instruction.
The checker then works its way backwards



0: iconst_0
1: istore_1
2: iload_1 {replace=1}
3: bipush 10
5: if_icmpge 16
8: aload_0
9: astore_0
10: iinc 1, 1
13: goto 2
16: aload_0
17: bipush 10
19: bipush 32
21: invokevirtual

java/lang/String.replace
24: areturn

0: iconst_0
1: istore_1
2: iload_1 {replace=1}
3: bipush 10
5: if_icmpge 16
8: aload_0
9: astore_0
10: iinc 1, 1
13: goto 2 {replace=1}
16: aload_0 {replace=1}
17: bipush 10 {replace=1}
19: bipush 32 {replace=1}
21: invokevirtual {replace=1}

java/lang/String.replace
24: areturn {}

0: iconst_0 {replace=1}
1: istore_1 {replace=1}
2: iload_1 {replace=1}
3: bipush 10 {replace=1}
5: if_icmpge 16 {replace=max(1,1)}
8: aload_0 {replace=1}
9: astore_0 {replace=1}
10: iinc 1, 1 {replace=1}
13: goto 2 {replace=1}
16: aload_0 {replace=1}
17: bipush 10 {replace=1}
19: bipush 32 {replace=1}
21: invokevirtual {replace=1}

java/lang/String.replace
24: areturn {}

Figure 5: Checking of certificates

through the instructions. The case of note
is the invokevirtual instruction that actu-
ally invokes the java.lang.String.replace
method. Here, the checker looks up the speci-
fication of the method in the policy and applies
it, making the precondition of this instruction
the resource {replace=1}. The checker then
carries on backwards through the code until it
gets to the goto instruction at offset 13. Here,
the next instruction in the control flow is not
the next instruction in the method, but is the
one at offset 2. So it uses the precondition for
the instruction at offset 2 provided by the client
to carry on. The checker continues backwards
until it gets to offset 5. There is a conditional
branch in the code at this point, where the next
instruction offset can either be 8 or 16. The
checker must combine the resources required by
both branches by taking the maximum. When it
gets to offset 2, the computed precondition for
this offset is compared against the one given by
the client. If the given one does not include the
computed one, then the method is rejected. The
checker then carries on to the top of the method.
The computed precondition for the first instruc-
tion is the precondition for the whole method.
This precondition is checked against the stated
precondition for the method, which is in turn
checked against the resource policy set by the
administrator. If either fail, the code is rejected.

The important point is that the certificate is
checked against the code and the resource pol-
icy. If the checker cannot successfully complete
the certificate against the code, then the code is
rejected. The client cannot provide an incorrect
certificate in an attempt to fool the checker.

4.4 Future Work

The basic system presented here serves to illus-
trate the idea of PCC but is obviously too ba-

sic for actual use. Since the certificate checker
only deals with the control flow of the pro-
gram, and does not take into account the pro-
gram variables, the resource bounds that are cer-
tifiable are very coarse. In order to deal with
resources consumed within loops, the certifi-
cate must state that the resources allowed for
the loop are infinite. We are currently working
on more sophisticated forms of certificate that
take into account program variables and allow
arithmetic reasoning about resource bounds. We
have used multisets as our representation of re-
sources in this example, but for more precise
control we must use other representations. We
are currently experimenting with the use of sub-
structural logics [14] to represent resources.

In order to guarantee the security of our
framework, we are also working on a formalised
specification of the Java Virtual Machine in the
Coq proof assistant [16], as well as a Coq-
certified certificate checker for mobile code.
The use of mechanised formal reasoning to
build our framework will increase confidence in
the security that it provides. We are also build-
ing a certifying compiler that will generate cer-
tificates during the compilation process given
appropriately annotated Java source.

5 Conclusions
This paper has described some possible strate-
gies for dealing with problems raised by the use
of mobile code in Grid environments. Our ap-
proach promises to provide strong guarantees
of good behaviour for mobile programs, and
we hope to develop tools which will enable our
methods to be used routinely by e-Scientists. In
particular, we plan to significantly extend the
possible certificates that can be provided with
mobile code to allow arithmetic reasoning about
resources rather than statically fixed amounts.



Acknowledgements This work was funded
by the ReQueST grant (EP/C537068) from the
Engineering and Physical Sciences Research
Council.

References

[1] E. Albert, P. Arenas, S. Genaim,
G. Puebla, and D. Zanardini. Cost
analysis of Java bytecode. In Rocco De
Nicola, editor, European Symposium on
Programming, Lecture Notes in Computer
Science. Springer-Verlag, March 2007. To
appear.

[2] M. Antonioletti, M.P. Atkinson, R. Bax-
ter, A. Borley, N.P. Chue Hong, B. Collins,
N. Hardman, A. Hume, A. Knox, M. Jack-
son, A. Krause, S. Laws, J. Magowan,
N.W. Paton, D. Pearson, T. Sugden,
P. Watson, and M. Westhead. The De-
sign and Implementation of Grid Database
Services in OGSA-DAI. Concurrency and
Computation: Practice and Experience,
17(2–4):357–376, February 2005.

[3] Robert Atkey. Specifying and verify-
ing heap space allocation with JML and
ESC/Java2. In 8th Workshop for Formal
Techniques for Java-like Programs (FT-
fJP2006), 2006.

[4] Frédéric Besson, Thomas Jensen, and
David Pichardie. Proof-carrying code
from certified abstract interpretation and
fixpoint compression. Theor. Comput. Sci.,
364(3):273–291, 2006.

[5] David Cachera, Thomas Jensen, David
Pichardie, and Gerardo Schneider. Cer-
tified Memory Usage Analysis. In Proc.
of 13th International Symposium on For-
mal Methods (FM’05), number 3582 in
Lecture Notes in Computer Science, pages
91–106, 2005.

[6] Pieter H. Hartel and Luc Moreau. Formal-
izing the safety of Java, the Java Virtual
Machine, and Java Card. ACM Comput.
Surv., 33(4):517–558, 2001.

[7] Martin Hofmann and Steffen Jost. Static
prediction of heap space usage for first-
order functional programs. In Proceed-
ings of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Program-
ming Languages (POPL), pages 185–197.
ACM, 2003.

[8] Kenneth MacKenzie and Nicholas
Wolverson. Camelot and Grail: resource-
aware functional programming on the
JVM. In Trends in Functional Program-
ming, volume 4. Intellect, 2004.

[9] E. Mera, P. López-Garcı́a, G. Puebla,
M. Carro, and M. Hermenegildo. Com-
bining static analysis and profiling for es-
timating execution times. In Michael
Hanus, editor, PADL, volume 4354 of Lec-
ture Notes in Computer Science, pages
140–154. Springer, 2007.

[10] Aloysius K. Mok and Weijiang Yu. TIN-
MAN: A resource bound security check-
ing system for mobile code. In ES-
ORICS ’02: Proceedings of the 7th Eu-
ropean Symposium on Research in Com-
puter Security, pages 178–193, London,
UK, 2002. Springer-Verlag.

[11] George C. Necula. Proof-carrying code. In
Neil D. Jones, editor, Proceedings of the
Symposium on Principles of Programming
Languages, pages 106–119, Paris, France,
January 1997. ACM Press.

[12] Flemming Nielson, Hanne R. Nielson, and
Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1999.

[13] Christopher Paton. Web Services & Mo-
bile Code. Honour’s Project, University of
Edinburgh, 2007.

[14] Greg Restall. An Introduction to Substruc-
tural Logics. Routledge, 2000.

[15] Donald Sannella, Martin Hofmann,
David Aspinall, Stephen Gilmore, Ian
Stark, Lennart Beringer, Hans-Wolfgang
Loidl, Kenneth MacKenzie, Alberto
Momigliano, and Olha Shkaravska.
Mobile resource guarantees. In Trends
in Functional Programming, volume 6.
Intellect, September 2005.

[16] The Coq Development Team. The Coq
Proof Assistant Reference Manual Version
8.0. INRIA, 2006.

[17] Glynn Winskel. The formal semantics of
programming languages: an introduction.
MIT Press, Cambridge, MA, USA, 1993.


