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This paper proposes a general semantic framework for verifying programs with arbitrary monadic side-effects
using Dijkstra monads, which we define as monad-like structures indexed by a specification monad. We prove
that any monad morphism between a computational monad and a specification monad gives rise to a Dijkstra
monad, which provides great flexibility for obtaining Dijkstra monads tailored to the verification task at
hand. We moreover show that a large variety of specification monads can be obtained by applying monad
transformers to various base specification monads, including predicate transformers and Hoare-style pre-
and postconditions. For defining correct monad transformers, we propose a language inspired by Moggi’s
monadic metalanguage that is parameterized by a dependent type theory. We also develop a notion of algebraic
operations for Dijkstra monads, and start to investigate two ways of also accommodating effect handlers. We
implement our framework in both Coq and F⋆, and illustrate that it supports a wide variety of verification
styles for effects such as exceptions, nondeterminism, state, input-output, and general recursion.

1 INTRODUCTION
The aim of this paper is to provide a semantic framework for specifying and verifying programs
with arbitrary side-effects modeled by computational monads [Moggi 1989]. We base this frame-
work on Dijkstra monads, which have already proven valuable in practice for verifying effectful
code [Protzenko and Parno 2019; Swamy et al. 2016]. A Dijkstra monad D A w is a monad-like
structure that classifies effectful computations returning values in A and specified by w : WA,
whereW is what we call a specification monad.1 A typical specification monad contains predicate
transformers mapping postconditions to preconditions. For instance, for computations in the state
monad StA = S → A × S , a natural specification monad isW StA = (A × S → P) → (S → P), map-
ping postconditions, which in this case are predicates on final results and states, to preconditions,
which are predicates on initial states (here P stands for the internal type of propositions). However,
given an arbitrary monadic effect, how do we find such a specification monad? Is there a single
specification monad that we can associate to each effect? If not, what are the various alternatives,
and what are the constraints on this association for obtaining a proper Dijkstra monad?

A partial answer to this question was provided by theDijkstra Monads for Free (DM4Free) approach
of Ahman et al. [2017]: from a computational monad defined as a term in a metalanguage called DM,
a (single) canonical specification monad is automatically derived through a syntactic translation.
Unfortunately, while this approach works for stateful and exceptional computations, it cannot
handle several other effects, such as input-output (IO), due to various syntactic restrictions in DM.
To better understand and overcome such limitations, we make the novel observation that a

computational monad in DM is essentially a monad transformer applied to the identity monad; and
that the specification monad is obtained by applying this monad transformer to the continuation
monad ContPA = (A→ P) → P. Returning to the example of state, the specification monadW StA

1Prior work has used the term “Dijkstra monad” both for the indexed structure D and for the indexW [Ahman et al. 2017;
Jacobs 2014, 2015; Swamy et al. 2013, 2016]. In order to prevent confusion, we use the term “Dijkstra monad” exclusively for
the indexed structure D and the term “specification monad” for the indexW .
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1:2 Maillard et al.

can be obtained from the state monad transformer StTMA = S → M(A×S). This reinterpretation of
the DM4Free approach sheds light on its limitations: For a start, the class of supported computational
monads is restricted to those that can be decomposed as a monad transformer applied to the identity
monad. However, this rules out various effects such as nondeterminism or IO, for which no proper
monad transformer is known [Adámek et al. 2012; Bowler et al. 2013; Hyland et al. 2007].
Further, obtaining both the computational and specification monads from the same monad

transformer introduces a very tight coupling. In particular, in DM4Free one cannot associate different
specification monads with a particular effect. For instance, the exception monad ExcA = A + E is
associated by DM4Free with the specification monadW ExcA = ((A + E) → P) → P, by applying the
exception monad transformer ExcTMA = M(A + E) to ContP. This specification monad requires
the postcondition to account for both the success and failure cases. While this is often desirable, at
times it may be more convenient to use the simpler specification monad ContP directly, allowing
exceptions to be thrown freely, without having to explicitly allow this in specifications. Likewise,
for IO, one may wish to have rich specifications that depend on the history of interactions with
the external world, or simpler context-free specifications that are as local as possible. In general,
one should have the freedom to choose a specification monad that is expressive enough for the
verification task at hand, but also simple enough so that verification is manageable in practice.

Moreover, even for a fixed computational monad and a fixed specification monad there can be
more than one way to associate the two in a Dijkstra monad. For instance, to specify exceptional
computations using ContP, we could allow all exceptions to be thrown freely—as explained above,
which corresponds to a partial correctness interpretation—but a different choice is to prevent any
exceptions from being raised at all—which corresponds to a total correctness interpretation. Similarly,
for specifying nondeterministic computations, two interpretations are possible for ContP: a demonic

one, in which the postcondition should hold for all possible result values [Dijkstra 1975], and an
angelic one, in which the postcondition should hold for at least one possible result [Floyd 1967].
The key idea of this paper is to decouple the computational monad and the specification monad:

instead of insisting on deriving both from the same monad transformer as in DM4Free, we consider
them independently and only require that they are related by a monad morphism, i.e., a mapping
between two monads that respects their monadic structure. For instance, a monad morphism
from nondeterministic computations could map a finite set of possible outcomes to a predicate
transformer in (A→ P) → P. Given a finite set R of results in A and a postcondition post : A→ P,
there are only two reasonable ways to obtain a single proposition: either take the conjunction of
post v for every v in R (demonic nondeterminism), or the disjunction (angelic nondeterminism). For
the case of IO, in our framework we can consider at least two monad morphisms relating the IO
monad to two different specification monads,W Fr andW Hist, where E is the alphabet of IO events:

W FrX = (X × E∗ → P) → P ←− IO −→ W HistX = (X × E∗ → P) → (E∗ → P)

While both specification monads take postconditions of the same type (predicates on the final value
and the produced IO events), the produced precondition ofW HistX has an additional argument E∗,
which denotes the history of of interactions (i.e., IO events) with the external world.

This paper makes the following contributions:
▶ We propose a new semantic framework for verifying programs with arbitrary monadic effects

using Dijkstra monads. By decoupling the computational monad from the specificationmonadwe
remove all previous restrictions on supported computational monads. Moreover, this decoupling
allows us to flexibly choose the specification monad and monad morphism most suitable for the
verification task at hand. We investigate a large variety of specification monads that are obtained
by applying monad transformers to various base monads, including predicate transformers (e.g.,
weakest preconditions and strongest postconditions) and Hoare-style pre- and postconditions.
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Dijkstra Monads for All 1:3

This flexibility allows a wide range of verification styles for nondeterminism, IO, and general
recursion—none of which was possible with DM4Free.

▶ We give the first general definition of Dijkstra monads as a monad-like structure indexed by a
specification monad ordered by precision. We show that any monad morphism gives rise to a
Dijkstra monad, and that from any such Dijkstra monad we can recover the monad morphism.
More generally, we construct an adjunction between Dijkstra monads and a generalization of
monad morphisms, monadic relations, which induces the above-mentioned equivalence.

▶ We recastDM4Free as a special case of our new framework. For this, we introduce SM, a principled
metalanguage for defining correct-by-construction monad transformers. The design of SM is
inspired by DM and Moggi’s monadic metalanguage, but it is parameterized by an arbitrary
dependent type theory instead of a set of simple types. We show that under a natural linearity
condition SM terms give rise to correct-by-construction monad transformers (satisfying all the
usual laws) as well as canonical monadic relations, defined from a logical relation. This allows
us to reap the benefits of the DM4Free construction when it works well (e.g., state, exceptions),
and to explicitly provide monad morphisms when it does not (e.g., nondeterminism, IO).

▶ We give an account of Plotkin and Power’s algebraic operations for Dijkstra monads. We show
that a monad morphism equips both its specification monad and the corresponding Dijkstra
monad with algebraic operations. We also start to investigate two approaches to effect handlers.
The first approach, in which the specification of operations is induced by the handler, allows us
to both provide a uniform treatment of DM4Free’s hand-rolled examples of exception handling,
and subsume the prior work on weakest exceptional preconditions. However, this approach
seems inherently limited to exceptions. The second approach, in which operations have to be
given specifications upfront, enables us to also accommodate handlers for effects other than
exceptions, for instance for general recursion, based on McBride’s free monad technique.

▶ We illustrate the generality of our semantic framework by applying it to the verification of
simple monadic programs in both Coq and F⋆.
Paper structure. We start by reviewing the use of monads in effectful programming and the

closest related approaches for reasoning about such programs (§2). We then give a gentle overview
of our approach through illustrative examples (§3). After this, we dive into the technical details:
First, we show how to obtain a wide range of specification monads by applying monad transformers
to base specification monads (§4). Then, we show the tight and natural correspondence between
Dijkstra monads, and monadic relations and monad morphisms (§5). We also study algebraic
operations and effect handlers for Dijkstra monads (§6). Finally, we outline our implementations of
these ideas in F⋆ and Coq (§7), before discussing related (§8) and future work (§9).

Supplementary materials include: (1) verification examples and implementation of our framework
in F⋆ (https://github.com/FStarLang/FStar/tree/dm4all/examples/dm4all); (2) verification examples
and a formalization in Coq (https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all); (3) an online
appendix with further technical details (https://arxiv.org/abs/1903.01237).

2 BACKGROUND: MONADS AND MONADIC REASONING
We start by briefly reviewing the use of monads in effectful programming, as well as the closest
related approaches for verifying monadic programs.

2.1 The Monad Jungle Book
Side effects are an important part of programming. They arise in a multitude of shapes, be it
imperative algorithms, nondeterministic operations, potentially diverging computations, or inter-
actions with the external world. These various effects can be uniformly captured by the algebraic

https://github.com/FStarLang/FStar/tree/dm4all/examples/dm4all
https://gitlab.inria.fr/kmaillar/dijkstra-monads-for-all
https://arxiv.org/abs/1903.01237
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1:4 Maillard et al.

structure known as a computational monad [Benton et al. 2000; Moggi 1989]. This uniform interface
is provided via a typeMA of computations returning values of type A; a function retM : A→ MA
that coerces a value v : A to a trivial computation, for instance seeing v as a stateful computation
leaving the state untouched; and a function bindM m f that sequentially composes the monadic
computations m : MA with f : A → MB, for instance threading through the state. Equations
specify that retM does not have any computational effect, and that bindM is associative.

The generic monad interface (M, retM , bindM ) is, however, not enough to write programs that
exploit the underlying effect. To this end, each computational monad also comes with operations

for causing effects. We briefly recall a few examples of computational monads and their operations:
Exceptions: A computation that can potentially throw exceptions of type E can be represented by

the monad ExcA = A + E. Returning a value v is the obvious left injection, while sequencing
m with f is given by applying f to v ifm = inlv , or inr e ifm = inr e , i.e., whenm raised
an exception. The operation throw : E → Exc0 is defined by right injection. When we take
E = 1, exceptions also give us a simple model of partiality (the monad being DivA = A + 1).

State: A stateful computation can be modeled as a state-passing function, i.e., StA = S → A × S ,
where S is the type of the state. Returning a value v is the function λs . ⟨v, s⟩ that produces
the value v and the unmodified state, whereas binding m to f is obtained by threading
through the state, i.e. λs .let ⟨v, s ′⟩ =m s in f v s ′. The state monad comes with operations
get : St S = λs . ⟨s, s⟩ to retrieve the state, and put : S → St1 = λs .λs ′. ⟨∗, s⟩ to overwrite it.

Nondeterminism: A nondeterministic computation can be represented by a finite set of possible
outcomes, i.e. NDetA = Pfin(A). Returning a value v is provided by the singleton {v},
whereas sequencingm with f amounts to forming the union

⋃
v ∈m f v . This monad comes

with an operation pick : NDetB = {true, false}, which nondeterministically chooses a
boolean value, and an operation fail : NDet0 = ∅, which unconditionally fails. One can
nondeterministically choose an element of a finite set by repeatedly applying pick.

Interactive input-output (IO): An interactive computation with input type I and output type O
can be represented by the inductively defined monad IOA = µY .A+ (I → Y ) +O ×Y , which
describes three possible kinds of computations: either return a value (A), expect to receive an
input and then continue (I → Y ), or output and continue (O ×Y ). Returning v is constructing
a leaf, whereas sequencingm with f amounts to tree grafting: replacing each leaf with value
a inm with the tree f a. The operations for IO are input : IO I and output : O → IO1.

2.2 Reasoning About Computational Monads
Many approaches have been proposed for reasoning about effectful programs; we review the ones
closest to ours. In an imperative setting, Hoare introduced a program logic to reason about properties
of programs [Hoare 1969]. The judgments of this logic are Hoare triples { pre } c { post }. Intuitively,
if the precondition pre is satisfied, then running the program c leaves us in a situation where post
is satisfied, provided that c terminates. For imperative programs—i.e., statements changing the
program’s state—pre and post are predicates over states.
Hoare’s approach can be directly adapted to the monadic setting by replacing imperative pro-

grams c with monadic computationsm : MA. This approach was first proposed in Hoare Type
Theory [Nanevski et al. 2008b], where a Hoare monad of the form HST pre A post augments the
state monad over A with a precondition pre : S → P and postcondition post : A × S → P. So while
preconditions are still predicates over initial states, postconditions are now predicates over both
final states and results. While this approach was successfully extended to a few other effects [Del-
bianco and Nanevski 2013; Nanevski et al. 2008a, 2013], there is still no general story on how to
define a Hoare monad or even just the shape of pre- and postconditions for an arbitrary effect.
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Dijkstra Monads for All 1:5

A popular alternative to proving properties of imperative programs is Dijkstra’s weakest precon-
dition calculus [Dijkstra 1975]. The main insight of this calculus is that we can typically compute a
weakest precondition wp(c,post) such that pre ⇒ wp(c,post) if and only if { pre } c { post }, and
therefore partly automate the verification process by reducing it to a logical decision problem.
Swamy et al. [2013] observed that it is possible to adopt Dijkstra’s technique to ML programs with
state and exceptions elaborated to monadic style. They propose a notion of Dijkstra monad of the
form DST A wp, where wp is a predicate transformer that specifies the behavior of the monadic
computation. These predicate transformers are represented as functions that, given a postcondition
on the final state, and the result value of typeA or an exception of type E, calculate a corresponding
precondition on the initial state. Their predicate transformer type can be written as follows:

W ML = ((A + E) × S → P)︸                 ︷︷                 ︸
postconditions

→ (S → P)︸   ︷︷   ︸
preconditions

.

In subsequent work, Swamy et al. [2016] extend this to programs that combine multiple sub-effects.
They compute more efficient weakest preconditions by using Dijkstra monads that precisely capture
the actual effects of the code, instead of verifying everything usingW ML above. For example, pure
computations are verified using a Dijkstra monad whose specifications have type:

W PureA = ContP A = (A→ P) → P,

while stateful (but exception-free) computations are verified using specifications of type:
W StA = (A × S → P) → (S → P).

Recently, Ahman et al.’s [2017] DM4Free work shows that these originally disparate specification
monads can be uniformly derived from computational monads defined in their DM metalanguage.
An important observation underlying these techniques is that predicate transformers have a

natural monadic structure. For instance, it is not hard to see that the predicate transformer type
W Pure is simply the continuationmonadwith answer typeP, thatW St is the state monad transformer
applied toW Pure, and thatW ML is the state and exceptions monad transformers applied toW Pure. It
is this monadic structure that supports writing computations that carry their own specification. In
the next section, we show that it is also the basis for what we call a specification monad.

3 A GENTLE INTRODUCTION TO DIJKSTRA MONADS FOR ALL
In this section we introduce a few basic definitions and illustrate the main ideas of our semantic
framework on various relatively simple examples. We start from the observation that the kinds
of specifications most commonly used in practice form ordered monads (§3.1). On top of this we
define effect observations, as just monad morphisms between a computation and a specification
monad (§3.2), and give various examples (§3.3). Finally, we explain how to use effect observations
to obtain Dijkstra monads, and how to use Dijkstra monads for program verification (§3.4).

3.1 Specification Monads
The realization that predicate transformers form monads [Ahman et al. 2017; Jacobs 2014, 2015;
Swamy et al. 2013, 2016] is the starting point to provide a uniform notion of specifications. Gener-
alizing over prior work, we show that this is true not only for weakest precondition transformers,
but also for strongest postconditions, and pairs of pre- and postconditions (see §4.1). Intuitively,
elements of a specification monad can be used to specify properties of some computation, e.g.,W Pure

can specify pure or nondeterministic computations, andW St can specify stateful computations.
The specification monads we consider are ordered. Formally, a monadW is ordered whenWA is

equipped with a preorder ≤WA for each type A, and bindW is monotonic in both arguments:
∀(w1 ≤

WA w ′1).∀(w2w
′
2 : A→WB). (∀x : A.w2 x ≤

WB w ′2 x) ⇒ bindW w1w2 ≤
WB bindW w ′1w

′
2
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1:6 Maillard et al.

This order allows specifications to be compared as being either more or less precise. For example,
for the specification monadsW Pure andW St, the ordering is given by

w1 ≤ w2 :W PureA ⇔ ∀(p : A→ P).w2 p ⇒ w1 p

w1 ≤ w2 :W StA ⇔ ∀(p : A × S → P)(s : S).w2 p s ⇒ w1 p s

ForW Pure andW St to form ordered monads, it turns out that we need to restrict our attention
to monotonic predicate transformers, i.e., those mapping (pointwise) stronger postconditions to
stronger preconditions. This technical condition, quite natural from the point of view of verification,
will be assumed implicitly for all the predicate transformers, and will be studied in detail in §4.1.

As explained in §2.2, a powerful way to construct specification monads is to apply monad
transformers to existing specification monads, e.g., applying ExcTMA = M (A+E) toW Pure we get

W ExcA = ExcTW PureA = ((A + E) → P) → P � (A→ P) → (E → P) → P

W Exc is a natural specification monad for programs that can throw exceptions, transporting a
normal postcondition in A→ P and an exceptional postcondition in E → P to a precondition in P.
Further specification monads using this idea will be introduced along with the examples in §3.3.

3.2 Effect Observations
Now that we have a presentation of specifications as elements of a monad, we can relate com-
putational monads to such specifications. Since an object relating computations to specifications
provides a particular insight to the potential effects of the computation, they have been called effect
observations [Katsumata 2014]. As explained in §1, a computational monad can have effect observa-
tions into multiple specification monads, or multiple effect observations into a single specification
monad. Using the exceptions computational monad Exc as running example, we argue that monad

morphisms provide a natural notion of effect observation in our setting, and we provide example
monad morphisms supporting this claim. Further examples are explored in §3.3.

Effect observations are monad morphisms. As explained in §2.1, computations throwing
exceptions can be modeled by monadic expressionsm : ExcA = A + E. A natural way to specifym
is to consider the specification monadW ExcA = ((A + E) → P) → P and to mapm to the predicate
transformer θExc(m) = λp. pm :W ExcA, applying the postcondition p to the computationm.
The mapping θExc : Exc→W Exc relating the computational monad Exc and the specification

monadW Exc is parametric in the return typeA, and it verifies two important properties with respect
to the monadic structures of Exc andW Exc. First, a returned value is specified by itself:

θExc(retExcv) = θExc(inlv) = λp. p (inlv) = retW
Exc

v

and second, θ preserves the sequencing of computations:
θExc(bindExc (inlv) f ) = θExc(f v) = bindW

Exc
(retW

Exc
v) (θExc◦f ) = bindW

Exc
θExc(inlv) (θExc◦f )

θExc(bindExc (inr e) f ) = θExc(inr e) = bindW
Exc

θExc(inr e) (θExc ◦ f )

These properties together prove that θExc is a monad morphism. More importantly, they allow us
to compute specifications from computations compositionally, e.g., the specification of bind can be
computed from the specifications of its arguments. This leads us to the following definition:

Definition 1 (Effect observation). An effect observation θ is a monad morphism from a compu-

tational monadM to a specification monadW . More explicitly, it is a family of maps θA : MA −→W A,
natural in A and such that for any v : A,m : MA and f : A→ M B the following equations hold:

θA(ret
M v) = retW v θB (bind

M m f ) = bindW (θAm) (θB ◦ f )
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Dijkstra Monads for All 1:7

Specificationmonads are not canonical. Whenwriting programs using the exceptionmonad,
we may want to write pure sub-programs that actually do not raise exceptions. In order to make
sure that these sub-programs are pure, we could use the previous specification monad and restrict
ourselves to postconditions that map exceptions to false (⊥): hence raising an exception would have
an unsatisfiable precondition. However, as outlined in §1, a simpler solution is possible. Taking as
specification monadW Pure, we can define the following effect observation θ⊥ : Exc→W Pure by

θ⊥(inlv) = λp. pv θ⊥(inr e) = λp. ⊥

This effect observation gives a total correctness interpretation to exceptions, which prevents them
from being raised at all. As such, we have effect observations from Exc to bothW Exc andW Pure.

Effect observations are not canonical. Looking closely at the effect observation θ⊥, it is clear
that we made a rather arbitrary choice when mapping every exception inr e to ⊥. Mapping inr e
to true (⊤) instead also gives us an effect observation, θ⊤ : Exc→W Pure. This effect observation
assigns a trivial precondition to the throw operation, providing a partial correctness interpretation:
given a programm : ExcA and a postcondition p : A→ P, if θ⊤(m)(p) is satisfiable andm evaluates
to inlv then pv holds; butm may also raise any exception instead. Thus, θ⊥, θ⊤ : Exc→W Pure

are two natural effect observations into the same specification monad. Even more generally, we can
vary the choice for each exception; in fact, effect observations θ : Exc→W Pure are in one-to-one
correspondence with maps E → P (see §4.4 for a general account of this correspondence).

3.3 Examples of Effect Observations
When specifying and verifying monadic programs, there is generally a large variety of options
regarding both the specification monads and the effect observations. We will now revisit more
computational monads from §2.1, and present various natural effect observations for them.

Monad transformers. Even though there is, in general, no canonical effect observation for a
computational monad, for the case of a monad T(Id) (i.e., a monad obtained by the application of a
monad transformer to the identity monad) we can build a canonical specification monad, namely
T(W Pure), and a canonical effect observation into it. The effect observation is obtained simply
by lifting the retW Pure : Id →W Pure function through the T transformer. This is the main idea
behind our reinterpretation of the DM4Free approach [Ahman et al. 2017]. For instance, for the
exception monad Exc = ExcT(Id) and the specification monadW Exc = ExcT (W Pure), the effect
observation θExc arises as simply θExc = ExcT(retW Pure

) = λmp. pm. More generally, for any
monad transformer T (e.g. StT, ExcT, StT ◦ ExcT, ExcT ◦ StT) and any specification monadW (so
not justW Pure, but also e.g., any basic specification monad from §4.1) we have a monad morphism

θ T : T(Id)
T(retW

Pure
)

−−−−−−−−−→ T(W Pure)

providing effect observations for stateful computations with exceptions, or for computations with
rollback state. However, not all computational monads arise as a monad transformer applied to the
identity monad. The following examples illustrate the possibilities in such cases.

Nondeterminism. The computational monad NDet admits effect observations to the specifica-
tion monadW Pure. Given a nondeterministic computationm : NDetA represented as a finite set of
possible outcomes, and a postcondition post : A→ P, we obtain a set P of propositions by applying
post to each element ofm. There are then two natural ways to interpret P as a single proposition:
▷ we can take the conjunction

∧
p∈P p, which corresponds to the weakest precondition such that

any outcome ofm satisfies post (demonic nondeterminism); or
▷ we can take the disjunction

∨
p∈P p, which corresponds to the weakest precondition such that at

least one outcome of m satisfies post (angelic nondeterminism).



344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
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To see that both these choices lead to monad morphisms θ ∀, θ ∃ : NDet → W Pure, it is enough
to check that taking the conjunction when P = {p} is a singleton is equivalent to p, and that a
conjunction of conjunctions

∧
a∈A

∧
p∈Pa p is equivalent to a conjunction on the union of the ranges∧

p∈
⋃
a∈A Pa p—and similarly for disjunctions. Both conditions are straightforward to check.

Interactive Input-Output. Let us now consider programs in the IO monad (§2.1). We want to
define an effect observation θ : IO→W , for some specification monadW to be determined. A first
thing to note is that since no equations constrain the input and output operations, we can specify
their interpretations θ (input) :W I and ∀(o : O). θ (outputo) :W 1 separately from each other.
Simple effect observations for IO can already be provided using the specification monadW Pure.

The interpretation of the output operation in this simple case needs to provide a result in P from an
output element o : O and a postcondition p : 1→ P. Besides returning a constant proposition (like
for θ⊥, θ⊤ in §3.2), a reasonable interpretation is to forget the output operation and returnp ∗ (where
∗ is the unit value). For the definition of θ (input) : (I → P) → P, we are given a postcondition
post : I → P on the possible inputs and we need to build a proposition. Two canonical solutions
are to use either the universal quantification ∀(i : I ).post i , requiring that the postcondition is
valid for the continuation of the program for any possible input; or the existential quantification
∃(i : I ).post i , meaning that there exists some input such that the program’s continuation satisfies
the postcondition, analogously to the two modalities of evaluation logic [Moggi 1995; Pitts 1991].

To get more interesting effect observations accounting for inputs and outputs we can, for instance,
extendW Pure with ghost state [Owicki and Gries 1976] capturing the list of executed IO events.2
We can do this by applying the state monad transformer with state type list E toW Pure, obtaining
the specification monadW HistSTA = (A × list E → P) → list E → P, for which we can provide
interpretations of input and output that also keep track of the history of events via ghost state:
θHistST(outputo) = λ(p : 1 × list E→P) (loд : listE). p ⟨∗, (Outo) :: loд⟩ :W HistST(1)

θHistST(input) = λ(p : I × list E→P) (loд : listE). ∀i .p ⟨i, (In i) :: loд⟩ :W HistST(I )

This specification monad is however somewhat inconvenient in that postconditions are written
over the global history of events, instead of over the events of the expression in question. Further,
one can write specifications that “shrink” the global history of events, such as λp loд. p ⟨∗, []⟩, which
no expression satisfies. For these reasons, we introduce an update monad [Ahman and Uustalu
2013] variant ofW HistST, writtenW Hist, which provides a more concise way to describe the events.
In particular, inW Hist the postcondition specifies only the events produced by the expression, while
the precondition is still free to specify any previously-produced events, allowing us to define:

θHist(outputo) = λ(p : 1 × list E→P) (loд : listE). p ⟨∗, [Outo]⟩ :W Hist(1)

θHist(input) = λ(p : I × list E→P) (loд : listE). ∀i .p ⟨i, [In i]⟩ :W Hist(I )

WhileW Hist =W HistST, the two monads differ in their ret and bind functions. For instance,
bindW

HistST
w f = λp loд. w

(
λ ⟨x, loд′⟩ . f x p loд′

)
loд

bindW
Hist

w f = λp loд. w
(
λ ⟨x, loд′⟩ . f x

(
λ(y, loд′′). p ⟨y, loд′ ++loд′′⟩

)
(loд ++loд′)

)
loд

where the former overwrites the history, while the latter merely augments it with new events.
WhileW Hist provides a good way to reason about IO, some IO programs do not depend on past

interactions. For these, we can provide an even more parsimonious specification monad by applying
the writer transformer toW Pure. The resulting specification monadW Fr then allows us to define

θFr(outputo) = λ(p : 1 × list E→P). p ⟨∗, [Outo]⟩ : W Fr(1)

θFr(input) = λ(p : I × list E→P). ∀i .p ⟨i, [In i]⟩ : W Fr(I )

2Importantly, the ghost state only appears in specifications and not in user programs; these still use only (stateless) IO.
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This is in fact a special case ofW Hist where the history is taken to be 1 [Ahman and Uustalu 2013].
In fact, there is even more variety possible here, e.g., it is straightforward to write specifications

that speak only of output events and not input events, and vice versa. It is also easy to extend this
style of reasoning to combinations of IO and other effects. For instance, we can simultaneously
reason about state changes and IO events by considering computations in IOStA = S → IO(A × S),
resulting from applying the state monad transformer to IO, together with the specification monad
W IOStA = (A × S × list E → P) → S → list E → P. As such, we recover the style proposed by
Malecha et al. [2011], though they also cover separation logic, which we leave as future work.
Being able to choose between specification monads and effect observations allows one to keep

the complexity of the specifications low when the properties are simple, yet increase it if required.

3.4 Recovering Dijkstra Monads
We now return to Dijkstra monads, which provide a practical and automatable verification technique
in dependent type theories like F⋆ [Swamy et al. 2016], where they are a primitive notion, and
Coq, where they can be embedded via dependent types. We explain how a Dijkstra monad can be
obtained from a computational monad, a specification monad, and an effect observation relating
them. Then we show how the obtained Dijkstra monad can be used for actual verification.

Stateful computations. Let us start with stateful computations as an illustrative example, tak-
ing the computational monad St, the specification monadW St, and the following effect observation:

θSt : St→W St

θSt(m) = λpost s0. post (ms0)

We begin by defining the Dijkstra monad type constructor, ST : (A : Type) → W St A → Type.
The type ST A w contains all those computations c : St A that are correctly specified by w . We
say that c is correctly specified byw when θSt(c) ≤ w , that is, whenw is weaker than (or equal to)
the specification given from the effect observation. Unfolding the definitions of ≤ and θSt, this
intuitively says that for any initial state s0 and postcondition post : A × S → P, the precondition
w post s0 computed byw is enough to ensure that c returns a valuev : A and a final state s1 satisfying
post ⟨v, s1⟩; in other words,w post s0 implies the weakest precondition of c .

The concrete definition for the type of a Dijkstra monad can vary according to the type theory
in question. For instance, in our Coq development, we define it (roughly) as a dependent pair of a
computation c : St A and a proof that c is correctly specified byw . In F⋆, it is instead a primitive
notion. In the rest of this section, we shall not delve into such representation details.

The Dijkstra monad ST is equipped with monad-like functions retST and bindST whose defini-
tions come from the computational monad St, while their specifications come from the specification
monadW St. The general shape for the ret and bind of the obtained Dijkstra monad is:3

retST = retSt : (v : A) → ST A (retW
St
v)

bindST = bindSt : (c : ST Awc ) → (f : (x : A) → ST B (wf x)) → ST B (bindW
St
wc wf )

which, after unfolding the state-specific definitions becomes:
retST = retSt : (v : A) → ST A (λpost s0. post ⟨v, s0⟩)
bindST = bindSt : (c : ST Awc ) → (f : (x : A) → ST B (wf x))

→ ST B (λp s0. wc (λ ⟨x, s1⟩ . wf x p s1) s0)

3If the representation of the Dijkstra monad is dependent pairs, then the code here does not typecheck as-is and requires
some tweaking. For this section we will assume Dijkstra monads are defined as refinements of the computational monad,
without any explicit proof terms to carry around. In our Coq implementation we use Program and evars to hide such details.
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The operations of the computational monad are also reflected into the Dijkstra monad, with their
specifications are computed by θSt. Given op

St : (x1 : A1) → · · · → (xn : An) → St B, we can define
op

ST = op
St : (x1 : A1) → · · · → (xn : An) → ST B (θSt(opSt x1 . . . xn))

Concretely, for state, we get the following two operations for the Dijkstra monad ST:
get : ST S (λp s0. p ⟨s0, s0⟩), put : (s : S) → ST 1 (λp s0. p ⟨∗, s⟩).

Given this refined version of the state monad, computing specifications of (non-recursive)
programs becomes simply a matter of doing type inference to compositionally lift the program to a
specification and then unfolding the specification by (type-level) computation. For instance, given
modify (f : S → S) = bindST get (λx . put(f x)), both F⋆ and Coq can infer the type

ST 1 (bindW
St
(λp s0. p ⟨s0, s0⟩) (λs p s0. p ⟨∗, f s⟩)) = ST 1 (λp s0. p ⟨∗, f s0⟩)

which precisely describes the behavior of modify. Program verification then amounts to proving
that, given a programmer-provided type-annotation ST 1 w for modifyf , the specification w is
weaker than the inferred specification.

Demonic nondeterminism. The previous construction is independent from how the compu-
tational monad, the specification monad, and the effect observation were obtained. The exact same
approach can be followed for the NDet monad coupled with any of its effect observations. We use
the demonic one here, for which the pick and fail actions for the Dijkstra monad have types:

pickND✠ : ND✠ B (λp. p true ∧ p false) failND✠ : ND✠ 0 (λp. ⊤)

With this, we can define and verify F⋆ (or Coq) functions like the following:

let rec pickl (l:list α ) : NDD α (λ p→∀x. elem x l =⇒ p x) =
match l with | []→ fail () | x::xs→ if pick () then x else pickl xs

let guard (b:bool) : NDD unit (λ p→ b =⇒ p ()) = if b then () else fail ()

The pickl function nondeterministically chooses an element from a list, guaranteeing in its specifi-
cation that the chosen value belongs to it. The guard function checks that a given boolean condition
holds, failing otherwise. The specification of guard b ensures that b is true in the continuation. Using
these two functions, we can write and verify concise nondeterministic programs, such as the one
below that computes Pythagorean triples. The specification simply says that every result (if any!)
is a Pythagorean triple, while in the implementation we have some concrete bounds for the search:

let pyths () : NDD (int & int & int) (λ p→∀x y z. x∗x + y∗y = z∗z =⇒ p (x,y,z)) =
let l = [1;2;3;4;5;6;7;8;9;10] in let (x,y,z) = (pickl l, pickl l, pickl l) in guard (x∗x + y∗y = z∗z); (x,y,z)

Input-Output. We illustrate Dijkstra monads for multiple effect observations from IO. First, we
consider the context-free interpretation θFr : IO→W Fr, for which IO operations have the interface:

inputIO
Fr : IOFree I (λp. ∀(i : I ).p ⟨i, [In i]⟩)

outputIO
Fr : (o : O) → IOFree 1 (λp. p ⟨∗, [Out o]⟩)

We can define and specify a program that duplicates its input (assuming an implicit coercion I <: O):

let duplicate () : IOFree unit (λ p→∀x. p ((), [In x; Out x; Out x])) = let x=input() in output x; output x

However, with this specification monad, we cannot reason about the history of previous IO
events. To overcome this issue, we can switch the specification monad toW Hist and obtain

inputIO
Hist : IOHist I (λp h. ∀i .p ⟨i, [In i]⟩)

outputIO
Hist : (o : O) → IOHist 1 (λp h. p ⟨∗, [Out o]⟩)
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The computational part of this Dijkstra monad fully coincides with that of IOFr, but the specifications
are much richer. For instance, we can define the following computation:

mustHaveOccurred = λ_. retIOHist
∗ : (o : O) → IOHist1 (λp h. Out o ∈ h ∧ p ⟨∗, []⟩)

which has no computational effect, yet requires that a given value o was already been outputted be-
fore it is called. This is weakening the specification of retIOHist

∗ (namely, retW Hist
∗ = λp h. p ⟨∗, []⟩)

to have a stronger precondition. By having this amount of access to the history, one can verify that
certain invariants are respected. For instance, the following program will verify successfully:
let print_increasing (i:int) : IOHist unit (λ p h→∀h'. p ((), h')) =

output i; (∗ pure computation ∗) mustHaveOccurred i; (∗ another pure computation ∗) output (i+1)

The program has a “trivial” specification: it does not guarantee anything about the trace of events,
nor does it put restrictions on the previous log. However, internally, the call to mustHaveOccurred
has a precondition that iwas already output, which can be proven from the postcondition of output i.
If this output is removed, the program will (rightfully) fail to verify.

Finally, when considering the specification monadW IOSt, we have both state and IO operations:
inputIOSt : IOSt I (λp s h. ∀i .p ⟨i, s, [In i]⟩) getIOSt : IOSt S (λp s h. p ⟨s, s, []⟩)
outputIOSt : (o : O) → IOSt1 (λp s h. p ⟨∗, s, [Out o]⟩) putIOSt : (s : S) → IOSt1 (λp _h. p ⟨∗, s, []⟩)
where (inputIOSt, outputIOSt) keep state unchanged, and (getIOSt, putIOSt) do not perform any IO.
With this, we can write and verify programs that combine state and IO in non-trivial ways, e.g.,
let do_io_then_rollback_state () : IOST unit (λ s h p→∀i . p (() , s , [In i; Out (s+i+1)])) =
let x = get () in let y = input () in put (x+y); (∗ pure computation ∗) let z = get () in output (z+1); put x

The program mutates the state in order to compute output from input, possibly interleaved with
pure computations, but eventually rolls it back to its initial value, as mandated by its specification.

Effect polymorphic functions. Even though the operations ret and bind provided by a
(strong) monad can seem somewhat restrictive at first, they still allow us to write functions that
are generic in the underlying computational monad. One example is the following mapW function
on lists, generic in the monad W (similar to the mapM function in Haskell):
let rec mapW (l : list α ) (f : α→W β) :W (list β) =
match l with []→ ret [] | x :: xs→ bind (f x) (λ y→ bind (mapW xs f) (λ ys→ ret (y :: ys)))

When working with Dijkstra monads, we can use the mapW function as a generic specification for
the same computation when expressed using an arbitrary Dijkstra monad D indexed by W:4

let rec mapD (l : list α ) (w : α→W β) (f : (a:α )→D β(w a)) : D (list β) (mapW l w) =
match l with []→ ret [] | x :: xs→ let y = f x in let ys = mapD xs w f in y :: ys

where mapD takes the list l, the specification for what is to happen to each element of the list, w,
and an implementation of that specification, f. It builds an effectful computation that produces a
list, specified by the extension of the element-wise specification w to the whole list by mapW.
Analogously, we can implement a generic iterator combinator provided we have an invariant

w :W unit for the loop body : nat→D unit w such that the invariant satisfies bind w (λ()→w) ≤ w:
let rec for_in (range : list nat) (body : nat→D unit w) : D unit w =
match range with []→ () | i :: range→ body i ; for_in range body

Here we use not only the monadic operations but also the possibility to weaken the specification
bind w (λ()→w) computed from the second branch of thematch to the specification w by assumption.
4These last examples are written in F⋆ syntax, but only implemented in Coq, since Dijkstra monads are not first class in F⋆.
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In all the examples in this section, we used Dijkstra monads obtained via the same general recipe
(see §5 for details) from the same kinds of ingredients: a computational monad, a specification
monad, and an effect observation from the former to the latter. This enables a uniform treatment of
effects for verification, and opens the door for verifying rich properties of effectful programs.

4 DEFINING SPECIFICATION MONADS
To enable various verification styles, in §3 we introduced various specification monads arising
from the application of monad transformers to the monad of predicate transformersW Pure. In this
section, we start by observing thatW Pure is not the only natural basic specification monad on which
to stack monad transformers (§4.1). We then present our specification metalanguage SM, as a means
for defining correct-by-construction monad transformers (§4.2). SM is a more principled variant of
the DM language of Ahman et al. [2017], and similarly to DM, we give SM a semantics based on
logical relations. Observing that not all SM terms give rise to monad transformers (§4.3), we extract
conditions under which we are guaranteed to obtain monad transformers, providing an explanation
for the somewhat artificial syntactic restrictions in DM. Finally, we also discuss a principled way to
derive effect observations intoW Pure andW St from algebras of computational monads (§4.4).

4.1 Basic Specification Monads
We consider several basic specification monads, whose relationship is summarized by Figure 1.

Predicate monad. Arguably the simplest way to specify a computation is to provide a postcon-
dition on its outcomes. This can be done by considering the specification monad PredA = A→ P
(the covariant powerset monad) with order p1 ≤Pred p2 ⇐⇒ ∀(a : A).p1 a ⇒ p2 a. To specify
the behavior of returning values, we can always map a value v : A to the singleton predicate
retPredv = λy. (y = v) : PredA. And given a predicate p : PredA and a function f : A→ PredB,
the predicate on B defined by bindPred p f = λb . ∃a.p a ∧ f a b specifies the behavior of sequenc-
ing two computations, where the first computation produces a value a satisfying p and, under
this assumption, the second computation produces a value satisfying f a. While a specification
p : PredA provides information on the outcome of the computation, it cannot require preconditions,
so computations need to be defined independently of any logical context. To give total correctness
specifications to computations with non-trivial preconditions, for instance specifying that the
division function divx y requires y to be non-zero, we need more expressive specification monads.

Pre-/postconditionmonad. Onemore expressive specificationmonad is the monad of pre- and
postconditions PrePostA = P × (A→ P), bundling a precondition together with a postcondition.
Here the behavior of returning a value v : A is specified by requiring a trivial precondition and
ensuring as above a singleton postcondition: retPrePostv = ⟨⊤, λa. a = v⟩ : PrePostA. And,
given p = ⟨pre, post⟩ : PrePostA and a function f = λa. ⟨pre ′ a, post ′ a⟩ : A→ PrePostB, the
sequential composition of two computations is naturally specified by defining

bindPrePost p f = ⟨ (pre ∧ ∀a.post a =⇒ pre ′ a) , λb . ∃a.post a ∧ post ′ a b ⟩ : PrePostB
The resulting precondition ensures that the precondition of the first computation holds and,
assuming the postcondition of the first computation, the precondition of the second computation
also holds. The resulting postcondition is then simply the conjunction of the postconditions of the
two computations. The order on PrePost naturally combines the pointwise forward implication
order on postconditions with the backward implication order on preconditions.
We formally show that this specification monad is more expressive than the predicate monad

above: Any predicate p : PredA can be coerced to (⊤,p) : PrePostA, and in the other direction,
any pair (pre,post) : PrePostA can be approximated by the predicate post , giving rise to a Galois
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W Pure

Pred PrePost RelPrePost

SPost
Fig. 1. Relationships between basic specification monads (each pair forms a Gallois connection)

connection, as illustrated in Figure 1. While the monad PrePost is intuitive for humans, generating
efficient verification conditions is generally easier for predicate transformers [Leino 2005].

Forward predicate transformer monad. The predicate monad Pred can be extended in an
alternative way. Instead of fixing a precondition as in PrePost, a specification can be a function from
preconditions to postconditions, for instance producing the strongest postcondition of computation
for any precondition pre:P given as argument. Intuitively, such a forward predicate transformer
on A has type P→ (A→ P). However, to obtain a monad (i.e., satisfying the expected laws), we
have to consider the smaller type SPostA = (pre:P) → (A → P/pre) of predicate transformers
monotonic with respect to pre, where P/pre is the subtype of propositions implying pre. Return-
ing a value v : A is specified by the predicate transformer retSPostv = λpre a. pre ∧ a = v ,
and the sequential composition of two computations is specified as the predicate transformer
bindSPostm f = λpreb . ∃a. f a (m pre a)b, form : SPostA and f : A→ SPostB.
Backward predicate transformer monad. As explained in §2.2, backward predicate trans-

formers can be described using the continuation monad with propositions P as the answer type,
namely, ContP A = (A→ P) → P. Elements w : ContP A are predicate transformers mapping a
postcondition post : A→ P to a preconditionw post : P, for instance the weakest precondition of
the computation. Pointwise implication is a natural order on ContP A:

w1 ≤ w2 : ContP A ⇔ ∀(p : A→ P).w2 p ⇒ w1 p

However, ContP is not an orderedmonadwith respect to this order because its bind is notmonotonic.
In order to obtain an ordered monad, we restrict our attention to the submonadW Pure of ContP
containing the monotonic predicate transformers, that is thosew : ContP A such that

∀(p1 p2 : A→ P). (∀(a : A).p1 a ⇒ p2 a) ⇒ w p1 ⇒ w p2,

which is natural in verification: we want stronger postconditions to map to stronger preconditions.
This specification monad is more expressive than the pre-/postcondition one above [Swamy et al.

2016]. Formally, a pair (pre, post) : PrePostA can be mapped to the predicate transformer
λ(p : A→ P). pre ∧ (∀(a : A). post a ⇒ p a) : W PureA,

and vice versa, a predicate transformerw :W PureA can be approximated by the pair
( w (λa. ⊤) , λa. (∀p.w p ⇒ p a) ) : PrePostA

These two mappings define a Galois connection, as illustrated in Figure 1. Further, this Galois
connection exhibits PrePostA as the submonad ofW PureA of conjunctive predicate transformers,
i.e., predicate transformersw commuting with non-empty conjunctions/intersections.
Finally, bothW Pure and SPost can be embedded into an even more expressive specification

monad RelPrePost consisting of relations between preconditions and postconditions satisfying a
few conditions, the full details of which can be found in our Coq formalization.

4.2 Defining Monad Transformers
We use monad transformers [Liang et al. 1995] to construct more complex specification monads
from the basic ones above (and in some cases also to derive effect observations §3.3). However,
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C ::= MA | C1 ×C2 | (x : A) → C | C1 → C2 A ∈ TypeL

t ::= ret | bind | ⟨t1, t2⟩ | πi t | x | λ
⋄x . t | t1 t2 | λx . t | t u u ∈ TermL

Fig. 2. Syntax of SM

A ⊢SM ret : A→ MA A,B ⊢SM bind : MA→ (A→ MB) → MB

Γ, x : C1 ⊢SM t : C2

Γ ⊢SM λ⋄x . t : C1 → C2

Fig. 3. Selected typing rules for SM

JMAKM = MA JC1 ×C2KM = JC1KM × JC2KM J(x : A) → CKM = (x : A) → JCKM

JC1 → C2KM = (f : JC1KM → JC2KM ) × (∀(m1 ≤
C1 m′1). f m1 ≤

C2 f m′1)

m ≤MA m′ =m ≤MA m′ ⟨m1, m2⟩ ≤
C1×C2

〈
m′1, m

′
2
〉
=m1 ≤

C1 m′1 ∧m2 ≤
C2 m′2

f ≤(x :A)→C[x ] f ′ = ∀(x : A). f x ≤C[x ] f ′ x f ≤C1→C2 f ′ = ∀(m1 ≤
C1 m′1). f m1 ≤

C2 f ′m′1
Fig. 4. Elaboration from SM to L

defining a monad transformer and proving that it satisfies all the expected laws requires significant
effort. In this section, we introduce a Specification Metalanguage, SM, and a translation from SM
to correct-by-construction monad transformers in a base dependent type theory L (where L is
a parameter of SM). More precisely, our translation takes as input a monad in SM subject to two
extra conditions, covariance and linearity, and produces a correct monad transformer in L.

SM is an expressive language in which many different monads can be defined in a natural way,
for example reader Rd(X : Type) = I → MX ; writer Wr(X : Type) = M(X × O); exceptions
Exc(X : Type) = M(X + E); state St(X : Type) = S → M(X × S); monotonic state MonSt(X ) =
(s0 : S) → M(X × (s1 : S) × s0 ≼ s1), where ≼ is some preorder on states S; and continuations

ContAns(X ) = (X → MAns) → MAns. The symbol M stands for an arbitrary base monad, and
the covariance condition states that it appears only in the codomain of arrows. The more involved
linearity condition concerns the bind of these monads. With the exception of continuations (see
§4.3), all these SMmonads satisfy these extra conditions and thus lead to proper monad transformers.

Definition 2 (Monad transformer). A monad transformer [Liang et al. 1995] is given by

▷ a function T mapping monadsM to monads TM ,

▷ equipped with a monad morphism liftM : M → TM ,

▷ assigning functorially to each monadmorphism θ : M1→M2 amonadmorphism Tθ : TM1→TM2,
▷ and such that the liftM is natural inM , that is for any monad morphism θ : M1 → M2,

Tθ ◦ liftM1 = liftM2 ◦ θ

▷ moreover, they need to preserve the order structure present on the (ordered) monads as well as the

monotonicity of morphisms, and the lifts themselves should also be monotonic,

i.e., (T , lift) is a pointed endofunctor on the category of (ordered) monads [Lüth and Ghani 2002].

Building monad transformers. The design of SM, whose syntax is presented in Figure 2, has
been informed by the goal of defining monad transformers. First, since we want a mapping from
monads to monads, we introduce the type constructor M standing for an arbitrary base monad, as
well as terms ret and bind. Second, in order to describe monads internally to SM, we add function
types (x : A) → C[x] and C1 → C2. We allow dependent function types only when the domain is
in L, leading to two different type formers. We write dependent abstractions as λx . t , whereas we
write the non-dependent type as λ⋄x . t . In Figure 3 we present the typing rules of M, ret, and bind,
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leaving the remaining standard SM typing rules for the online appendix. To define our monad
transformers, we use monads internal to SM, given by
▷ a type constructor X : Type ⊢SM C[X ];
▷ termsA : Type ⊢SM retC : A→ C[A] andA,B : Type ⊢SM bindC : (A→ C[B]) → C[A] → C[B];
▷ such that the monadic laws are derivable in the equational theory of SM.

Now, given a monad C internal to SM, we want to define the corresponding monad transformer
TC evaluated at a monadM in the base language L, essentially as the substitution ofM for M. In
order to make this statement precise, we define a denotation J−K(γ )M in L of SM types (Figure 4)
and terms (provided in the appendix together with the equational theory) parametrized byM . This
denotation preserves the equational theory of SM, provided L has extensional dependent products
and pairs. As such, C induces the following mapping from monads to monads:

TC : (M, ret, bind) 7−→ (JCKM , JretCKM , JbindCKM )
For instance, taking C = St, the definition evaluates to T StM = X 7→ S → M(X × S).

To build the lift for TC , the key observation is that the denotation JCKM of an SM type C in L
can be endowed with anM-algebra structure αCM : MJCKM → JCKM 5. ThisM-algebra structure is
defined by induction on the structure of the SM type C , using the free algebra when C = MA and
the pointwise defined algebra in all the other cases. This M-algebra structure allows us to then
define a lifting function from the monadM to the monad JCKM as follows:

liftCM ,X : M(X )
M (retJCKM )
−−−−−−−−−−→ MJCKM (X )

αCM ,X
−−−−→ JCKM (X ) = TCM(X )

For instance, liftSt
M ,X (m : M X ) = λ(s : S). M(λ(x : X ). ⟨x, s⟩)m : S → M(X × S). The result that

SM type formers are automatically equipped with an algebra structure explains why SM features
products, but not sums since the latter cannot be equipped with an algebra structure in general.

This liftCM : M → JCKM needs to be natural, that is, the following diagram should commute:

MA MJCKM A JCKM A

M B MJCKM B JCKM A

M (retCA )

M f

αCM ,A

MJCKM f JCKM f

M (retCB ) αCM ,B

⟲ ?

for any A,B and f : A→ B. The left square commutes automatically by the naturality ofM(retC ).
For the right square to commute, however, JCKM f = bindJCKM (retJCKM ◦ f ) should be an M-
algebra homomorphism. We can ensure it by asking that bindC maps functions to M-algebra
homomorphisms, a condition that can be syntactically captured by a linearity condition in a
modified type system for SM equipped with a stoup, which is a distinguished variable in the context
such that the term is linear with respect to that variable [Egger et al. 2014; Munch-Maccagnoni
2013]. We omit this refined type system here and refer to the online appendix for the complete
details. We call this condition on the monad (C, retC , bindC ) internal to SM the linearity of bindC .

Action onmonadmorphism. To define amonad transformer, we still need to build a functorial
actionmappingmonadmorphism θ : M1 → M2 betweenmonadsM1,M2 inL to a monadmorphism
JCKM1 → JCKM2 . However, the denotation of the arrowC1 → C2 does not allow for such a functorial
action since C1 necessarily contains a subterm M in a contravariant position. In order to get an
action on monad morphisms, we first build a (logical) relation between the denotations. Given
M1,M2 monads in L and a family of relations RA ⊂ M1A ×M2A indexed by types A, we build a

5An M -algebra is an object X together with a map α : MX −→ X , which is required to respect retM and bindM .



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Maillard et al.

relation {|C |}RM1,M2
⊂ JCKM1 × JCKM2 as follows

m1 {|MA|}m2 = m1 RA m2

(m1,m
′
1) {|C1 ×C2 |} (m2,m

′
2) = m1 {|C1 |}m2 ∧m

′
1 {|C2 |}m

′
2

f1 {|(x : A) → C |} f2 = ∀(x : A). f1 x {|C x |} f2 x

f1 {|C1 → C2 |} f2 = ∀m1m2.m1 {|C1 |}m2 ⇒ f1 m1 {|C2 |} f2 m2
Now, when a type C in SM comes with the data of an internal monad, the relational denotation
{|C |}−M ,W maps not only families of relations to families of relations, but also preserves the following
structure that we call a monadic relation:
Definition 3 (Monadic relation). A monadic relation R : M ↔W between a computational

monadM and a specification monadW , consists of:

▷ a family of relations RA : MA ×W A→ P indexed by type A
▷ such that returned values are related (retM v) RA (ret

W v) for any value v : A
▷ and such that sequencing of related values is related

m1 RAw1 ∀(x : A). (m2 x) R
B (w2 x)

(bindM m1 m2) R
B (bindW w1 w2)

The simplest example of monadic relation is the graph of a monad morphism θ : M → W .
Given a monadic relation, we extend the relational translation to terms and obtain the so-called
fundamental lemma of logical relations.

Theorem 1 (Fundamental lemma of logical relations). For anymonadsM1,M2 inL, monadic

relation R : M1 ↔ M2, term Γ ⊢SM t : C and substitutions γ1 : JΓKM1 and γ2 : JΓKM2 , if for all

(x : C ′) ∈ Γ, γ1(x) {|C ′ |}RM1,M2
γ2(x) then JtKγ1M1

{|C |}RM1,M2
JtKγ2M2

.

As a corollary, an internal monad C in SM preserves monadic relations, the relational interpreta-
tion of retC and bindC providing witnesses to the preservation of the monadic structure. In partic-
ular, any monad morphism θ : M1 → M2 defines a monadic relation {|C |}graph(θ )M1,M2

: JCKM1 ↔ JCKM2 .
It turns out that if C is moreover covariant, meaning that it does not contain any occurrence of an
arrowC1 → C2 whereC1 is a type in SM, then the relational denotation {|C |}graph(θ )M1,M2

with respect to
any monad morphism θ : M1 → M2 is actually the graph of a monad morphism. To summarize:
Theorem 2 (Construction of monad transformer from SM). Given a monad C internal to

SM such that bindC satisfies the linearity criterion, we obtain:

▷ if C is covariant, then TC
equipped with liftCM :M→TCM is a (ordered) monad transformer;

▷ if C is not covariant, TC
defines a pointed endofunctor on the category of (ordered) monads and

monadic relations.

We note that the resulting design for SM is close to Moggi’s monadic metalanguage, since it
contains the same type formers: a unary type former M, productsC1×C2 and functionsA→ C . The
main difference is that SM is not parameterized on a set of simple base types but on a dependent
type theory L. As such, SM captures the essential elements of the metalanguage DM of Ahman
et al. [2017], leaving the non-necessary parts, such as sum types, to the base language L.

4.3 The Continuation Monad Pseudo-Transformer
Crucially, the internal continuation monad ContAns does not verify the conditions to define a
monad transformer since it is not covariant in M. We study this (counter-)example in detail since it
extends the definition of Jaskelioff and Moggi [2010] to monadic relations and clarifies the prior
work of Ahman et al. [2017], where a Dijkstra monad was obtained in a similar way.



785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Dijkstra Monads for All 1:17

While SM gives us both the computational continuation monad JContAnsKId = ContAns and
the corresponding specification monad JContAnsKContP = ContContP(Ans), we only get a monadic
relation between the two and not a monad morphism. We write this monadic relation as follows:

JContAnsKId ←−{|ContAns |}
ret
Id,ContP−→ JContAnsKContP

One probably wonders what are the elements related by this relation? Unfolding the definition, we
get that a computationm : JContAnsKId(X ) and a specificationw : JContAnsKContP (X ) are related if

m {|ContAns |}
ret
Id,ContP w

⇔ ∀(k : X → Ans) (wk : X → ContP(Ans)). (∀(x : X ). ret (k x) = wk x) ⇒ ret (mk) = wwk

⇔ ∀(k : X → Ans). ret (mk) = w (λx . ret (k x))

⇔ ∀(k : X → Ans) (p : Ans→ P).w (λx q. q (k x))p = p (mk)

For illustration, if we take Ans = 1, the last condition reduces to ∀(p : P).w (λx q. q)p = p, in par-
ticular any sequence x0, . . . , xn induces an elementw = λk p. k x0(. . .k xn p) : JContAnsKContP (X )
that can be seen as a specification revealing some intensional information about the computationm
at hand, namely, that the continuation k was called with the arguments x0, . . . , xn in this particular
order. Computationally however, in the case ofAns = 1,m is extensionally equal to λk . ∗ : Cont1.

4.4 Effect Observations from Monad Algebras
While monad transformers T enable us to derive complex specification monads, they can only help
us to automatically derive effect observations of the form θ T : T(Id) −→ T(W ) (see §3.3), which
only slightly generalize the DM4Free construction. In all other cases in §3, we had to define effect
observations by hand. However, when the specification monad has a specific shape, such asW Pure,
there is in fact a simpler way to define effect observations. For instance, in §3.2 effect observations
θ⊥, θ⊤ : Exc → W Pure were used to specify the total and partial correctness of programs with
exceptions, by making a global choice of allowing or disallowing exceptions. Here we observe that
such hand-rolled effect observations can in fact be automatically derived fromM-algebras.
As shown by Hyland et al. [2007], there is a one-to-one correspondence between monad mor-

phisms M → ContR and M-algebras M R → R. We can extend this to the ordered setting: for
instance, effect observations θ : M →W Pure correspond one-to-one to M-algebras α : M P→ P
that are monotonic with respect to the free lifting onM P of the implication order on P. Intuitively,
α describes a global choice of how to assign a specification to computations inM in a way that is
compatible with retM and bindM , e.g., such as disallowing all (or perhaps just some) exceptions.
Based on this correspondence, the effect observations θ⊥ and θ⊤ arise from the Exc-algebras

α⊥ = λ_. ⊥ and α⊤ = λ_. ⊤. Similarly, the effect observations for nondeterminism from §3.3 arise
from the NDet-algebras α∀ and α ∃, taking respectively the conjunction and disjunction of a set of
propositions in NDet(P), as follows: θ ∀(m) = λp. α∀ (NDet(p)m) and θ ∃(m) = λp. α ∃ (NDet(p)m).
Conversely, we can recover the NDet-algebra α∀ as λm. θ ∀P(m) idP, respectively α ∃ as λm. θ ∃P(m) idP.
Importantly, this correspondence is not limited toW Pure, but applies to continuation monads

with any answer type. For instance, taking the answer type to be S → P, we can recover the effect
observation θSt : St →W St, whereW StA � MonContS→PA = (A→ (S → P)) → (S → P), from
the St-algebra αSt = λ(f : S → (S → P) × S) (s : S). (π1 (f s)) (π2 (f s)) : St(S → P) → S → P.

5 DIJKSTRA MONADS FROM EFFECT OBSERVATIONS
As illustrated in §3.4, Dijkstra monads can be obtained from effect observations θ : M → W
between computational and specification monads. As we shall see this construction is generic and
leads to a categorical equivalence between Dijkstra monads and effect observations. In this section,
we introduce more formally the notion of Dijkstra monad using dependent type theory, seen as the
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internal language of a comprehension category [Jacobs 1993], and then build a category DMon of
Dijkstra monads. In order to compare this notion of Dijkstra monads to effect observations, we
also introduce a category of monadic relationsMonRel and show that there is an adjunction

∫ ⊣ pre : MonRel −→ DMon. (1)
Intuitively, an adjunction establishes a correspondence between objects of two categories, here
MonRel and DMon. An adjunction always provides an equivalence of categories if we restrict
our attention to objects that are in one-to-one correspondence, those for which the unit (resp. the
counit) of the adjunction is an isomorphism. When we restrict the adjunction above, we obtain
an equivalence between Dijkstra monads and effect observations. For the sake of explanation, we
proceed in two steps: first, we consider Dijkstra monads and effect observations over specification
monads with a discrete order (i.e., ordinary monads), describing the above adjunction in this situa-
tion; later, we extend this construction to general preorders, thus obtaining the actual adjunction
we are interested in. We denote categories defined over non-discrete specification monads with ·≤ .

Dependent type theory and comprehension categories. We work in an extensional type
theory with dependent products (x : A) → B, strong sums (x : A) × B, an identity type x =A y
for x,y : A (where the type A is usually left implicit), a type of (proof-irrelevant) propositions P,
and quotients of equivalence relations. This syntax is the internal language of a comprehension
category [Jacobs 1993] with enough structure and we will write Type for any such category. This
interpretation of type theory allows us to call any object Γ ∈ Type a type. 6

Dijkstra monads. A Dijkstra monad over a (specification) monadW is given by
▷ for each type A and specificationw :W A, a type D A w of “computations specified byw”
▷ return and bind functions specified respectively by the return and bind ofW

retD : (x : A) → D A (retW x)

bindD : D A w1 → ((x : A) → D B w2(x)) → D B (bindW w1 w2)

▷ such that the following monadic equations about retD and bindD hold
bindDm retD =m bindD (retD x) f = f x

bindD (bindDm f )д = bindDm (λx . bindD (f x)д)

wherem : DAw, x : A, f : (x : A) → D B (w ′ x),д : (y : B) → DC (w ′′y) for A,B,C any types
andw :W A,w ′ : (x : A) →W B,w ′′ : (y : B) →W C . Note that the typing of these equations
depends on the monadic equations forW and they would not be well-typed otherwise.
In order to use multiple Dijkstra monads, that is multiple effects, in a single program, we need

a way to go from one to another, not only at the level of computations, but also at the level of
specifications. A morphism of Dijkstra monads from D1A (w1 :W1A) to D2A (w2 :W2A) provides
exactly that: it is a pair (ΘW ,ΘD) of a monad morphism ΘW :W1 →W2 mapping specifications of
the source Dijkstra monad to specifications of the target Dijkstra monad, and a family of maps

ΘDA,w1
: D1Aw1 −→ D2A (Θ

Ww1)

indexed by types A and specificationsw1 :W1A, satisfying the following axioms
ΘD(retD1 x) = retD2 x, Θ(bindD1 m f ) = bindD2 (ΘDm) (ΘD ◦ f ).

This gives a category DMon of Dijkstra monads and morphisms between them.
Monadic Relations. Given a monadic relation R : M ↔W (Def. 3) between a computational

monadM and a specification monadW , we construct a Dijkstra monad pre R onW as follows:
(pre R) A (w :W A) = (m : MA) ×m RAw (2)

6Under a mild condition that the category is democratic [Clairambault and Dybjer 2014].
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That is (pre R)Aw consists of those elementsm ofMA that are related by R to the specificationw .
When R is the graph of a monad morphism θ (or equivalently, R is functional), pre(R : M ↔W )
maps an elementw :W A to its preimage θ−1(w) = {m : MA | θ (m) = w}.

Conversely, any Dijkstra monad D overW yields a monad structure on
∫ DA = (w :W A) × DAw

and the projection of the first component is a monad morphism π1 : ∫ D →W .
In order to explain the relation between these two operations pre and ∫ −, we introduce the

categoryMonRel of monadic relations. An object ofMonRel is a pair of monadsM,W together
with a monadic relation R : M ↔ W between them. A morphism between R1 : M1 ↔ W1 and
R2 : M2 ↔W2 is a pair (ΘM ,ΘW ) where ΘM : M1 −→ M2 and ΘW :W1 −→W2 such that

∀(m : MA) (w :WA).m R1
Aw =⇒ ΘM (m) R2

A ΘW (w). (3)
The construction pre extends to a functor onMonRel by sending a pair (ΘW ,ΘM ) to a pair
(ΘW ,ΘD), where ΘDA,w is the restriction of ΘM

A to the appropriate domain. Conversely, ∫ packs up
a pair (ΘW ,ΘD) as (ΘW ,ΘM ), where ΘM

A (w,m) = ΘDA,w (m). Since Θ
M maps the inverse image ofw

to the inverse image of ΘW (w), condition (3) holds. Moreover, this gives rise to a natural bijection
MonRel(∫ D,R) � DMon(D,preR)

that establishes the adjunction (1). We can restrict (1) to an equivalence by considering only those
objects for which the unit (resp. counit) of the adjunction is an isomorphism. Every Dijkstra monad
D is isomorphic to its image pre (∫ D), whereas a monadic relation R is isomorphic to ∫(pre R) if
and only if it is functional, i.e., a monad morphism. This way we obtain an equivalence of categories
between DMon and the category of effect observations on monads with discrete preorder.

The ordered setting. Recall that in the examples of §3.4, the Dijkstra monads DA (w :W A)
we derived from effect observations θ : M −→W naturally made use of the order onW to compare
programmer-provided specifications to type-inferred ones. This order structure on W can be
naturally lifted to Dijkstra monads, by requiring D to be equipped with a weakening structure

weaken : w1 ≤A w2 × DAw1 −→ DAw2
such that the following axioms hold (where we conflate the propositionsw1≤w2 and their proofs)

weaken⟨w≤w,m⟩ =m, weaken⟨w1≤w2≤w3,m⟩ = weaken⟨w2≤w3, weaken⟨w1≤w2,m⟩⟩

bindD (weaken⟨wm≤w
′
m,m⟩) (λa. weaken⟨wf a≤w

′
f a, f a⟩) =

weaken⟨bindW wm wf ≤bind
W w ′m w ′f , bind

Dm f ⟩.

Such pairs of an ordered monadW and a Dijkstra monadDA (w :W A)with a weakening structure
form a category DMon≤ , whose morphisms are pairs of a monotonic monad morphism and a
Dijkstra monad morphism preserving the weakening structure. Further, the definition ofpre extends
similarly straightforwardly to the ordered setting: given a monad morphism θ : M →W , we define

(pre θ ) A (w :W A) = (m : MA) × θ (m) ≤A w (4)
This definition coincides with (2) when the order ≤A onW A is discrete. Moreover, we can equip
pre θ with a weakening structure: weaken⟨w1 ≤ w2, ⟨m, θ (m) ≤ w1⟩⟩ = ⟨m, θ (m) ≤ w1 ≤ w2⟩.

The same construction can be performed starting with an upward closed monadic relation
R : M ↔W , i.e., such that M has a discrete order and ∀m.∀(w1 ≤

W
A w2).m RAw1 ⇒ m RAw2.

Doing so, we obtain a functor pre :MonRel≤ −→ DMon≤ from the category of upward-closed
monadic relations to the category of ordered Dijkstra monads with a weakening structure.

However, when trying to build a left adjoint ∫ to pre exactly as before, there is a small mismatch
with the expected construction on practical examples. Indeed, starting from a monad morphism
θ : M →W , ∫(pre θ ) reduces to (ΣM,W , π1) where ΣMA = (w :W A) × (m : MA) × θA(m) ≤A w ,
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which is unfortunately not isomorphic toM . The problem is that we get one copy ofm for each
admissible specification w :W A. These copies, however, are non-essential since the weakening
structure of pre θ identifies them. As such, to define ∫ , we need to further quotient them 7 , defining

∫ DA = ((w :W A) × DAw) /∼

where ∼ is generated by ⟨w, c⟩ ∼ ⟨w ′, weaken⟨w ≤w ′, c⟩⟩, giving us the desired adjunction ∫ ⊣ pre.
To summarize, we can construct Dijkstra monads with weakening out of effect observations

and the other way around. Moreover, when starting from an effect observation θ : M →W , then
∫(pre θ ) is equivalent to θ . This result shows that we do not lose anything when moving from effect
observations to Dijkstra monads, and that we can, in practice, use either the effect observation or
the Dijkstra monad presentation, picking the one that is most appropriate for the task at hand.

6 ALGEBRAIC EFFECTS AND EFFECT HANDLERS FOR DIJKSTRA MONADS
In §2.1, we noted that all our example computational monads come with corresponding canonical
side-effect causing operations. This is an instance of a general approach to modeling computational
effects algebraically using operations (specifying the sources of effects) and equations (specifying
their behavior), as pioneered by Plotkin and Power [2002, 2003]. From the programmer’s perspective,
algebraic effects naturally enable programming against an abstract interface of operations instead
of a concrete implementation of a monad, with the accompanying notion of effect handlers enabling
one to modularly define different fit-for-purpose implementations of these abstract interfaces.

6.1 Algebraic Effects for Dijkstra Monads
We begin by showing how effect observations naturally equip both the specification monad and
the corresponding Dijkstra monad with algebraic operations in the sense of Plotkin and Power
[2002, 2003]. We observed several instances of this phenomenon for state, IO, and nondeterminism
in §3.4, and we can now explain it formally in terms of algebraic effects and effect observations.

Algebraic operations. For any monad M , an algebraic operation op : I { O with input (pa-
rameter) type I and output (arity) type O is a family opMA : I × (O → MA) → MA that satisfies the
following coherence law for all i : I ,m : O → MA, and f : A→ MB [Plotkin and Power 2003]:

bindM (opMA ⟨i,m⟩) f = opMB ⟨i, λo. bind
M (mo) f ⟩ (5)

For NDet, the two operations are pick : 1 { B and fail : 1 { 0. For St, the operations are
get : 1 { S and put : S { 1. Plotkin and Power also showed that such algebraic operations are
in one-to-one correspondence with generic effects genMop : I → MO , which are often a more natural
presentation for programming. For example, the generic effect corresponding to the put operation
for St has type S → St1. They are interconvertible with algebraic operations as follows:

genMop i = opMO ⟨i, λo. ret
Mo⟩ opMA ⟨i,m⟩ = bindM (genMopi) (λo.mo) (6)

Plotkin and Power also show that signatures Sig of algebraic operations determine many computa-
tional monads (except continuations) once they are also equipped with suitable sets of equations
Eq. In the following we write T(Sig,Eq), abbreviated as T , for the monad determined by (Sig, Eq).
Effect observations. In §5, we saw that Dijkstra monads are equivalent to effect observations

θ : M → W . When M = T , then since θ is a monad morphism, it automatically transports any
algebraic operations on the computation monad T to the (ordered) specification monadW :

opWA ⟨i,w⟩ = µWA (θWA (op
T
WA ⟨i, λo. ret

T (w o)⟩)) (7)
where µW :W ◦W →W is the multiplication (or join) ofW , defined as µWA w = bindWw (λw ′. w ′).

7We conjecture that an alternative and more symmetric solution would be to equip our Dijkstra monads with an additional
order, but this does not correspond to the examples we obtain in practice.
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This derivation of algebraic operations is in fact a result of a more general phenomenon. Namely,
given any monad morphism θ : M →W , we get a family ofM-algebras onW , natural in A, by

µWA ◦ θWA : MWA −→WWA −→WA

Furthermore, the derived algebraic operations opWA (resp. the derivedM-algebras onW ) are mono-
tonic with respect to the free lifting of the preorder ≤W A onWA to TWA (resp. toMWA).

The derivation of operations on the specification monad from operations on the computational
monad, via the effect observation, explains how we are able to systematically generate (computa-
tionally natural) specifications for operations in §3.4. For instance, taking the effect observation
θ ∀ : NDet→W Pure for demonic nondeterminism, the induced operations we get onW Pure are

pickW
Pure

A : 1 × (B→W PureA) →W PureA failW
Pure

A : 1 × (0→W PureA) →W PureA

pickW
Pure

A ⟨(),w⟩ = λp. w truep ∧w falsep failW
Pure

A ⟨(),w⟩ = λp. ⊤

Dijkstra monads. Finally, we show that the Dijkstra monad D = pre θ derived from a given
effect observation θ : T →W in (4) also supports algebraic operations, with their computational
structure given by the operations ofT and their specificational structure given by the operations of
W derived in (7). This completes the process of lifting operations from computational monads to
Dijkstra monads that we sketched in §3.4. In detail, we define an algebraic operation for D as

opDA : (i : I ) →
(
c : (o : O) → DA (w o)

)
→ DA (opWA ⟨i,w⟩)

opDA i c =
〈
opTA⟨i, λo. c o⟩ , θA(op

T
A⟨i, λo. c o⟩) ≤ opWA ⟨i,w⟩

〉
For instance, for ND✠ = pre θ ∀, the induced operations have the following (expected) types:

pick
ND✠
A : (_ : 1) →

(
c : (b : B) → ND✠ A (w b)

)
→ ND✠ A (λp. w truep ∧w falsep)

fail
ND✠
A : (_ : 1) →

(
c : (z : 0) → ND✠ A (w z)

)
→ ND✠ A (λp. ⊤)

As we have defined opD in terms of algebraic operations for T andW , then it is easy to see that
it also satisfies an appropriate variant of the algebraic operations coherence law (5), namely

bindD (opDA ⟨i, c⟩) f = opDB ⟨i, λo. bind
D (c o) f ⟩

Finally, based on (6), we note that the generic effect corresponding to op : I { O is given by
genDop i =

〈
genTop i , θO (gen

T
op i) ≤ genWop i

〉
: I → DO (genWop i)

Specifying operations in free monads. As we have seen above, effect observations induce
specifications for algebraic operations, which in turn are used as the indices of the corresponding
Dijkstra monad operations. Note that in the case of free monads, when Eq = ∅, we have the freedom
to assign arbitrary specifications. Let FreeM � T(Sig,∅) be the free monad over some signature Sig:

FreeM A = µX .A + Σopi :Ii{Oi ∈SigIi × (Oi → X )

To specify the operations, we assume that for each opi , we have a precondition Pi : Ii → P and a
postcondition Qi : Ii ×Oi → P. From these we can build a FreeM-algebra h : FreeM(P) → P by

h(inlϕ) = ϕ h(inr ⟨opi , inp,k⟩) = Pi inp ∧ ∀oup.Qi ⟨inp, oup⟩ → k oup

Following §4.4, we can derive an effect observation θ : FreeM→W Pure from h, from which we can
in turn derive aW Pure-indexed Dijkstra monad D = pre θ following §5. The operations opi of the
free monad lift to generic effects in D, with specifications derived from the assumed Pi and Qi :

genDopi : (inp : Ii ) → D Oi (λp. Pi inp ∧ ∀oup.Qi ⟨inp, oup⟩ → p oup)

As an example, consider the operation pick : 1 { B introduced above but with the specification
that always returns true. This is captured by the precondition Ppick _ = ⊤ and postcondition
Qpick⟨_,b⟩ = (b = true), which yields the following generic effect (after simplifying its type):

genDpick : D B (λp. p true)
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In contrast to the demonic non-determinism specification of pick given above for ND✠ , this variant
of pick always derives its weakest precondition from the true case of the post condition.
In the next section, we will use the ability to assign arbitrary specifications to operations in a

free monad to define the proof obligations required to verify effect handlers for those operations.

6.2 Effect Handlers for Dijkstra Monads
Of course, operations are only one side of algebraic effects: the other side concerns effect handlers
[Plotkin and Pretnar 2013]. These are a generalization of exception handlers to arbitrary algebraic
effects. They are defined by providing a concrete implementation for each (abstract) operation,
such as get. Semantically, they denote user-defined T -algebras for the algebraic effect at hand.

In contrast to the general story for algebraic effects in §6.1, our treatment of effect handlers for
Dijkstramonads is currentlymore ad hoc.We have two approaches, which can roughly characterised
in terms of how the operations are assigned specifications. In the first approach, we do not explicitly
give a specification for each operation. Instead, the specification is induced by the handler. This
approach fits well with the philosophy of Dijkstra monads with weakest precondition specifications,
i.e., automatically generating the most general specification from the program. This approach works
well for exceptions and allows us to reconstruct the weakest precondition semantics for exceptions
with try/catch in the setting of Dijkstra monads ([Leino and van de Snepscheut 1994; Sekerinski
2012]), and put the ad-hoc examples of Ahman et al.’s [2017] DM4Free on a general footing.

Unfortunately, for resumable operations (i.e., everything except exceptions), the inevitable circu-
larity between the handler and the handled code leads to attempts to construct inductive proposi-
tions that do not exist in Coq or F⋆. To resolve this problem, we also demonstrate a second approach
that makes use of upfront specification of operations, as demonstrated at the end of §6.1. This
specification of operations breaks the circularity, and allows handling of operations that resume,
such as pick. However, this approach is also not yet fully satisfactory: the operation clauses of the
handler must be verified extrinsically, in contrast to the usual methodology of Dijkstra monads.
Effect handling (1st approach). Following Plotkin and Pretnar [2013], we define the handling

of T (determined by some (Sig, Eq)) into a monadM to be given by the following operation:
handle-withT ,M : T A→

(
hopi : Ii × (Oi → MB) → MB

)
opi :Ii{Oi ∈Siд

→ (A→ MB) → MB

handle-withT ,M (retTA a)h f = f a
handle-withT ,M (opTA ⟨i, t⟩)h f = hop ⟨i, λo. handle-withT ,M (t o)h f ⟩

where we leave the proof obligation that the operation clauses hop have to satisfy the equations in
Eq implicit. We refer the reader to Ahman [2018] for explicit treatment of such proof obligations.
As such, h forms a T -algebra αh : TMB → MB, and handle-withT ,M (−)h p f amounts to the

induced unique mediating T -algebra homomorphism αh ◦T (f ) : TA→ TMB → MB.
Specification monads. Based on the category theoretic view of effect handlers as user-defined

T -algebras, we can define a notion of handling any monadM into some other monadM ′:
handle-withM ,M ′ : MA→ (α : MM ′B → M ′B) → (A→ M ′B) → M ′B
handle-withM ,M ′mα f = (α ◦M(f ))m

where we again leave the proof obligation ensuring that α is anM-algebra implicit. Below we are
specifically interested in handle-withM ,M ′ whenM andM ′ are specification monads because, in
constrast to T , the structure of specification monads is not determined by (Sig, Eq) alone.

Dijkstra monads. Based on the smooth lifting of algebraic operations in §6.1, then when
defining effect handling for the Dijkstra monad D = pre θ induced by some effect observation
θ : T →W into some other Dijkstra monad D ′ = pre θ ′ for θ ′ : M →W ′, we would expect the
computational (resp. specificational) structure of handling to be given by that for T (resp.W ).
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However, simply giving an effect observation θ turns out to be insufficient for handling D into
D ′. Category theoretically, the problem lies in the operation cases forW giving us a T -algebra
TW ′B →W ′B, but to use handle-withW ,W ′ (which we need to define the specification of handling)
we instead need aW -algebraWW ′B → W ′B. To overcome this difficulty, we introduce a more
refined notion of effect observation, relative to the specification monadW ′ we are handling into.

Definition 4 (Effect observation with effect handling). An effect observation with effect

handling for an ordered monadW ′
is an effect observation θ : T →W such that for any T -algebra

α : TW ′A→W ′A, there is a choice of aW -algebra α∗ :WW ′A→W ′A that is (i) monotonic with

respect to the orders ofW andW ′
, and (ii) which additionally satisfies the equation α∗ ◦ θW ′A = α .

Intuitively, the condition (ii) expresses that α∗ extends a T -algebra to aW -algebra in a way that
is identity on the T -algebra structure, specifically on the algebraic operations corresponding to α .
It is worth noting that needing to turn algebras TW ′A→W ′A into algebrasWW ′A→W ′A is

not simply a quirk due to working with Dijkstra monads, but the same exact need arises when
giving a monadic semantics to a language with effect handlers using a monad different fromT(Sig,Eq).

Using this refined notion of effect observation, we can now define handling for Dijkstra monads.
Given an effect observation θ : T →W with effect handling forW ′ and another effect observation
θ ′ : M →W ′, we define the handling of D = pre θ into D ′ = pre θ ′ as the following operation
handle-withD,D′ : DAw1

→
(
hW

′

opi
: Ii × (Oi →W ′B) →W ′B

)
opi :Ii{Oi ∈Siд

→
(
hD

′

opi
:
(
(i, c) : (i : Ii ) ×

(
(o : Oi ) → D

′ B (w o)
) )
→ D ′ B (hWop ⟨i,w⟩)

)
opi ∈Siд

→
(
(a : A) → D ′ B (w2 a)

)
→ D ′ B (handle-withW ,W ′

w1 (αhW ′ )∗w2)

handle-withD,D′ c1 h
W ′

hD
′

c2 =
〈
handle-withT ,M c1 h

D′ (λa. c2 a) ,

θ ′B
(
handle-withT ,M c1 h

D′ (λa. c2 a)
)
≤

(
handle-withW ,W ′

w1 (αhW ′ )∗w2
) 〉

where we again leave implicit the conditions ensuring that hW ′ , hD′ are correct with respect to Eq.
Exception handling. One effect observation supporting handling is θExc : Exc→W Exc from

§3.2, where Exc is determined by ({throw}, ∅). To model handling potentially exceptional computa-
tions into other similar ones, as is often the case in languages with exceptions but no effect system,
we take D = D ′ = EXC = pre θExc and observe that handle-withEXC,EXC can be simplified to

try-catch : EXCAw1 →
(
hW

Exc

throw : E →W ExcB
)
→

(
hEXCthrow : (e : E) → EXCB (hW

Exc

throw e)
)

→
(
(a : A) → EXCB (w2 a)

)
→ EXCB

(
λp q. w1 (λx . w2 x p q) (λe . h

W Exc

throw e p q)
)

in part, by defining the extension α∗ :W ExcW ExcB →W ExcB of α : ExcW ExcB →W ExcB as
α∗w = λp q.w

(
λw ′.α (inlw ′)p q

) (
λe .α (inr e)p q

)
= λp q.w

(
λw ′.w ′p q

) (
λe .α (inr e)p q

)
(8)

where the second equality holds because α is an Exc-algebra and thus α (retExcv) = α (inlv) = v .
On inspection, it turns out that try-catch corresponds exactly to Leino and van de Snepscheut’s

[1994] and Sekerinski’s [2012] weakest exceptional preconditions for exception handlers. Fur-
thermore, with try-catch we can also put Ahman et al.’s [2017] hand-rolled DM4Free exception
handlers to a common footing. For example, we can define their integer division example as

let div_wp (i j:int) = λp q→ (∀ x . j ,0 ∧ x = i / j =⇒ p x) ∧ (∀ e . j = 0 =⇒ q e)
let div (i j:int) : EXC int (div_wp i j) = if j = 0 then raise div_by_zero_exn else i / j
let try_div (i j:int) : EXC int (λ p q→∀x . p x) = try_catch (div i j) (λ _ p q→ p 0) (λ _→ 0) (λ x→ x)

where the specification of try_div says that it never throws an exception, even not div_by_zero_exn.
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Of course try-catch is not the only way to handle exceptions. Another common use case is to
handle a computation inTA into one in Id(A+E). While this is trivial semantically, in a programming
language where elements ofT are considered abstract, it allows one to get their hands on the values
returned and exceptions thrown, analogously to Ahman et al.’s [2017] use of monadic reification in
DM4Free. To capture this, we take D = EXC = pre θExc and D ′ = PURE = pre θPure, and define
reify : EXCAw → PURE (A + E)

(
λp. w (λx . p (inlx)) (λe . p (inr e))

)
reify c = handle-withEXC,PURE c

(
λe .retW

Pure
(inr e)

) (
λe .retPURE (inr e)

) (
λx .retPURE (inlx)

)
Other (non-)examples. Unfortunately, effect observations discussed in this paper other than

exceptions do not support effect handling. Specifically, we are unable to define the α∗ operation for
these effect observations, because it corresponds to attempting to construct the specification of the
handled computation knowing nothing of the intended specification of the operations.
For IO, we actually know of another specification monad for which α∗ can be defined, namely,

the categorical coproduct of the IO and continuation monads [Hyland et al. 2007], given by
W IOA = (A→ P) × ((I →W IOA) → P) × (O ×W IOA→ P) → P

Note that compared to the specification monads for IO from §3.4, the postcondition(s) ofW IO have
a tree-like structure that enables one to recover enough information to (recursively) define α∗.
There are however two major problems with usingW IO as a specification monad. First,W IO is

not well-defined in many categories of interest, such as Set [Hyland et al. 2007]. Second, defining
W IO type theoretically requires non strictly positive inductive types, which leads to inconsistency
in frameworks with impredicative universes such as Coq and F⋆ [Coquand and Paulin 1988].
Effect handling for upfront specified operations (2nd approach). We now describe an

alternative approach to effect handling that avoids the above problems by making use of the upfront
specified operations discussed at the end of §6.1. For simplicity, we assume that we are handling into
a pure computation of type B with a postcondition R : B → P. We also assume that the computation
to be handled performs operations opi with the specifications (Pi ,Qi ) as given above, yielding
values of type A satisfying some postcondition Q , i.e., it has the type D A (λp. ∀a.Q a → p a).

The return clause of the handler then gets to assume that Q holds for its input but must ensure
that R holds of its output. The operation cases of the handler are more complex. We must first
write each operation clause without specification (i.e., as a function Ii → (Oi → B) → B), and then
separately prove that, assuming that the resumption argument is verified, then the final result is
verified. Note that we must separately program and verify the handler clauses, contrary to the
general methodology for programming with Dijkstra monads. This is due to the higher-order nature
of the resumption argument. Putting all this together, we get the following handling construct:

handle : D A (λp. ∀a.Q a → p a)
→ ((a : A) → Q a → (b:B) × R b)
→ (hi : Ii → (Oi → B) → B)opi
→(∀inp k . (∀oup.Qi ⟨inp, oup⟩ → R (k oup)) → Pi inp→ R (hi inp k))opi
→(b:B) × R b

For the “always true” specification of pick, we can write a handler for it as λ_k .k true, which
yields the trivial proof obligation ∀k . (∀b .b = true→ R (k b)) → R (k true). Note that this obliga-
tion would not hold if the handler had relied upon invoking the resumption k with false.

We used a variant of this second approach to verify programs with general recursion in Coq, re-
constructing from first principles F⋆’s primitive support for total correctness, as well as its semantic
termination checking [Swamy et al. 2016]. Following McBride [2015], we can describe a recursive
function f : (a : A) → B a by its body f0 : (a : A) → GenRec (B a), where GenRec is the free monad
on a single operation call : (a : A) { B a and the recursive calls to f are replaced by uses of call.
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Given a well-founded order ≺ on A, we ask that all arguments to call are lower than the top-level
argument. More precisely, given an invariant inv : (a : A) →W Pure (B a) for f , we define a family of
effect observations θa : GenRec→W Pure as described above, i.e., such that θa(calla′) strengthens
inv a′ with the precondition a′ ≺ a. From thes θas, we obtain a Dijkstra monad GenREC together
with a handling construct fix : ((a : A) → GenREC (B a) (inv a)) → (a : A) → PURE (B a) (inv a).
We have used this treatment of general recursion to define and verify a simple Fibonacci example.

Compared to the “specify at handling time” approach above, this “specify upfront” approach
to effect handlers has the advantage that it works for algebraic effects that involve resumptions.
However, there remain several unresolved questions with this approach, including handling state-
ful computations and whether or not it is possible to program and verify the handler clauses
simultaneously to be more in keeping with the general methodology of Dijkstra monads.

7 IMPLEMENTATION AND FORMALIZATION IN F⋆ AND COQ

Dijkstra monads in F
⋆
. We have extended the effect definition mechanism of F⋆ to support our

more general approach to Dijkstra monads, in addition to the previous DM4Free one. F⋆ users can
now also define Dijkstra monads by providing both a computational and a specification monad,
along with an effect observation or monadic relation between them, which provides more freedom
in the choice of specifications. The SM language is not yet implemented in F⋆. Nevertheless, this
extension enables the verification of the examples of §3.4, for which effects such as nondeterminism
and IO were previously out of reach. Once a Dijkstra monad is defined, the F⋆ type-checker
computes weakest preconditions exactly as before and uses an SMT solver to discharge them. While
internally F⋆ only uses weakest preconditions as specification monads, it is customary for users to
write Hoare-style pre- and postconditions, for which F⋆ leverages the adjunction from §4.1.

Dijkstra monads in Coq. We have also embedded Dijkstra monads in Coq, showing that the
concept is applicable in languages beyond F⋆. As with the F⋆ implementation, programmers can
supply their own computational and specification monads, with an effect observation or monadic
relation between them. We implemented the base specification monads of §4.1 and the construction
of effect observations from algebras of monads from §4.4, thus providing a convenient way to build
a specification monad and effect observation at the same time. The Coq development also constructs
Dijkstra monads from effect observations and proves their laws hold. Therefore, the examples
from §3.4 are verified in Coq “all the way down”. Verification in Coq follows the general pattern of
(a) writing the specification; (b) writing the program in monadic style; and then (c) proving the
resulting verification conditions using tactic proofs. The Dijkstra monad setup automatically takes
care of the derivation of the weakest precondition transformer for the program.

Formalization of SM in Coq. We have formalized the SM language of §4.2 in Coq, taking
Gallina as the base language L and providing an implementation of the denotation of SM terms and
logical relation. SM is implemented using higher-order abstract syntax (HOAS) for the λx . t binders
and De Bruijn indices for the λ⋄x . t ones. We build the functional version of the logical relation for
a covariant typeC , but omit the linear type system. Instead, the Coq version of Theorem 2 assumes
a semantic hypothesis requiring that the denotation of bind is homomorphic, and using which it
then derives the full monad transformer (including all the laws). A paper proof that our syntactic
linearity condition entails the semantic hypothesis can be found in the online appendix.

8 RELATEDWORK
This work directly builds on prior work on Dijkstra monads in F⋆ [Swamy et al. 2013, 2016], in
particular the DM4Free approach [Ahman et al. 2017], which we discussed in detail in §1 and §2.2.
Our generic framework has important advantages: (1) it removes the previous restrictions on the



1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

1:26 Maillard et al.

computational monad; (2) it gives much more flexibility in choosing the specification monad and
effect observation; (3) it builds upon a generic dependent type theory, not on F⋆ in particular.

Jacobs [2015] studies adjunctions between state transformers and predicate transformers, obtain-
ing a class of specification monads from the state monad transformer and an abstract notion of
logical structures. He gives abstract conditions for the existence of such specification monads and
of effect observations. Hasuo [2015] builds on the state-predicate adjunction of Jacobs to provide
algebra-based effect observations (in the style of §4.4) for various computation and specification
monads. Our work takes inspiration from this, but provides a more concrete account focused on
covering the use of Dijkstra monads for program verification. In particular, we provide concrete
recipes for building specification monads useful for practical verification (§4). Finally, we show
that our Dijkstra monads are equivalent to the monad morphisms built in these earlier works.

Katsumata [2014] uses graded monads to give semantics to type-and-effect systems, introduces
effect observations as monad morphisms, and constructs graded monads out of effect observations
by restricting the specification monads to their value at 1. We extend his construction to Dijkstra
monads, showing that they are equivalent to effect observations, and unify Katsumata’s two notions
of algebraic operation. A graded monad can intuitively be seen as a non-dependent version of a
Dijkstra monad (a monad-like structure indexed by a monoid rather than a monad) but providing a
unifying formal account is not completely straightforward. The framework of Kaposi and Kovács
[2019] is a promising candidate for such a unifying account that might provide an abstract proof of
the results of §5 (see the online appendix); we leave a full investigation as future work.
Katsumata [2013] gives a semantic account of Lindley and Stark [2005]’s ⊤⊤-lifting, a generic

way of lifting relations on values to relations on monadic computations, parameterized by a basic
notion of relatedness at a fixed type. Monad morphismsMA→ ((A→ P) → P), as used to generate
Dijkstra monads in §3.4, are also unary relational liftings (A→ P) → (MA→ P), and could be
generated by ⊤⊤-lifting. Further, binary relational liftings could be used to generate monadic
relations that yield Dijkstra monads by the construction in §5. In both cases, what is specifiable
about the underlying computation would be controlled by the chosen basic notion of relatedness.
Rauch et al. [2016] provide a generic verification framework for first-order monadic programs.

Their work is quite different from ours, even beyond the restriction to first-order programs, since
their specifications are “innocent” effectful programs, which can observe the computational context
(e.g., state), but not change it. This introduces a tight coupling between computations and specifica-
tions, while we provide much greater flexibility through effect observations. In fact, we can embed
their work into ours, since their notion of weakest precondition gives rise to an effect observation.

Generic reasoning about computational monads dates back to Moggi’s [1989] seminal work, who
proposes an embedding of his computational metalanguage into higher-order logic. Pitts & Moggi’s
evaluation logic [Moggi 1995; Pitts 1991] later introduces modalities to reason about the result(s)
of computations, but not about the computational context. Plotkin and Pretnar [2008] propose a
generic logic for algebraic effects that encompasses Moggi’s computational λ-calculus, evaluation
logic, and Hennesy-Milner logic, but does not extend to Hoare-style reasoning for state.
Simpson and Voorneveld [2018] and Matache and Staton [2019] explore logics for algebraic

effects by specifying the effectful behaviour of algebraic operations using a collection of effect-
specific modalities instead of equations. Their modalities are closely related to how we derive effect
observations θ : M →W Pure and thus program specifications from M-algebras on P in §4.4, as
intuitively the conditions they impose on their modalities ensure that these can be collectively
treated as anM-algebra on P. In recent work concurrent to ours, Voorneveld [2019] studies a logic
based on quantitative modalities by considering truth objects richer than P, including S → P for
stateful and [0, 1] for probabilistic computation. While the state case we already briefly discussed
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in the context of deriving effect observations in §4.4, it could be interesting to see if these ideas can
be used to enable Dijkstra monads to be also used for reasoning about probabilistic programs.

In another recent concurrent work, Swierstra and Baanen [2019] study the predicate transformer
semantics of monadic programs with exceptions, state, non-determinism, and general recursion.
Their predicate transformer semantics appears closely related to our effect observations, and
their compositionality lemmas are similar to our monad morphism laws. We believe that some
of their examples of performing verification directly using the effect observation (instead of our
Dijkstra monads), could be easily ported to our framework. Their goal, however, is to start from
a specification and incrementally write a program that satisfies it, in the style of the refinement
calculus [Morgan 1994]. It could be an interesting future work direction to build a unified framework
for both verification and refinement, putting together the ideas of both works.

9 CONCLUSION AND FUTUREWORK
This work proposes a general semantic framework for verifying programs with arbitrary monadic
effects using Dijkstra monads obtained from effect observations, which are monad morphisms from
a computation to a specification monad. This loose coupling between the computation and the
specification monad provides great flexibility in choosing the effect observation most suitable for
the verification task at hand. We show that our ideas are general by applying them to both Coq
and F⋆, and we believe that they could also be applied to other dependently-typed languages.

In the future, we plan to apply our framework to further computational effects, such as probabil-
ity [Giry 1982]. It would also be interesting to investigate richer specification monads, for instance
instrumentingW St with information about framing, in the style of separation logic. Another inter-
esting direction is to extend Dijkstra monads and our semantic framework to relational reasoning,
in order to obtain principled semi-automated verification techniques for properties of multiple
program executions (e.g., noninterference) or of multiple programs (e.g., program equivalence). As
a first step, we plan to investigate switching from (ordered) monads to (ordered) relative monads
for our specifications, by making return and bind work on pairs of values.
Finally, the SM language provides a general way to obtain correct-by-construction monad

transformers, which could be useful in many other settings, especially within proof assistants.
Categorical intuitions also suggest potential extensions of SM, e.g., some form of refinement types.
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