Data Types with Negation

Robert Atkey University of Strathclyde robert.atkey@strath.ac.uk

> **Fun in the REPL** 1st November 2023

Funded by EPSRC: EP/T026960/1 AISEC: AI Secure and Explainable by Construction

data Nat : Set where zero : Nat succ : Nat \rightarrow Nat data Even : Nat \rightarrow Set where zero : Even zero succOdd : $\forall \{n\} \rightarrow \text{Odd } n \rightarrow \text{Even (succ } n)$

data Odd : Nat \rightarrow Set where succEven : $\forall \{n\} \rightarrow$ Even $n \rightarrow$ Odd (succ n) What if we could use the power of *negative thinking*?

data Even : Nat \rightarrow Set where zero : Even zero succ : $\forall \{n\} \rightarrow \text{not} (\text{Even } n) \rightarrow \text{Even} (\text{succ } n)$ Error: Non strictly positive occurrence of "Even" in
"forall n : nat, not (Even n) -> Even (S n)".

Even is not strictly positive, because it occurs to the left of an arrow in the type of the constructor succ in the definition of Even.

Making choices

A Context-Free Grammar:

 $S ::= aSa \mid aa$

A Context-Free Grammar:

$$S ::= aSa \mid aa$$

What is the language $\mathcal{L}(S)$?

A Context-Free Grammar:

$$S ::= aSa \mid aa$$

What is the language $\mathcal{L}(S)$?

$$\mathcal{L}(S) = \{a^{2k} \mid k \ge 1\}$$

A Parsing Expression Grammar (PEG):

$$S ::= aSa / aa$$

A Parsing Expression Grammar (PEG):

$$S ::= aSa / aa$$

What is the language $\mathcal{L}(S)$?

A Parsing Expression Grammar (PEG):

$$S ::= aSa / aa$$

What is the language $\mathcal{L}(S)$?

$$\mathcal{L}(S) = \{a^{2^k} \mid k \ge 1\}$$

What is the parse tree of a PEG?

Unordered choice:

$$S ::= A \mid B$$

Parse trees:

data S : String × String → Set where
prod1 :
$$\forall \{i o\} \rightarrow A(i, o) \rightarrow S(i, o)$$

prod2 : $\forall \{i o\} \rightarrow B(i, o) \rightarrow S(i, o)$

Ordered choice:

$$S ::= A / B$$

Parse trees:

data S : String × String → Set where
prod1 :
$$\forall \{i o\} \rightarrow A(i, o) \rightarrow S(i, o)$$

prod2 : $\forall \{i o\} \rightarrow not (\exists o'. A(i, o')) \rightarrow B(i, o) \rightarrow S(i, o)$

Ordered choice:

$$S ::= A / B$$

Parse trees:

data S : String × String → Set where
prod1 :
$$\forall \{i o\} \rightarrow A(i, o) \rightarrow S(i, o)$$

prod2 : $\forall \{i o\} \rightarrow not (\exists o'. A(i, o')) \rightarrow B(i, o) \rightarrow S(i, o)$

The prod2 constructor is only available if the first one didn't work.

Default reasoning

data Guilty : Person \rightarrow Set where murder : KilledSomeone $p \rightarrow$ not (StateApproved p) \rightarrow Guilty p

• • •

data Guilty : Person \rightarrow Set where murder : KilledSomeone $p \rightarrow$ not (StateApproved p) \rightarrow Guilty p

data StateApproved : Person \rightarrow Set where driver : CarDriver $p \rightarrow$ StateApproved p

• • •

. . .

data Liar : Set where liar : not Liar \rightarrow Liar data Liar : Set where liar : not Liar \rightarrow Liar

?

Qn: Can we give a "sensible" semantics to Data Types with Negation?

Qn: Can we give a "sensible" semantics to Data Types with Negation? Plan:

- **1.** Study the semantics of (co)inductive data types
- 2. Work out what we mean by "not"
- 3. Put the two together (using some logic programming ideas)

Inductive Data Types

A Data Type:

data D :
$$I \rightarrow$$
 Set where
 $\mathbf{c_1} : \forall \vec{x}. A_1 \rightarrow D(\vec{e_1}) \rightarrow D(e'_1)$
...
 $\mathbf{c_n} : \forall \vec{x}. A_n \rightarrow D(\vec{e_n}) \rightarrow D(e'_n)$

is modelled as a functor $F_D : (I \rightarrow Set) \rightarrow (I \rightarrow Set)$:

$$F_{\rm D}(X) = \lambda i. \coprod_{j} (\Sigma \vec{x}. A_j \times X(\vec{e}_j) \times [i = e'_j])$$

With a functor

$$F_{\rm D}: (I \rightarrow {\rm Set}) \rightarrow (I \rightarrow {\rm Set})$$

With a functor

$$F_{\rm D}: (I \rightarrow {\rm Set}) \rightarrow (I \rightarrow {\rm Set})$$

We can ask for its *initial algebra*

 $\textit{in}:\textit{F}_{D}(\mu\textit{F}_{D}) \rightarrow \mu\textit{F}_{D}$

With a functor

$$F_{\rm D}: (I \rightarrow {\rm Set}) \rightarrow (I \rightarrow {\rm Set})$$

We can ask for its *initial algebra*

in : $F_D(\mu F_D) \rightarrow \mu F_D$

Which gives us:

- **1.** μF_D : $I \rightarrow$ Set, a carrier
- **2.** a recursion scheme for eliminating $x : \mu F_D i$
- **3.** induction principles

with a bit of work: Hermida and Jacobs, Inf.&Comp. 1998

Construction:

$0 \to F_D \ 0 \to F_D(F_D \ 0) \to F_D(F_D \ 0)) \to \dots$

$\mu F_{\rm D} \approx \Sigma n. F_{\rm D}^n$

... up to some quotienting.

* terms and conditions apply

Coinductive Data Types

Given a functor

 $F_{\rm D}: (I \rightarrow {\rm Set}) \rightarrow (I \rightarrow {\rm Set})$

Given a functor

$$F_{\rm D}: (I \rightarrow {\rm Set}) \rightarrow (I \rightarrow {\rm Set})$$

We can also ask for its *final coalgebra*

 $out: \nu F_{\rm D} \rightarrow F_{\rm D}(\nu F_{\rm D})$

Which gives us:

- **1.** $\nu F_{\rm D}$: $I \rightarrow$ Set, a carrier
- **2.** a corecursion scheme, for building $x : \nu F_D i$
- coinduction / bisimulation principles with a bit of work: Hermida and Jacobs, Inf.&Comp. 1998

Construction:

$1 \leftarrow F_{\rm D} \ 1 \leftarrow F_{\rm D}(F_{\rm D} \ 1) \leftarrow F_{\rm D}(F_{\rm D} \ 1)) \leftarrow \dots$

$\nu F_{\rm D} \approx \Pi n. F_{\rm D}^n$

... up to some naturality condition.

* terms and conditions apply

Negation
Negation, what is it?

$$\mathsf{not}\, A \stackrel{\mathit{def}}{=} A o ot$$

$\operatorname{not} A \stackrel{def}{=} A \to \bot$

Not covariant: don't get a functor! Initial algebra and final coalgebra not well defined!

What do we mean when we say "not"?

$$\operatorname{not} A \stackrel{def}{=} A \to \bot$$

$$\operatorname{not} A \stackrel{def}{=} A \to \bot$$

2. "I do not have any evidence to believe this"

$$\operatorname{\mathsf{not}} A \stackrel{\operatorname{\mathit{def}}}{=} A \to \bot$$

2. "I do not have any evidence to believe this"

files(X)
$$\leftarrow$$
 bird(X), not penguin(X).
bird(tweety).

$$\operatorname{\mathsf{not}} A \stackrel{\operatorname{\mathit{def}}}{=} A \to \bot$$

2. "I do not have any evidence to believe this"

files(X)
$$\leftarrow$$
 bird(X), not penguin(X).
bird(tweety).

Does "tweety" fly?

$$\operatorname{not} A \stackrel{def}{=} A \to \bot$$

2. "I do not have any evidence to believe this"

files(X)
$$\leftarrow$$
 bird(X), not penguin(X).
bird(tweety).

Does "tweety" fly?

Classically (and intuitionistically): No.

$$\operatorname{not} A \stackrel{def}{=} A \to \bot$$

2. "I do not have any evidence to believe this"

files(X)
$$\leftarrow$$
 bird(X), not penguin(X).
bird(tweety).

Does "tweety" fly?

Classically (and intuitionistically): No. Intuitively - Yes?

$$\operatorname{not} A \stackrel{def}{=} A \to \bot$$

2. "I do not have any evidence to believe this"

files(X)
$$\leftarrow$$
 bird(X), not penguin(X).
bird(tweety).

Does "tweety" fly?

Classically (and intuitionistically): No. Intuitively - Yes?

Warning this kind of reasoning is *non monotonic*. If we later learn penguin(tweety), then we would have to retract.

A way to track evidence *for* and evidence *against* some data:

$$A = (A^+, A^-)$$

where A^+ , A^- are (indexed) sets.

We could add condition $A^+ \rightarrow A^- \rightarrow \bot$, but we'll ignore this here.

Entailment flows forwards positively and backwards negatively:

$$(A^+,A^-) \Rightarrow (B^+,B^-) \stackrel{def}{=} (A^+ \to B^+) \times (B^- \to A^-)$$

call this category Chu and the morphisms truth morphisms.

```
Terminal Object (\top / truth)
```

$$\top = (\top, \bot)$$

Initial Object (\perp / falsity)

 $\bot = (\bot, \top)$

Products (conjunction)

$$(A^+,A^-) \times (B^+,B^-) \stackrel{def}{=} (A^+ \times B^+,A^-+B^-)$$

Coproducts (disjunction)

$$(A^+, A^-) + (B^+, B^-) \stackrel{def}{=} (A^+ + B^+, A^- \times B^-)$$

∏-types (infinitary conjunction)

Σ-types (infinitary disjunction)

$$\Sigma x: X. A[x] \stackrel{def}{=} (\Sigma x: X. A^+[x], \Pi x: X. A^-[x])$$

Negation

$$\operatorname{not}\left(A^{+},A^{-}\right)\overset{def}{=}\left(A^{-},A^{+}\right)$$

Sets

$$[X] = (X, X \to \bot)$$

Properties of Chu and Negation:

- **1.** Involutive: not (not A) = A
- **2.** de Morgan: $not(A \times B) = (not A) + (not B)$
- 3. do not have excluded middle
- 4. Not Cartesian Closed not a model of classical logic *is* a model of classical linear logic

Initial Algebras in Chu

If we have a functor

$$F\colon (I\to \mathrm{Chu})\to (I\to \mathrm{Chu})$$

constructed from only \times , +, Π , Σ , [-] then it can be separated:

$$F^+: (I \to \operatorname{Set}) \to (I \to \operatorname{Set}) \qquad F^-: (I \to \operatorname{Set}) \to (I \to \operatorname{Set})$$

and initial algebras in Chu can be constructed from those in Set:

$$\mu F = (\mu F^+, \nu F^-)$$

data Path : Node \times Node \rightarrow Chu where stop : $\forall x \rightarrow$ Path(x, x)step : $\forall x \, y \, z \rightarrow$ Path $(x, y) \rightarrow$ Step $(y, z) \rightarrow$ Path(x, z)

data Path : Node
$$\times$$
 Node \rightarrow Chu where
stop : $\forall x \rightarrow$ Path (x, x)
step : $\forall x \, y \, z \rightarrow$ Path $(x, y) \rightarrow$ Step $(y, z) \rightarrow$ Path (x, z)

$$F_{\text{Path}}(X)(x,z) = [x = z] + (\Sigma y. X(x,y) \times [\text{Step}(y,z)])$$

data Path : Node
$$\times$$
 Node \rightarrow Chu where
stop : $\forall x \rightarrow$ Path (x, x)
step : $\forall x \, y \, z \rightarrow$ Path $(x, y) \rightarrow$ Step $(y, z) \rightarrow$ Path (x, z)

$$F_{\text{Path}}(X)(x,z) = [x = z] + (\Sigma y. X(x,y) \times [\text{Step}(y,z)])$$

$$F^+_{\text{Path}}(X^+)(x,z) = (x = z) + (\Sigma y. X^+(x,y) \times \text{Step}(y,z))$$

$$F^-_{\text{Path}}(X^-)(x,z) = \neg (x = z) \times (\Pi y. X^-(x,y) + \neg \text{Step}(y,z))$$

data Path : Node
$$\times$$
 Node \rightarrow Chu where
stop : $\forall x \rightarrow$ Path (x, x)
step : $\forall x \, y \, z \rightarrow$ Path $(x, y) \rightarrow$ Step $(y, z) \rightarrow$ Path (x, z)

$$F_{\text{Path}}(X)(x,z) = [x = z] + (\Sigma y. X(x,y) \times [\text{Step}(y,z)])$$

$$F^+_{\text{Path}}(X^+)(x,z) = (x = z) + (\Sigma y. X^+(x,y) \times \text{Step}(y,z))$$

$$F^-_{\text{Path}}(X^-)(x,z) = \neg (x = z) \times (\Pi y. X^-(x,y) + \neg \text{Step}(y,z))$$

$$Path = (\mu F_{Path}^+, \nu F_{Path}^-)$$

What about Data Types with Negation?

An obstacle:

$\mathsf{not}:\mathsf{Chu}^\mathsf{op}\to\mathsf{Chu}$

An obstacle:

$\mathsf{not}:\mathsf{Chu}^\mathsf{op}\to\mathsf{Chu}$

So a Data Type with Negation cannot yield a functor.

An obstacle:

$\mathsf{not}:\mathsf{Chu}^\mathsf{op}\to\mathsf{Chu}$

So a Data Type with Negation cannot yield a functor.

Have we got anywhere?

Define another category Chuⁱ with the same objects but:

$$(A^+,A^-) \stackrel{i}{\Rightarrow} (B^+,B^-) = (A^+ \to B^+,A^- \to B^-)$$

Information morphisms:

parallel transformation of positive and negative information.

Negation is *covariant* in Chu^{*i*}

 $\mathsf{not}:\mathsf{Chu}^i\to\mathsf{Chu}^i$

Negation is *covariant* in Chu^{*i*}

 $\mathsf{not}:\mathsf{Chu}^i\to\mathsf{Chu}^i$

Initial *F*-Algebras in Chu^{*i*}:

$$\mu^{i}F = \mu(X^{+}, X^{-}).(F^{+}(X^{+}, X^{-}), F^{-}(X^{+}, X^{-}))$$

Negation is *covariant* in Chu^{*i*}

 $\mathsf{not}:\mathsf{Chu}^i\to\mathsf{Chu}^i$

Initial *F*-Algebras in Chu^{*i*}:

$$\mu^{i}F = \mu(X^{+}, X^{-}).(F^{+}(X^{+}, X^{-}), F^{-}(X^{+}, X^{-}))$$

Works for all of our functors, but gives the "wrong" answer.

data Path : Node
$$\times$$
 Node \rightarrow Chu where
stop : $\forall x \rightarrow$ Path (x, x)
step : $\forall x \, y \, z \rightarrow$ Path $(x, y) \rightarrow$ Step $(y, z) \rightarrow$ Path (x, z)

The $\mu^i F$ solution yields:

$$(\mu^{i}F)^{-} = \mu X.\lambda(x,z).\neg[x=z] \times (\Pi y.X(x,y) + \neg \operatorname{Step}(y,z))$$

i.e. all paths from *x* finitely never reach *z*.

Idea:

Refine the positive meaning of a data type with respect to information about non-provability.

Idea:

Refine the positive meaning of a data type with respect to information about non-provability.

The *reduct* of a logic program from **Stable Model Semantics** (Gelfond and Lifschitz, 1989).
Given $F: (I \rightarrow Chu) \rightarrow (I \rightarrow Chu)$

Given $F: (I \rightarrow Chu) \rightarrow (I \rightarrow Chu)$ and $Y: I \rightarrow Chu$, define

Given $F: (I \to Chu) \to (I \to Chu)$ and $Y: I \to Chu$, define $F_{/Y}(X^+, X^-) = \lambda i. (F^+(X^+, Y^-)i, F^-(Y^+, X^-)i)$

Y represents "a stage of knowledge".

Given $F: (I \rightarrow Chu) \rightarrow (I \rightarrow Chu)$ and $Y: I \rightarrow Chu$, define

$$F_{/Y}(X^+, X^-) = \lambda i. (F^+(X^+, Y^-)i, F^-(Y^+, X^-)i)$$

Y represents "a stage of knowledge".

 $F_{/Y}$ is separable, so we can get $\mu(F_{/Y}) : I \rightarrow Chu$.

Given $F: (I \rightarrow Chu) \rightarrow (I \rightarrow Chu)$ and $Y: I \rightarrow Chu$, define

$$F_{/Y}(X^+, X^-) = \lambda i. (F^+(X^+, Y^-)i, F^-(Y^+, X^-)i)$$

Y represents "a stage of knowledge".

 $F_{/Y}$ is separable, so we can get $\mu(F_{/Y}) : I \rightarrow Chu$.

Moreover, get a functor $\mu(F/-)$: Chu^{*i*} \rightarrow Chu^{*i*}.

A Semantics of Data Types with Negation Given $F: (I \rightarrow Chu) \rightarrow (I \rightarrow Chu)$ for a data type *D*, define

$$D = \mu^{i} Y. \mu(F_{/Y})$$

= $\mu(Y^{+}, Y^{-}).(\mu X^{+}. F^{+}(X^{+}, Y^{-}), \nu X^{-}. F^{-}(Y^{+}, X^{-}))$

A Semantics of Data Types with Negation Given $F: (I \rightarrow Chu) \rightarrow (I \rightarrow Chu)$ for a data type *D*, define

$$D = \mu^{i} Y. \mu(F_{/Y})$$

= $\mu(Y^{+}, Y^{-}).(\mu X^{+}. F^{+}(X^{+}, Y^{-}), \nu X^{-}. F^{-}(Y^{+}, X^{-}))$

If we replace Set by Bool, and add the consistency condition, then this coincides with the 3-valued stable model semantics (Przymusinski, 1990).

Examples

data Liar : Set where liar : not Liar \rightarrow Liar

data Liar : Set where liar : not Liar \rightarrow Liar

FX = notX

data Liar : Set where liar : not Liar \rightarrow Liar

FX = notX

$$F^{+}(X^{+}, X^{-}) = X^{-}$$
 $F^{-}(X^{+}, X^{-}) = X^{+}$

data Liar : Set where liar : not Liar \rightarrow Liar

FX = notX

$$F^{+}(X^{+}, X^{-}) = X^{-}$$
 $F^{-}(X^{+}, X^{-}) = X^{+}$

Liar =
$$\mu^{i}(Y^{+}, Y^{-}).(\mu X^{+}. F^{+}(X^{+}, Y^{-}), \nu X^{-}. F^{-}(Y^{+}, X^{-}))$$

= $\mu^{i}(Y^{+}, Y^{-}).(Y^{-}, Y^{+})$
 $\cong (\bot, \bot)$

$$FX = X$$

FX = X

NoBaseCase =
$$\mu(Y^+, Y^-).(\mu X^+, X^+, \nu X^-, X^-)$$

 $\cong (\bot, \top)$

FX = X

NoBaseCase =
$$\mu(Y^+, Y^-).(\mu X^+, X^+, \nu X^-, X^-)$$

 $\cong (\bot, \top)$

No proofs, one (extensionally) refutation.

data Even : Nat \rightarrow Set where zero : Even zero succ : $\forall \{n\} \rightarrow \text{not} (\text{Even } n) \rightarrow \text{Even} (\text{succ } n)$ data Even : Nat \rightarrow Set where zero : Even zero succ : $\forall \{n\} \rightarrow \text{not} (\text{Even } n) \rightarrow \text{Even} (\text{succ } n)$ $FX = \lambda \{\text{zero} \mapsto \top; \text{succ } n \mapsto \text{not} (Xn) \}$ data Even : Nat \rightarrow Set where zero : Even zero succ : $\forall \{n\} \rightarrow \text{not} (\text{Even } n) \rightarrow \text{Even} (\text{succ } n)$ $FX = \lambda \{\text{zero} \mapsto \top; \text{succ } n \mapsto \text{not} (Xn) \}$

$$F^+(X^+, X^-) = \lambda \{ \text{zero} \mapsto \top; \text{succ } n \mapsto X^- n \}$$
$$F^-(X^+, X^-) = \lambda \{ \text{zero} \mapsto \bot; \text{succ } n \mapsto X^+ n \}$$

data Even : Nat \rightarrow Set where zero: Even zero succ : $\forall \{n\} \rightarrow \text{not}(\text{Even } n) \rightarrow \text{Even}(\text{succ } n)$ $FX = \lambda \{ \text{zero} \mapsto \top : \text{succ } n \mapsto \text{not} (Xn) \}$ $F^+(X^+, X^-) = \lambda \{ \text{zero} \mapsto \top; \text{succ } n \mapsto X^- n \}$ $F^{-}(X^+, X^-) = \lambda \{ \text{zero} \mapsto \bot; \text{succ } n \mapsto X^+ n \}$ Even = $\mu(Y^+, Y^-)$. (λ {zero $\mapsto \top$; succ $n \mapsto Y^- n$ }, λ {zero $\mapsto \bot$: succ $n \mapsto Y^+ n$ })

which is \cong to the mutually defined Even/Odd definition.

All research ends in failure, the need for more research.

The two kinds of morphisms have an analogue in ω CPOs:

- truth morphisms \approx continuous functions
- information morphisms \approx embed/proj pairs

Arrange these into a double category.

The two kinds of morphisms have an analogue in ω CPOs:

- truth morphisms \approx continuous functions
- information morphisms \approx embed/proj pairs

Arrange these into a **double category**.

Split positive and negative uses into separate arguments:

 $F: \operatorname{Chu}^{\operatorname{hop}} \times \operatorname{Chu} \to \operatorname{Chu}$

(a double functor)

The two kinds of morphisms have an analogue in ω CPOs:

- truth morphisms \approx continuous functions
- information morphisms \approx embed/proj pairs

Arrange these into a **double category**.

Split positive and negative uses into separate arguments:

$$F: \mathrm{Chu}^{\mathrm{hop}} \times \mathrm{Chu} \to \mathrm{Chu}$$

(a double functor)

Then see what carries over from solutions of domain equations.

An obstacle: only isos are shared between truth and information morphisms, but ωCPO is a *framed bicategory*.

Conclusion

- Constructed a plausible semantics of data types with negation
- Generalisation of 3-valued stable model semantics
- Uses:
 - backtracking processes
 - default reasoning
 - error states, e.g. parse errors, ill-typed programs
- Can ASP be used to synthesise data types?

- Constructed a plausible semantics of data types with negation
- Generalisation of 3-valued stable model semantics
- Uses:
 - backtracking processes
 - default reasoning
 - error states, e.g. parse errors, ill-typed programs
- Can ASP be used to synthesise data types?

Related work:

- Weak negation / negation as failure: Clark (1978), Gelfond and Lifschitz (1988), Przymusinski (1989)
- Bilattices: Ginsberg (1986), Fitting (2020)
- "Anithesis translation"
 Affine logic for constructive mathematics Shulman (2018-22);

Remember to think negatively.

It may improve your expressiveness.