
Data Types with Negation

Robert Atkey
University of Strathclyde

robert.atkey@strath.ac.uk

Fun in the REPL
1st November 2023

Funded by EPSRC: EP/T026960/1 AISEC: AI Secure and Explainable by Construction

mailto:robert.atkey@strath.ac.uk


dataNat : Setwhere
zero : Nat
succ : Nat→ Nat



data Even : Nat→ Setwhere
zero : Even zero
succOdd : ∀{n}→ Odd n→ Even (succ n)

dataOdd : Nat→ Setwhere
succEven : ∀{n}→ Even n→ Odd (succ n)



What if we could use the power of negative thinking?



data Even : Nat→ Setwhere
zero : Even zero
succ : ∀{n}→ not (Even n)→ Even (succ n)



Error : Non strictly positive occurrence of “Even” in
"forall n : nat, not (Even n) -> Even (S n)".



Even is not strictly positive, because it occurs
to the left of an arrow
in the type of the constructor succ
in the definition of Even.



Making choices



A Context-Free Grammar:

S ::= aSa | aa

What is the language L(S)?

L(S) = {a2k | k ≥ 1}



A Context-Free Grammar:

S ::= aSa | aa

What is the language L(S)?

L(S) = {a2k | k ≥ 1}



A Context-Free Grammar:

S ::= aSa | aa

What is the language L(S)?

L(S) = {a2k | k ≥ 1}



A Parsing Expression Grammar (PEG):

S ::= aSa / aa

What is the language L(S)?

L(S) = {a2k
| k ≥ 1}



A Parsing Expression Grammar (PEG):

S ::= aSa / aa

What is the language L(S)?

L(S) = {a2k
| k ≥ 1}



A Parsing Expression Grammar (PEG):

S ::= aSa / aa

What is the language L(S)?

L(S) = {a2k
| k ≥ 1}



What is the parse tree of a PEG?



Unordered choice:
S ::= A | B

Parse trees:

data S : String× String→ Setwhere
prod1 : ∀{i o}→ A(i, o)→ S(i, o)
prod2 : ∀{i o}→ B(i, o)→ S(i, o)



Ordered choice:
S ::= A / B

Parse trees:

data S : String× String→ Setwhere
prod1 : ∀{i o}→ A(i, o)→ S(i, o)
prod2 : ∀{i o}→ not (∃o ′.A(i, o ′))→ B(i, o)→ S(i, o)

The prod2 constructor is only available if the first one didn’t work.



Ordered choice:
S ::= A / B

Parse trees:

data S : String× String→ Setwhere
prod1 : ∀{i o}→ A(i, o)→ S(i, o)
prod2 : ∀{i o}→ not (∃o ′.A(i, o ′))→ B(i, o)→ S(i, o)

The prod2 constructor is only available if the first one didn’t work.



Default reasoning



dataGuilty : Person→ Setwhere
murder : KilledSomeone p→ not (StateApproved p)→ Guilty p
. . .

data StateApproved : Person→ Setwhere
driver : CarDriver p→ StateApproved p
. . .



dataGuilty : Person→ Setwhere
murder : KilledSomeone p→ not (StateApproved p)→ Guilty p
. . .

data StateApproved : Person→ Setwhere
driver : CarDriver p→ StateApproved p
. . .



data Liar : Setwhere
liar : not Liar→ Liar

?



data Liar : Setwhere
liar : not Liar→ Liar

?



Qn: Can we give a “sensible” semantics to Data Types with Negation?

Plan:
1. Study the semantics of (co)inductive data types
2. Work out what we mean by “not”
3. Put the two together (using some logic programming ideas)



Qn: Can we give a “sensible” semantics to Data Types with Negation?

Plan:
1. Study the semantics of (co)inductive data types
2. Work out what we mean by “not”
3. Put the two together (using some logic programming ideas)



Inductive Data Types



A Data Type:

dataD : I→ Setwhere
c1 : ∀⃗x. A1 → ⃗D(e1)→ D(e ′1)

· · ·
cn : ∀⃗x. An → ⃗D(en)→ D(e ′n)

is modelled as a functor FD : (I→ Set)→ (I→ Set):

FD(X) = λi.
⨿

j

(Σx⃗. Aj × ⃗X(ej)× [i = e ′j ])



With a functor
FD : (I→ Set)→ (I→ Set)

We can ask for its initial algebra

in : FD(µFD)→ µFD

Which gives us:
1. µFD : I→ Set, a carrier
2. a recursion scheme for eliminating x : µFD i
3. induction principles

with a bit of work: Hermida and Jacobs, Inf.&Comp. 1998



With a functor
FD : (I→ Set)→ (I→ Set)

We can ask for its initial algebra

in : FD(µFD)→ µFD

Which gives us:
1. µFD : I→ Set, a carrier
2. a recursion scheme for eliminating x : µFD i
3. induction principles

with a bit of work: Hermida and Jacobs, Inf.&Comp. 1998



With a functor
FD : (I→ Set)→ (I→ Set)

We can ask for its initial algebra

in : FD(µFD)→ µFD

Which gives us:
1. µFD : I→ Set, a carrier
2. a recursion scheme for eliminating x : µFD i
3. induction principles

with a bit of work: Hermida and Jacobs, Inf.&Comp. 1998



Construction:

0→ FD 0→ FD(FD 0)→ FD(FD(FD 0))→ ...

µFD ≈ Σn. Fn
D

…up to some quotienting.

∗ terms and conditions apply



Coinductive Data Types



Given a functor

FD : (I→ Set)→ (I→ Set)

We can also ask for its final coalgebra

out : νFD → FD(νFD)

Which gives us:
1. νFD : I→ Set, a carrier
2. a corecursion scheme, for building x : νFD i
3. coinduction / bisimulation principles

with a bit of work: Hermida and Jacobs, Inf.&Comp. 1998



Given a functor

FD : (I→ Set)→ (I→ Set)

We can also ask for its final coalgebra

out : νFD → FD(νFD)

Which gives us:
1. νFD : I→ Set, a carrier
2. a corecursion scheme, for building x : νFD i
3. coinduction / bisimulation principles

with a bit of work: Hermida and Jacobs, Inf.&Comp. 1998



Construction:

1← FD 1← FD(FD 1)← FD(FD(FD 1))← ...

νFD ≈ Πn. Fn
D

…up to some naturality condition.

∗ terms and conditions apply



Negation

, what is it?



Negation, what is it?



notA def
= A→ ⊥

?

Not covariant: don’t get a functor!
Initial algebra and final coalgebra not well defined!



notA def
= A→ ⊥

?

Not covariant: don’t get a functor!
Initial algebra and final coalgebra not well defined!



notA def
= A→ ⊥

?

Not covariant: don’t get a functor!
Initial algebra and final coalgebra not well defined!



What do we mean when we say “not”?



1. “This leads to a contradiction”

notA def
= A→ ⊥

2. “I do not have any evidence to believe this”

files(X)← bird(X), not penguin(X).
bird(tweety).

Does “tweety” fly?

Classically (and intuitionistically): No. Intuitively – Yes?

Warning this kind of reasoning is non monotonic. If we later learn
penguin(tweety), then we would have to retract.



1. “This leads to a contradiction”

notA def
= A→ ⊥

2. “I do not have any evidence to believe this”

files(X)← bird(X), not penguin(X).
bird(tweety).

Does “tweety” fly?

Classically (and intuitionistically): No. Intuitively – Yes?

Warning this kind of reasoning is non monotonic. If we later learn
penguin(tweety), then we would have to retract.



1. “This leads to a contradiction”

notA def
= A→ ⊥

2. “I do not have any evidence to believe this”

files(X)← bird(X), not penguin(X).
bird(tweety).

Does “tweety” fly?

Classically (and intuitionistically): No. Intuitively – Yes?

Warning this kind of reasoning is non monotonic. If we later learn
penguin(tweety), then we would have to retract.



1. “This leads to a contradiction”

notA def
= A→ ⊥

2. “I do not have any evidence to believe this”

files(X)← bird(X), not penguin(X).
bird(tweety).

Does “tweety” fly?

Classically (and intuitionistically): No. Intuitively – Yes?

Warning this kind of reasoning is non monotonic. If we later learn
penguin(tweety), then we would have to retract.



1. “This leads to a contradiction”

notA def
= A→ ⊥

2. “I do not have any evidence to believe this”

files(X)← bird(X), not penguin(X).
bird(tweety).

Does “tweety” fly?

Classically (and intuitionistically): No.

Intuitively – Yes?

Warning this kind of reasoning is non monotonic. If we later learn
penguin(tweety), then we would have to retract.



1. “This leads to a contradiction”

notA def
= A→ ⊥

2. “I do not have any evidence to believe this”

files(X)← bird(X), not penguin(X).
bird(tweety).

Does “tweety” fly?

Classically (and intuitionistically): No. Intuitively – Yes?

Warning this kind of reasoning is non monotonic. If we later learn
penguin(tweety), then we would have to retract.



1. “This leads to a contradiction”

notA def
= A→ ⊥

2. “I do not have any evidence to believe this”

files(X)← bird(X), not penguin(X).
bird(tweety).

Does “tweety” fly?

Classically (and intuitionistically): No. Intuitively – Yes?

Warning this kind of reasoning is non monotonic. If we later learn
penguin(tweety), then we would have to retract.



A way to track evidence for and evidence against some data:

A = (A+,A−)

where A+, A− are (indexed) sets.

We could add condition A+ → A− → ⊥, but we’ll ignore this here.



Entailment flows forwards positively and backwards negatively:

(A+,A−)⇒ (B+,B−)
def
= (A+ → B+)× (B− → A−)

call this category Chu and the morphisms truth morphisms.



Terminal Object (> / truth)

> = (>,⊥)

Initial Object (⊥ / falsity)

⊥ = (⊥,>)



Products (conjunction)

(A+,A−)× (B+,B−)
def
= (A+ × B+,A− + B−)

Coproducts (disjunction)

(A+,A−) + (B+,B−)
def
= (A+ + B+,A− × B−)



Π-types (infinitary conjunction)

Πx:X.A[x]
def
= (Πx : X.A+[x], Σx : X.A−[x])

Σ-types (infinitary disjunction)

Σx:X.A[x]
def
= (Σx : X.A+[x], Πx : X.A−[x])



Negation

not (A+,A−)
def
= (A−,A+)

Sets
[X] = (X,X→ ⊥)



Properties of Chu and Negation:

1. Involutive: not (not A) = A
2. de Morgan: not(A× B) = (not A) + (not B)
3. do not have excluded middle
4. Not Cartesian Closed

not a model of classical logic
is a model of classical linear logic



Initial Algebras in Chu



If we have a functor

F : (I→ Chu)→ (I→ Chu)

constructed from only ×,+, Π, Σ, [−] then it can be separated:

F + : (I→ Set)→ (I→ Set) F − : (I→ Set)→ (I→ Set)

and initial algebras in Chu can be constructed from those in Set:

µF = (µF +, νF −)



dataPath : Node× Node→ Chuwhere
stop : ∀x→ Path(x, x)
step : ∀x y z→ Path(x, y)→ Step(y, z)→ Path(x, z)

FPath(X)(x, z) = [x = z] + (Σy.X(x, y)× [Step(y, z)])

F +
Path(X

+)(x, z) = (x = z) + (Σy.X+(x, y)× Step(y, z))
F −
Path(X

−)(x, z) = ¬(x = z)× (Πy.X−(x, y) + ¬Step(y, z))

Path = (µF +
Path, νF

−
Path)



dataPath : Node× Node→ Chuwhere
stop : ∀x→ Path(x, x)
step : ∀x y z→ Path(x, y)→ Step(y, z)→ Path(x, z)

FPath(X)(x, z) = [x = z] + (Σy.X(x, y)× [Step(y, z)])

F +
Path(X

+)(x, z) = (x = z) + (Σy.X+(x, y)× Step(y, z))
F −
Path(X

−)(x, z) = ¬(x = z)× (Πy.X−(x, y) + ¬Step(y, z))

Path = (µF +
Path, νF

−
Path)



dataPath : Node× Node→ Chuwhere
stop : ∀x→ Path(x, x)
step : ∀x y z→ Path(x, y)→ Step(y, z)→ Path(x, z)

FPath(X)(x, z) = [x = z] + (Σy.X(x, y)× [Step(y, z)])

F +
Path(X

+)(x, z) = (x = z) + (Σy.X+(x, y)× Step(y, z))
F −
Path(X

−)(x, z) = ¬(x = z)× (Πy.X−(x, y) + ¬Step(y, z))

Path = (µF +
Path, νF

−
Path)



dataPath : Node× Node→ Chuwhere
stop : ∀x→ Path(x, x)
step : ∀x y z→ Path(x, y)→ Step(y, z)→ Path(x, z)

FPath(X)(x, z) = [x = z] + (Σy.X(x, y)× [Step(y, z)])

F +
Path(X

+)(x, z) = (x = z) + (Σy.X+(x, y)× Step(y, z))
F −
Path(X

−)(x, z) = ¬(x = z)× (Πy.X−(x, y) + ¬Step(y, z))

Path = (µF +
Path, νF

−
Path)



What about Data Types with Negation?



An obstacle:

not : Chuop → Chu

So a Data Type with Negation cannot yield a functor.

Have we got anywhere?



An obstacle:

not : Chuop → Chu

So a Data Type with Negation cannot yield a functor.

Have we got anywhere?



An obstacle:

not : Chuop → Chu

So a Data Type with Negation cannot yield a functor.

Have we got anywhere?



Define another category Chui with the same objects but:

(A+,A−)
i⇒ (B+,B−) = (A+ → B+,A− → B−)

Information morphisms:
parallel transformation of positive and negative information.



Negation is covariant in Chui

not : Chui → Chui

Initial F-Algebras in Chui:

µiF = µ(X+,X−).(F +(X+,X−), F −(X+,X−))

Works for all of our functors, but gives the “wrong” answer.



Negation is covariant in Chui

not : Chui → Chui

Initial F-Algebras in Chui:

µiF = µ(X+,X−).(F +(X+,X−), F −(X+,X−))

Works for all of our functors, but gives the “wrong” answer.



Negation is covariant in Chui

not : Chui → Chui

Initial F-Algebras in Chui:

µiF = µ(X+,X−).(F +(X+,X−), F −(X+,X−))

Works for all of our functors, but gives the “wrong” answer.



dataPath : Node× Node→ Chuwhere
stop : ∀x→ Path(x, x)
step : ∀x y z→ Path(x, y)→ Step(y, z)→ Path(x, z)

The µiF solution yields:

(µiF)− = µX.λ(x, z).¬[x = z]× (Πy.X(x, y) + ¬Step(y, z))

i.e. all paths from x finitely never reach z.



Idea:
Refine the positive meaning of a data type with respect to
information about non-provability.

The reduct of a logic program from Stable Model Semantics
(Gelfond and Lifschitz, 1989).



Idea:
Refine the positive meaning of a data type with respect to
information about non-provability.

The reduct of a logic program from Stable Model Semantics
(Gelfond and Lifschitz, 1989).



Given F : (I→ Chu)→ (I→ Chu)

and Y : I→ Chu, define

F/Y(X
+,X−) = λi. (F +(X+,Y−)i, F −(Y+,X−)i)

Y represents “a stage of knowledge”.

F/Y is separable, so we can get µ(F/Y) : I→ Chu.

Moreover, get a functor µ(F/−) : Chui → Chui.



Given F : (I→ Chu)→ (I→ Chu) and Y : I→ Chu, define

F/Y(X
+,X−) = λi. (F +(X+,Y−)i, F −(Y+,X−)i)

Y represents “a stage of knowledge”.

F/Y is separable, so we can get µ(F/Y) : I→ Chu.

Moreover, get a functor µ(F/−) : Chui → Chui.



Given F : (I→ Chu)→ (I→ Chu) and Y : I→ Chu, define

F/Y(X
+,X−) = λi. (F +(X+,Y−)i, F −(Y+,X−)i)

Y represents “a stage of knowledge”.

F/Y is separable, so we can get µ(F/Y) : I→ Chu.

Moreover, get a functor µ(F/−) : Chui → Chui.



Given F : (I→ Chu)→ (I→ Chu) and Y : I→ Chu, define

F/Y(X
+,X−) = λi. (F +(X+,Y−)i, F −(Y+,X−)i)

Y represents “a stage of knowledge”.

F/Y is separable, so we can get µ(F/Y) : I→ Chu.

Moreover, get a functor µ(F/−) : Chui → Chui.



Given F : (I→ Chu)→ (I→ Chu) and Y : I→ Chu, define

F/Y(X
+,X−) = λi. (F +(X+,Y−)i, F −(Y+,X−)i)

Y represents “a stage of knowledge”.

F/Y is separable, so we can get µ(F/Y) : I→ Chu.

Moreover, get a functor µ(F/−) : Chui → Chui.



A Semantics of Data Types with Negation
Given F : (I→ Chu)→ (I→ Chu) for a data type D, define

D = µiY. µ(F/Y)
= µ(Y+,Y−).(µX+. F +(X+,Y−), νX−. F −(Y+,X−))

If we replace Set by Bool, and add the consistency condition, then
this coincides with the 3-valued stable model semantics
(Przymusinski, 1990).



A Semantics of Data Types with Negation
Given F : (I→ Chu)→ (I→ Chu) for a data type D, define

D = µiY. µ(F/Y)
= µ(Y+,Y−).(µX+. F +(X+,Y−), νX−. F −(Y+,X−))

If we replace Set by Bool, and add the consistency condition, then
this coincides with the 3-valued stable model semantics
(Przymusinski, 1990).



Examples



data Liar : Setwhere
liar : not Liar→ Liar

FX = notX

F +(X+,X−) = X− F −(X+,X−) = X+

Liar = µi(Y+,Y−).(µX+. F +(X+,Y−), νX−. F −(Y+,X−))

= µi(Y+,Y−).(Y−,Y+)
∼= (⊥,⊥)



data Liar : Setwhere
liar : not Liar→ Liar

FX = notX

F +(X+,X−) = X− F −(X+,X−) = X+

Liar = µi(Y+,Y−).(µX+. F +(X+,Y−), νX−. F −(Y+,X−))

= µi(Y+,Y−).(Y−,Y+)
∼= (⊥,⊥)



data Liar : Setwhere
liar : not Liar→ Liar

FX = notX

F +(X+,X−) = X− F −(X+,X−) = X+

Liar = µi(Y+,Y−).(µX+. F +(X+,Y−), νX−. F −(Y+,X−))

= µi(Y+,Y−).(Y−,Y+)
∼= (⊥,⊥)



data Liar : Setwhere
liar : not Liar→ Liar

FX = notX

F +(X+,X−) = X− F −(X+,X−) = X+

Liar = µi(Y+,Y−).(µX+. F +(X+,Y−), νX−. F −(Y+,X−))

= µi(Y+,Y−).(Y−,Y+)
∼= (⊥,⊥)



dataNoBaseCase : Setwhere
rec : NoBaseCase→ NoBaseCase

FX = X

NoBaseCase = µ(Y+,Y−).(µX+.X+, νX−.X−)
∼= (⊥,>)

No proofs, one (extensionally) refutation.



dataNoBaseCase : Setwhere
rec : NoBaseCase→ NoBaseCase

FX = X

NoBaseCase = µ(Y+,Y−).(µX+.X+, νX−.X−)
∼= (⊥,>)

No proofs, one (extensionally) refutation.



dataNoBaseCase : Setwhere
rec : NoBaseCase→ NoBaseCase

FX = X

NoBaseCase = µ(Y+,Y−).(µX+.X+, νX−.X−)
∼= (⊥,>)

No proofs, one (extensionally) refutation.



dataNoBaseCase : Setwhere
rec : NoBaseCase→ NoBaseCase

FX = X

NoBaseCase = µ(Y+,Y−).(µX+.X+, νX−.X−)
∼= (⊥,>)

No proofs, one (extensionally) refutation.



data Even : Nat→ Setwhere
zero : Even zero
succ : ∀{n}→ not (Even n)→ Even (succ n)

FX = λ{zero 7→ >; succ n 7→ not (X n)}

F +(X+,X−) = λ{zero 7→ >; succ n 7→ X− n}
F −(X+,X−) = λ{zero 7→ ⊥; succ n 7→ X+ n}

Even = µ(Y+,Y−). (λ{zero 7→ >; succ n 7→ Y− n},
λ{zero 7→ ⊥; succ n 7→ Y+ n})

which is ∼= to the mutually defined Even/Odd definition.



data Even : Nat→ Setwhere
zero : Even zero
succ : ∀{n}→ not (Even n)→ Even (succ n)

FX = λ{zero 7→ >; succ n 7→ not (X n)}

F +(X+,X−) = λ{zero 7→ >; succ n 7→ X− n}
F −(X+,X−) = λ{zero 7→ ⊥; succ n 7→ X+ n}

Even = µ(Y+,Y−). (λ{zero 7→ >; succ n 7→ Y− n},
λ{zero 7→ ⊥; succ n 7→ Y+ n})

which is ∼= to the mutually defined Even/Odd definition.



data Even : Nat→ Setwhere
zero : Even zero
succ : ∀{n}→ not (Even n)→ Even (succ n)

FX = λ{zero 7→ >; succ n 7→ not (X n)}

F +(X+,X−) = λ{zero 7→ >; succ n 7→ X− n}
F −(X+,X−) = λ{zero 7→ ⊥; succ n 7→ X+ n}

Even = µ(Y+,Y−). (λ{zero 7→ >; succ n 7→ Y− n},
λ{zero 7→ ⊥; succ n 7→ Y+ n})

which is ∼= to the mutually defined Even/Odd definition.



data Even : Nat→ Setwhere
zero : Even zero
succ : ∀{n}→ not (Even n)→ Even (succ n)

FX = λ{zero 7→ >; succ n 7→ not (X n)}

F +(X+,X−) = λ{zero 7→ >; succ n 7→ X− n}
F −(X+,X−) = λ{zero 7→ ⊥; succ n 7→ X+ n}

Even = µ(Y+,Y−). (λ{zero 7→ >; succ n 7→ Y− n},
λ{zero 7→ ⊥; succ n 7→ Y+ n})

which is ∼= to the mutually defined Even/Odd definition.



All research ends in failure, the need for more research.



The two kinds of morphisms have an analogue in ωCPOs:
▶ truth morphisms ≈ continuous functions
▶ information morphisms ≈ embed/proj pairs

Arrange these into a double category.

Split positive and negative uses into separate arguments:

F : Chuhop × Chu→ Chu

(a double functor)

Then see what carries over from solutions of domain equations.
▶ An obstacle: only isos are shared between truth and

information morphisms, but ωCPO is a framed bicategory.



The two kinds of morphisms have an analogue in ωCPOs:
▶ truth morphisms ≈ continuous functions
▶ information morphisms ≈ embed/proj pairs

Arrange these into a double category.

Split positive and negative uses into separate arguments:

F : Chuhop × Chu→ Chu

(a double functor)

Then see what carries over from solutions of domain equations.
▶ An obstacle: only isos are shared between truth and

information morphisms, but ωCPO is a framed bicategory.



The two kinds of morphisms have an analogue in ωCPOs:
▶ truth morphisms ≈ continuous functions
▶ information morphisms ≈ embed/proj pairs

Arrange these into a double category.

Split positive and negative uses into separate arguments:

F : Chuhop × Chu→ Chu

(a double functor)

Then see what carries over from solutions of domain equations.
▶ An obstacle: only isos are shared between truth and

information morphisms, but ωCPO is a framed bicategory.



Conclusion



▶ Constructed a plausible semantics of data types with negation
▶ Generalisation of 3-valued stable model semantics
▶ Uses:

▶ backtracking processes
▶ default reasoning
▶ error states, e.g. parse errors, ill-typed programs

▶ Can ASP be used to synthesise data types?

Related work:
▶ Weak negation / negation as failure: Clark (1978), Gelfond and

Lifschitz (1988), Przymusinski (1989)
▶ Bilattices: Ginsberg (1986), Fitting (2020)
▶ “Anithesis translation”

Affine logic for constructive mathematics Shulman (2018-22);



▶ Constructed a plausible semantics of data types with negation
▶ Generalisation of 3-valued stable model semantics
▶ Uses:

▶ backtracking processes
▶ default reasoning
▶ error states, e.g. parse errors, ill-typed programs

▶ Can ASP be used to synthesise data types?

Related work:
▶ Weak negation / negation as failure: Clark (1978), Gelfond and

Lifschitz (1988), Przymusinski (1989)
▶ Bilattices: Ginsberg (1986), Fitting (2020)
▶ “Anithesis translation”

Affine logic for constructive mathematics Shulman (2018-22);



Remember to think negatively.

It may improve your expressiveness.


