Data Types with Negation

Robert Atkey
University of Strathclyde robert.atkey@strath.ac.uk

Fun in the REPL
1st November 2023
data Nat: Set where zero: Nat

succ: Nat \rightarrow Nat

data Even : Nat \rightarrow Set where
zero : Even zero
succOdd : $\forall\{n\} \rightarrow$ Odd $n \rightarrow$ Even (succ n)
data Odd: Nat \rightarrow Set where succEven : $\forall\{n\} \rightarrow$ Even $n \rightarrow$ Odd (succ \boldsymbol{n})

What if we could use the power of negative thinking?
data Even : Nat \rightarrow Set where
zero: Even zero
succ : $\forall\{n\} \rightarrow$ not $($ Even $n) \rightarrow$ Even (succ \boldsymbol{n})

Error: Non strictly positive occurrence of "Even" in "forall n : nat, not (Even n) -> Even (S n)".

Even is not strictly positive, because it occurs
to the left of an arrow
in the type of the constructor succ
in the definition of Even.

Making choices

A Context-Free Grammar:

$$
S::=a S a \mid a a
$$

A Context-Free Grammar:

$$
S::=a S a \mid a a
$$

What is the language $\mathcal{L}(S)$?

A Context-Free Grammar:

$$
S::=a S a \mid a a
$$

What is the language $\mathcal{L}(S)$?

$$
\mathcal{L}(S)=\left\{a^{2 k} \mid k \geq 1\right\}
$$

A Parsing Expression Grammar (PEG):

$$
S::=a S a / a a
$$

A Parsing Expression Grammar (PEG):

$$
S::=a S a / a a
$$

What is the language $\mathcal{L}(S)$?

A Parsing Expression Grammar (PEG):

$$
S::=a S a / a a
$$

What is the language $\mathcal{L}(S)$?

$$
\mathcal{L}(S)=\left\{a^{2^{k}} \mid k \geq 1\right\}
$$

What is the parse tree of a PEG?

Unordered choice:

$$
S::=A \mid B
$$

Parse trees:
data S : String \times String \rightarrow Set where
prod1: $\forall\{i o\} \rightarrow \mathrm{A}(i, o) \rightarrow \mathrm{S}(i, o)$
prod2 $: \forall\{i o\} \rightarrow \mathrm{B}(i, o) \rightarrow \mathrm{S}(i, o)$

Ordered choice:

$$
S::=A / B
$$

Parse trees:

data S : String \times String \rightarrow Set where

$$
\text { prod1 }: \forall\{i o\} \rightarrow \mathrm{A}(i, o) \rightarrow \mathrm{S}(i, o)
$$

$$
\operatorname{prod} 2: \forall\{i o\} \rightarrow \operatorname{not}\left(\exists o^{\prime} . \mathrm{A}\left(i, o^{\prime}\right)\right) \rightarrow \mathrm{B}(i, o) \rightarrow \mathrm{S}(i, o)
$$

Ordered choice:

$$
S::=A / B
$$

Parse trees:

$$
\begin{aligned}
& \text { data } \mathrm{S}: \text { String } \times \text { String } \rightarrow \text { Set where } \\
& \quad \text { prod1 }: \forall\{i o\} \rightarrow \mathrm{A}(i, o) \rightarrow \mathrm{S}(i, o) \\
& \quad \text { prod2 }: \forall\left\{i o u \rightarrow \operatorname{not}\left(\exists o^{\prime} . \mathrm{A}\left(i, o^{\prime}\right)\right) \rightarrow \mathrm{B}(i, o) \rightarrow \mathrm{S}(i, o)\right.
\end{aligned}
$$

The prod 2 constructor is only available if the first one didn't work.

Default reasoning
data Guilty : Person \rightarrow Set where
murder : KilledSomeone $p \rightarrow$ not (StateApproved p) \rightarrow Guilty p
data Guilty : Person \rightarrow Set where
murder : KilledSomeone $p \rightarrow$ not (StateApproved p) \rightarrow Guilty p
data StateApproved : Person \rightarrow Set where driver : CarDriver $p \rightarrow$ StateApproved p

data Liar : Set where
liar : not Liar \rightarrow Liar

data Liar : Set where
 liar : not Liar \rightarrow Liar
 ?

Qn: Can we give a "sensible" semantics to Data Types with Negation?

Qn: Can we give a "sensible" semantics to Data Types with Negation?
Plan:

1. Study the semantics of (co)inductive data types
2. Work out what we mean by "not"
3. Put the two together (using some logic programming ideas)

Inductive Data Types

A Data Type:

$$
\begin{aligned}
& \text { data } \mathrm{D}: I \rightarrow \text { Set where } \\
& \quad \mathrm{c}_{1}: \forall \vec{x} . A_{1} \rightarrow D\left(\vec{e}_{1}\right) \rightarrow D\left(e_{1}^{\prime}\right) \\
& \quad \ldots \\
& c_{n}: \forall \vec{x} . A_{n} \rightarrow D\left(\vec{e}_{n}\right) \rightarrow D\left(e_{n}^{\prime}\right)
\end{aligned}
$$

is modelled as a functor $F_{\mathrm{D}}:(I \rightarrow$ Set $) \rightarrow(I \rightarrow$ Set $)$:

$$
F_{\mathrm{D}}(X)=\lambda i . \coprod_{j}\left(\sum \vec{x} . A_{j} \times X\left(\vec{e}_{j}\right) \times\left[i=e_{j}^{\prime}\right]\right)
$$

With a functor

$$
F_{\mathrm{D}}:(I \rightarrow \text { Set }) \rightarrow(I \rightarrow \text { Set })
$$

With a functor

$$
F_{\mathrm{D}}:(I \rightarrow \text { Set }) \rightarrow(I \rightarrow \text { Set })
$$

We can ask for its initial algebra

$$
\text { in }: F_{\mathrm{D}}\left(\mu F_{\mathrm{D}}\right) \rightarrow \mu F_{\mathrm{D}}
$$

With a functor

$$
F_{\mathrm{D}}:(I \rightarrow \text { Set }) \rightarrow(I \rightarrow \text { Set })
$$

We can ask for its initial algebra

$$
\text { in }: F_{\mathrm{D}}\left(\mu F_{\mathrm{D}}\right) \rightarrow \mu F_{\mathrm{D}}
$$

Which gives us:

1. $\mu F_{\mathrm{D}}: I \rightarrow$ Set, a carrier
2. a recursion scheme for eliminating $x: \mu F_{\mathrm{D}} i$
3. induction principles
with a bit of work: Hermida and Jacobs, Inf.\&Comp. 1998

Construction:

$$
0 \rightarrow F_{\mathrm{D}} 0 \rightarrow F_{\mathrm{D}}\left(F_{\mathrm{D}} 0\right) \rightarrow F_{\mathrm{D}}\left(F_{\mathrm{D}}\left(F_{\mathrm{D}} 0\right)\right) \rightarrow \ldots
$$

$$
\mu F_{\mathrm{D}} \approx \sum n . F_{\mathrm{D}}^{n}
$$

...up to some quotienting.

* terms and conditions apply

Coinductive Data Types

Given a functor

$$
F_{\mathrm{D}}:(I \rightarrow \text { Set }) \rightarrow(I \rightarrow \text { Set })
$$

Given a functor

$$
F_{\mathrm{D}}:(I \rightarrow \text { Set }) \rightarrow(I \rightarrow \text { Set })
$$

We can also ask for its final coalgebra

$$
\text { out }: \nu F_{\mathrm{D}} \rightarrow F_{\mathrm{D}}\left(\nu F_{\mathrm{D}}\right)
$$

Which gives us:

1. $v F_{\mathrm{D}}: I \rightarrow$ Set, a carrier
2. a corecursion scheme, for building $x: \vee F_{\mathrm{D}} i$
3. coinduction / bisimulation principles

Construction:

$$
1 \leftarrow F_{\mathrm{D}} 1 \leftarrow F_{\mathrm{D}}\left(F_{\mathrm{D}} 1\right) \leftarrow F_{\mathrm{D}}\left(F_{\mathrm{D}}\left(F_{\mathrm{D}} 1\right)\right) \leftarrow \ldots
$$

$$
v F_{\mathrm{D}} \approx \Pi n \cdot F_{\mathrm{D}}^{n}
$$

...up to some naturality condition.

* terms and conditions apply

Negation

Negation, what is it?

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

?

$$
\operatorname{not} A \stackrel{\text { def }}{=} A \rightarrow \perp
$$

Not covariant: don't get a functor! Initial algebra and final coalgebra not well defined!

What do we mean when we say "not"?

1. "This leads to a contradiction"

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

1. "This leads to a contradiction"

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

2. "I do not have any evidence to believe this"
3. "This leads to a contradiction"

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

2. "I do not have any evidence to believe this"
files $(X) \leftarrow \operatorname{bird}(X)$, not penguin (X). bird(tweety).
3. "This leads to a contradiction"

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

2. "I do not have any evidence to believe this"

> files $(X) \leftarrow \operatorname{bird}(X)$, not penguin (X). $\operatorname{bird}($ tweety $)$.

Does "tweety" fly?

1. "This leads to a contradiction"

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

2. "I do not have any evidence to believe this"

$$
\begin{aligned}
& \text { files }(X) \leftarrow \operatorname{bird}(X) \text {, not penguin }(X) . \\
& \operatorname{bird}(\text { tweety }) .
\end{aligned}
$$

Does "tweety" fly?
Classically (and intuitionistically): No.

1. "This leads to a contradiction"

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

2. "I do not have any evidence to believe this"
```
files}(X)\leftarrow\operatorname{bird}(X), not penguin (X)
bird(tweety).
```

Does "tweety" fly?
Classically (and intuitionistically): No. Intuitively - Yes?

1. "This leads to a contradiction"

$$
\operatorname{not} A \stackrel{\operatorname{def}}{=} A \rightarrow \perp
$$

2. "I do not have any evidence to believe this"

$$
\begin{aligned}
& \text { files }(X) \leftarrow \operatorname{bird}(X) \text {, not penguin }(X) . \\
& \operatorname{bird}(\text { tweety }) .
\end{aligned}
$$

Does "tweety" fly?
Classically (and intuitionistically): No. Intuitively - Yes?
Warning this kind of reasoning is non monotonic. If we later learn penguin(tweety), then we would have to retract.

A way to track evidence for and evidence against some data:

$$
A=\left(A^{+}, A^{-}\right)
$$

where A^{+}, A^{-}are (indexed) sets.
We could add condition $A^{+} \rightarrow A^{-} \rightarrow \perp$, but we'll ignore this here.

Entailment flows forwards positively and backwards negatively:

$$
\left(A^{+}, A^{-}\right) \Rightarrow\left(B^{+}, B^{-}\right) \stackrel{\text { def }}{=}\left(A^{+} \rightarrow B^{+}\right) \times\left(B^{-} \rightarrow A^{-}\right)
$$

call this category Chu and the morphisms truth morphisms.

Terminal Object (T / truth)

$$
\top=(\top, \perp)
$$

Initial Object (\perp / falsity)

$$
\perp=(\perp, \top)
$$

Products (conjunction)

$$
\left(A^{+}, A^{-}\right) \times\left(B^{+}, B^{-}\right) \stackrel{\text { def }}{=}\left(A^{+} \times B^{+}, A^{-}+B^{-}\right)
$$

Coproducts (disjunction)

$$
\left(A^{+}, A^{-}\right)+\left(B^{+}, B^{-}\right) \stackrel{\text { def }}{=}\left(A^{+}+B^{+}, A^{-} \times B^{-}\right)
$$

Π-types (infinitary conjunction)

$$
\Pi_{x}: X . A[x] \stackrel{\operatorname{def}}{=}\left(\Pi_{x}: X . A^{+}[x], \Sigma_{x}: X . A^{-}[x]\right)
$$

E-types (infinitary disjunction)

$$
\Sigma x: X . A[x] \stackrel{\operatorname{def}}{=}\left(\Sigma x: X \cdot A^{+}[x], \Pi_{x}: X . A^{-}[x]\right)
$$

Negation

$$
\operatorname{not}\left(A^{+}, A^{-}\right) \stackrel{\operatorname{def}}{=}\left(A^{-}, A^{+}\right)
$$

Sets

$$
[X]=(X, X \rightarrow \perp)
$$

Properties of Chu and Negation:

1. Involutive: $\operatorname{not}(\operatorname{not} A)=A$
2. de Morgan: $\operatorname{not}(A \times B)=(\operatorname{not} A)+(\operatorname{not} B)$
3. do not have excluded middle
4. Not Cartesian Closed not a model of classical logic is a model of classical linear logic

Initial Algebras in Chu

If we have a functor

$$
F:(I \rightarrow \mathrm{Chu}) \rightarrow(I \rightarrow \mathrm{Chu})
$$

constructed from only $\times,+, \Pi, \Sigma,[-]$ then it can be separated:

$$
F^{+}:(I \rightarrow \text { Set }) \rightarrow(I \rightarrow \text { Set }) \quad F^{-}:(I \rightarrow \text { Set }) \rightarrow(I \rightarrow \text { Set })
$$

and initial algebras in Chu can be constructed from those in Set:

$$
\mu F=\left(\mu F^{+}, v F^{-}\right)
$$

data Path: Node \times Node \rightarrow Chu where
stop : $\forall x \rightarrow \operatorname{Path}(x, x)$
step : $\forall x y z \rightarrow \operatorname{Path}(x, y) \rightarrow \operatorname{Step}(y, z) \rightarrow \operatorname{Path}(x, z)$
data Path: Node \times Node \rightarrow Chu where
stop : $\forall x \rightarrow \operatorname{Path}(x, x)$
step : $\forall x y z \rightarrow \operatorname{Path}(x, y) \rightarrow \operatorname{Step}(y, z) \rightarrow \operatorname{Path}(x, z)$
$F_{\text {Path }}(X)(x, z)=[x=z]+(\Sigma y . X(x, y) \times[\operatorname{Step}(y, z)])$

data Path : Node \times Node \rightarrow Chu where

stop: $\forall x \rightarrow \operatorname{Path}(x, x)$
step : $\forall x y z \rightarrow \operatorname{Path}(x, y) \rightarrow \operatorname{Step}(y, z) \rightarrow \operatorname{Path}(x, z)$
$F_{\text {Path }}(X)(x, z)=[x=z]+(\Sigma y . X(x, y) \times[\operatorname{Step}(y, z)])$

$$
\begin{aligned}
& F_{\text {Path }}^{+}\left(X^{+}\right)(x, z)=(x=z)+\left(\Sigma y . X^{+}(x, y) \times \operatorname{Step}(y, z)\right) \\
& F_{\text {Path }}^{-}\left(X^{-}\right)(x, z)=\neg(x=z) \times\left(\Pi y \cdot X^{-}(x, y)+\neg \operatorname{Step}(y, z)\right)
\end{aligned}
$$

data Path: Node \times Node \rightarrow Chu where
stop : $\forall x \rightarrow \operatorname{Path}(x, x)$
step : $\forall x y z \rightarrow \operatorname{Path}(x, y) \rightarrow \operatorname{Step}(y, z) \rightarrow \operatorname{Path}(x, z)$

$$
F_{\text {Path }}(X)(x, z)=[x=z]+(\Sigma y . X(x, y) \times[\operatorname{Step}(y, z)])
$$

$$
\begin{aligned}
& F_{\text {Path }}^{+}\left(X^{+}\right)(x, z)=(x=z)+\left(\Sigma y . X^{+}(x, y) \times \operatorname{Step}(y, z)\right) \\
& F_{\text {Path }}^{-}\left(X^{-}\right)(x, z)=\neg(x=z) \times\left(\Pi y . X^{-}(x, y)+\neg \operatorname{Step}(y, z)\right)
\end{aligned}
$$

$$
\text { Path }=\left(\mu F_{\text {Path }}^{+}, \nu F_{\text {Path }}^{-}\right)
$$

What about Data Types with Negation?

An obstacle:
not $: \mathrm{Chu}^{\mathrm{op}} \rightarrow \mathrm{Chu}$

An obstacle:

$$
\text { not }: \mathrm{Chu}^{\mathrm{op}} \rightarrow \mathrm{Chu}
$$

So a Data Type with Negation cannot yield a functor.

An obstacle:

$$
\text { not }: \mathrm{Chu}^{\mathrm{op}} \rightarrow \mathrm{Chu}
$$

So a Data Type with Negation cannot yield a functor.
Have we got anywhere?

Define another category Chu with the same objects but:

$$
\left(A^{+}, A^{-}\right) \stackrel{i}{\Rightarrow}\left(B^{+}, B^{-}\right)=\left(A^{+} \rightarrow B^{+}, A^{-} \rightarrow B^{-}\right)
$$

Information morphisms:
parallel transformation of positive and negative information.

Negation is covariant in Chu^{i}

$$
\text { not }: \mathrm{Chu}^{i} \rightarrow \mathrm{Chu}^{i}
$$

Negation is covariant in Chu^{i}

$$
\text { not }: \text { Chu }^{i} \rightarrow \text { Chu }^{i}
$$

Initial F-Algebras in Chu ${ }^{i}$:

$$
\mu^{i} F=\mu\left(X^{+}, X^{-}\right) \cdot\left(F^{+}\left(X^{+}, X^{-}\right), F^{-}\left(X^{+}, X^{-}\right)\right)
$$

Negation is covariant in Chu ${ }^{i}$

$$
\text { not }: \mathrm{Chu}^{i} \rightarrow \text { Chu }^{i}
$$

Initial F-Algebras in Chu ${ }^{i}$:

$$
\mu^{i} F=\mu\left(X^{+}, X^{-}\right) \cdot\left(F^{+}\left(X^{+}, X^{-}\right), F^{-}\left(X^{+}, X^{-}\right)\right)
$$

Works for all of our functors, but gives the "wrong" answer.

data Path : Node \times Node \rightarrow Chu where

stop: $\forall x \rightarrow \operatorname{Path}(x, x)$
step : $\forall x y z \rightarrow \operatorname{Path}(x, y) \rightarrow \operatorname{Step}(y, z) \rightarrow \operatorname{Path}(x, z)$

The $\mu^{i} F$ solution yields:

$$
\left(\mu^{i} F\right)^{-}=\mu X . \lambda(x, z) . \neg[x=z] \times(\Pi y . X(x, y)+\neg \operatorname{Step}(y, z))
$$

i.e. all paths from x finitely never reach z.

Idea:
Refine the positive meaning of a data type with respect to information about non-provability.

Idea:
Refine the positive meaning of a data type with respect to information about non-provability.

The reduct of a logic program from Stable Model Semantics (Gelfond and Lifschitz, 1989).

Given $F:(I \rightarrow$ Chu $) \rightarrow(I \rightarrow$ Chu $)$

Given $F:(I \rightarrow \mathrm{Chu}) \rightarrow(I \rightarrow \mathrm{Chu})$ and $Y: I \rightarrow$ Chu, define

Given $F:(I \rightarrow \mathrm{Chu}) \rightarrow(I \rightarrow \mathrm{Chu})$ and $Y: I \rightarrow$ Chu, define

$$
F_{/ Y}\left(X^{+}, X^{-}\right)=\lambda i .\left(F^{+}\left(X^{+}, Y^{-}\right) i, F^{-}\left(Y^{+}, X^{-}\right) i\right)
$$

Y represents "a stage of knowledge".

Given $F:(I \rightarrow \mathrm{Chu}) \rightarrow(I \rightarrow \mathrm{Chu})$ and $Y: I \rightarrow$ Chu, define

$$
F_{/ Y}\left(X^{+}, X^{-}\right)=\lambda i .\left(F^{+}\left(X^{+}, Y^{-}\right) i, F^{-}\left(Y^{+}, X^{-}\right) i\right)
$$

Y represents "a stage of knowledge".
$F_{/ Y}$ is separable, so we can get $\mu\left(F_{/ Y}\right): I \rightarrow$ Chu.

Given $F:(I \rightarrow \mathrm{Chu}) \rightarrow(I \rightarrow \mathrm{Chu})$ and $Y: I \rightarrow$ Chu, define

$$
F_{/ Y}\left(X^{+}, X^{-}\right)=\lambda i .\left(F^{+}\left(X^{+}, Y^{-}\right) i, F^{-}\left(Y^{+}, X^{-}\right) i\right)
$$

Y represents "a stage of knowledge".
$F_{/ Y}$ is separable, so we can get $\mu\left(F_{/ Y}\right): I \rightarrow$ Chu.
Moreover, get a functor $\mu(F /-):$ Chu $^{i} \rightarrow$ Chu ${ }^{i}$.

A Semantics of Data Types with Negation
Given $F:(I \rightarrow \mathrm{Chu}) \rightarrow(I \rightarrow \mathrm{Chu})$ for a data type D, define

$$
\begin{aligned}
D & =\mu^{i} Y \cdot \mu\left(F_{/ Y}\right) \\
& =\mu\left(Y^{+}, Y^{-}\right) \cdot\left(\mu X^{+} . F^{+}\left(X^{+}, Y^{-}\right), \nu X^{-} . F^{-}\left(Y^{+}, X^{-}\right)\right)
\end{aligned}
$$

A Semantics of Data Types with Negation
Given $F:(I \rightarrow \mathrm{Chu}) \rightarrow(I \rightarrow \mathrm{Chu})$ for a data type D, define

$$
\begin{aligned}
D & =\mu^{i} Y \cdot \mu\left(F_{/ Y}\right) \\
& =\mu\left(Y^{+}, Y^{-}\right) \cdot\left(\mu X^{+} . F^{+}\left(X^{+}, Y^{-}\right), v X^{-} . F^{-}\left(Y^{+}, X^{-}\right)\right)
\end{aligned}
$$

If we replace Set by Bool, and add the consistency condition, then this coincides with the 3-valued stable model semantics (Przymusinski, 1990).

Examples

data Liar : Set where

liar: not Liar \rightarrow Liar

data Liar : Set where

liar: not Liar \rightarrow Liar

$$
F X=\operatorname{not} X
$$

data Liar : Set where

liar: not Liar \rightarrow Liar

$$
\begin{gathered}
F X=\operatorname{not} X \\
F^{+}\left(X^{+}, X^{-}\right)=X^{-} \quad F^{-}\left(X^{+}, X^{-}\right)=X^{+}
\end{gathered}
$$

data Liar : Set where
 liar: not Liar \rightarrow Liar

$$
F X=\operatorname{not} X
$$

$$
F^{+}\left(X^{+}, X^{-}\right)=X^{-} \quad F^{-}\left(X^{+}, X^{-}\right)=X^{+}
$$

$$
\begin{aligned}
\operatorname{Liar} & =\mu^{i}\left(Y^{+}, Y^{-}\right) \cdot\left(\mu X^{+} \cdot F^{+}\left(X^{+}, Y^{-}\right), v X^{-} \cdot F^{-}\left(Y^{+}, X^{-}\right)\right) \\
& =\mu^{i}\left(Y^{+}, Y^{-}\right) \cdot\left(Y^{-}, Y^{+}\right) \\
& \cong(\perp, \perp)
\end{aligned}
$$

data NoBaseCase : Set where
rec: NoBaseCase \rightarrow NoBaseCase
data NoBaseCase: Set where
rec: NoBaseCase \rightarrow NoBaseCase

$$
F X=X
$$

data NoBaseCase : Set where

rec: NoBaseCase \rightarrow NoBaseCase

$$
F X=X
$$

$$
\begin{aligned}
\text { NoBaseCase } & =\mu\left(Y^{+}, Y^{-}\right) \cdot\left(\mu X^{+} \cdot X^{+}, v X^{-} \cdot X^{-}\right) \\
& \cong(\perp, \top)
\end{aligned}
$$

data NoBaseCase : Set where

rec: NoBaseCase \rightarrow NoBaseCase

$$
F X=X
$$

$$
\begin{aligned}
\text { NoBaseCase } & =\mu\left(Y^{+}, Y^{-}\right) \cdot\left(\mu X^{+} \cdot X^{+}, v X^{-} \cdot X^{-}\right) \\
& \cong(\perp, \top)
\end{aligned}
$$

No proofs, one (extensionally) refutation.
data Even : Nat \rightarrow Set where
zero: Even zero
succ : $\forall\{n\} \rightarrow$ not $($ Even $n) \rightarrow$ Even $($ succ $n)$
data Even : Nat \rightarrow Set where
zero: Even zero
succ $: \forall\{n\} \rightarrow \operatorname{not}($ Even $n) \rightarrow$ Even $(\operatorname{succ} \boldsymbol{n})$

$$
F X=\lambda\{\text { zero } \mapsto \top ; \operatorname{succ} n \mapsto \operatorname{not}(X n)\}
$$

data Even : Nat \rightarrow Set where

zero: Even zero
succ : $\forall\{n\} \rightarrow$ not $($ Even $n) \rightarrow$ Even (succ n)

$$
F X=\lambda\{\text { zero } \mapsto \top ; \text { succ } n \mapsto \operatorname{not}(X n)\}
$$

$$
\begin{aligned}
& F^{+}\left(X^{+}, X^{-}\right)=\lambda\left\{\text { zero } \mapsto \top ; \text { succ } n \mapsto X^{-} n\right\} \\
& F^{-}\left(X^{+}, X^{-}\right)=\lambda\left\{\text { zero } \mapsto \perp \text {;succ } n \mapsto X^{+} n\right\}
\end{aligned}
$$

data Even : Nat \rightarrow Set where

zero : Even zero

succ : $\forall\{n\} \rightarrow$ not $($ Even $n) \rightarrow$ Even (succ n)

$$
F X=\lambda\{\text { zero } \mapsto \top ; \text { succ } n \mapsto \operatorname{not}(X n)\}
$$

$$
\begin{aligned}
& F^{+}\left(X^{+}, X^{-}\right)=\lambda\left\{\text { zero } \mapsto \top \text {; succ } n \mapsto X^{-} n\right\} \\
& F^{-}\left(X^{+}, X^{-}\right)=\lambda\left\{\text { zero } \mapsto \perp \text {;succ } n \mapsto X^{+} n\right\}
\end{aligned}
$$

$$
\begin{aligned}
\text { Even }=\mu\left(Y^{+}, Y^{-}\right) \cdot & \left(\lambda\left\{\text { zero } \mapsto T ; \text { succ } n \mapsto Y^{-} n\right\},\right. \\
& \left.\lambda\left\{\text { zero } \mapsto \perp \text {; succ } n \mapsto Y^{+} n\right\}\right)
\end{aligned}
$$

which is \cong to the mutually defined Even/Odd definition.

All research ends in failure, the need for more research.

The two kinds of morphisms have an analogue in ω CPOs:

- truth morphisms \approx continuous functions
- information morphisms \approx embed/proj pairs

Arrange these into a double category.

The two kinds of morphisms have an analogue in ω CPOs:

- truth morphisms \approx continuous functions
- information morphisms \approx embed/proj pairs

Arrange these into a double category.
Split positive and negative uses into separate arguments:

$$
F: \text { Chu }^{\text {hop }} \times \mathrm{Chu} \rightarrow \mathrm{Chu}
$$

(a double functor)

The two kinds of morphisms have an analogue in ω CPOs:

- truth morphisms \approx continuous functions
- information morphisms \approx embed/proj pairs

Arrange these into a double category.
Split positive and negative uses into separate arguments:

$$
F: \text { Chu }^{\text {hop }} \times \mathrm{Chu} \rightarrow \mathrm{Chu}
$$

(a double functor)
Then see what carries over from solutions of domain equations.

- An obstacle: only isos are shared between truth and information morphisms, but $\omega \mathrm{CPO}$ is a framed bicategory.

Conclusion

- Constructed a plausible semantics of data types with negation
- Generalisation of 3-valued stable model semantics
- Uses:
- backtracking processes
- default reasoning
- error states, e.g. parse errors, ill-typed programs
- Can ASP be used to synthesise data types?
- Constructed a plausible semantics of data types with negation
- Generalisation of 3-valued stable model semantics
- Uses:
- backtracking processes
- default reasoning
- error states, e.g. parse errors, ill-typed programs
- Can ASP be used to synthesise data types?

Related work:

- Weak negation / negation as failure: Clark (1978), Gelfond and Lifschitz (1988), Przymusinski (1989)
- Bilattices: Ginsberg (1986), Fitting (2020)
- "Anithesis translation"

Affine logic for constructive mathematics Shulman (2018-22);

Remember to think negatively.

It may improve your expressiveness.

