A Relationally Parametric Model of Dependent Type Theory

Robert Atkey
Neil Ghani (University of Strathclyde)
Patricia Johann (Appalachian State University)

POPL, 14th January 2014
Relational Parametricity

(Reynolds, 1983)
Type Abstraction

\[e : \forall \alpha. \; \alpha \to (\alpha \to \alpha) \to \alpha \]

The implementation \(e \) only “knows” two things about \(\alpha \):

- at least one \(z : \alpha \) exists;
- and, given one, there is another, by \(s : \alpha \to \alpha \).

The program \(e \) is uniform under changes of representation of \(\alpha \).

Reynolds’ Idea

Formalise \(e \)’s symmetry via preservation of relations
Relational Parametricity

For example,

\[e : \forall \alpha. \, \alpha \to (\alpha \to \alpha) \to \alpha \]

let \(X \) and \(Y \) be sets, and let \(R \subseteq X \times Y \)

if we have \(z_1 \in X, \, z_2 \in Y \) such that:

\[(z_1, z_2) \in R \]

and \(s_1 : X \to X, \, s_2 : Y \to Y \) such that:

\[\forall (a, b) \in R. \, (s_1 a, s_2 b) \in R \]

then

\[(e [X] z_1 s_1, e [Y] z_2 s_2) \in R \]

Preservation of Relations

implies \((\forall \alpha. \, \alpha \to (\alpha \to \alpha) \to \alpha) \cong \mathbb{N} \)
Relational Parametricity

Relational interpretations of types

$$
\mathcal{R}[\Theta \vdash A] \theta \theta' \rho \subseteq \mathcal{T}[\Theta \vdash A] \theta \times \mathcal{T}[\Theta \vdash A] \theta'
$$

$$
\mathcal{R}[\alpha] \rho = \rho(\alpha)
\mathcal{R}[A \to B] \rho = \{(f_1, f_2) \mid \forall (a_1, a_2) \in \mathcal{R}[A]\rho. (f_1 a_1, f_2 a_2) \in \mathcal{R}[B]\rho\}
\mathcal{R}[\forall \alpha. A] \rho = \{(x_1, x_2) \mid \forall X, Y, R \subseteq X \times Y.
\quad (x_1 [X], x_2 [Y]) \in \mathcal{R}[A](\rho[\alpha \mapsto R])\}
$$

Relational Parametricity

Identity Extension:

$$
\forall x, y \in \mathcal{T}[\Theta \vdash A]\theta \quad \Rightarrow \quad ((x, y) \in \mathcal{R}[\Theta \vdash A](\text{Eq}_\theta) \iff x = y)
$$

and Abstraction:

$$
\Theta \mid - \vdash e : A \quad \Rightarrow \quad [e] \in \mathcal{T}[\Theta \vdash A]\theta
$$
Routes to Understanding

Denotational Models
Reynolds, Bainbridge-Freyd-Scedrov-Scott, Robinson-Rosolini, Hasegawa, Wadler, Dunphy-Reddy, ...

Operational Models
Pitts, Johann, Ahmed, Birkedal-Møgelberg-Petersen, Dreyer, Vytiniotis-Weirich,...

Logics
Plotkin-Abadi, Birkedal-Møgelberg-Petersen, ...

By Translation
Wadler, Bernardy, ...
Relationally Parametric Models for System F
Mutually define base and relational interpretations of types

(Reynolds, 1983) (Bainbridge et al., 1990)

\[\mathcal{T}[^{\alpha}]\theta = \theta(\alpha) \]
\[\mathcal{T}[A \rightarrow B]\theta = \mathcal{T}[A]\theta \rightarrow \mathcal{T}[B]\theta \]
\[\mathcal{T}[\forall \alpha.A]\theta = \{ x : \forall X. \mathcal{T}[A](\theta[\alpha \mapsto X]) \mid \forall X, Y, R \subseteq X \times Y. \mathcal{R}[\tau](\text{Eq}_\theta, \alpha \mapsto R) (x X) (x Y) \} \]
\[\mathcal{R}[\alpha]\rho = \rho(\alpha) \]
\[\mathcal{R}[A \rightarrow B]\rho = \{ (f_1, f_2) \mid \forall (a_1, a_2) \in \mathcal{R}[A]\rho. (f_1 a_1, f_2 a_2) \in \mathcal{R}[B]\rho \} \]
\[\mathcal{R}[\forall \alpha.\tau] \rho x y = \{ (x_1, x_2) \mid \forall X, Y, R \subseteq X \times Y. \]
\[(x X, y Y) \in \mathcal{R}[\tau](\rho, \alpha \mapsto R) \} \]

then : \{ prove Identity Extension prove Abstraction \}
Relational Parametricity

for

Higher Kinds

(*, * → *, (* → *) → *, ...)
How to interpret kinds?

Implicitly:

\[[\ast]\] = \text{set} \quad \text{and} \quad \left[\ast\right]^R = (X, Y) \mapsto \text{Rel}(X, Y)

So let us try:

\left[\ast\right] = \text{set}
\left[\kappa_1 \rightarrow \kappa_2\right] = \left[\kappa_1\right] \rightarrow \left[\kappa_2\right]

and

\left[\kappa\right]^R : \left[\kappa\right] \times \left[\kappa\right] \rightarrow \text{set}
\left[\ast\right]^R = (X, Y) \mapsto \text{Rel}(X, Y)
\left[\kappa_1 \rightarrow \kappa_2\right]^R = (F, G) \mapsto \forall X, Y.\left[\kappa_1\right]^R(X, Y) \rightarrow \left[\kappa_2\right]^R(FX, GY)
Identity extension?

Recall identity extension:

\[\forall x, y \in \mathcal{T}[\Theta \vdash A : \ast] \theta \implies ((x, y) \in \mathcal{R}[\Theta \vdash A : \ast](\text{Eq}_\theta) \iff x = y) \]

What is “equality” for \(F : \ast \to \ast \)?

No good answer in general.

Solution:

Build-in an “identity” for every semantic type operator
Every semantic type operator’s identity preserves identities
Kinds as Reflexive Graphs

Reflexive Graph Categories
(Hasegawa, 1994)
(Robinson and Rosolini, 1994)
(Dunphy and Reddy, 2004)

Let $RG = \bullet \xleftarrow{\delta_0} \xrightarrow{\delta_1} \bullet$ such that $\delta_0 \circ i = id$ and $\delta_1 \circ i = id$.

Interpret kinds as elements of Set^{RG}.

Kinds as “Categories without Composition”

\[
\begin{array}{c}
\Delta_O \\
\Delta_{src} \xleftarrow{\Delta_{refl}} \xrightarrow{\Delta_{tgt}} \Delta_{tgt} \\
\Delta_R
\end{array}
\]
Kinds as Reflexive Graphs

Reflexive Graph Categories
(Hasegawa, 1994)
(Robinson and Rosolini, 1994)
(Dunphy and Reddy, 2004)

Let \(RG = \bullet \xrightarrow{\delta_0} \bullet \) such that \(\delta_0 \circ i = id \) and \(\delta_1 \circ i = id \).

Interpret kinds as elements of \(\text{Set}^{RG} \).

Kinds as “Categories without Composition”

\[
\begin{array}{ccc}
\Gamma_O & \xrightarrow{f_o} & \Delta_O \\
\Gamma_{\text{src}} & \xrightarrow{\Gamma_{\text{refl}}} & \Gamma_{\text{tgt}} \\
\Gamma_R & \xrightarrow{f_r} & \Delta_R \\
\Delta_{\text{src}} & \xrightarrow{\Delta_{\text{refl}}} & \Delta_{\text{tgt}}
\end{array}
\]
Kinds as Reflexive Graphs

Reflexive Graph Categories
(Hasegawa, 1994)
(Robinson and Rosolini, 1994)
(Dunphy and Reddy, 2004)

Let $RG = \bullet \xleftarrow{\delta_0} \xrightarrow{\delta_1} \bullet$ such that $\delta_0 \circ i = id$ and $\delta_1 \circ i = id$.

Interpret kinds as elements of Set^{RG}.

Kinds as “Categories without Composition”

![Diagram](image)

Higher kinds are interpreted using the cartesian-closed structure.
Interpretation of System Fω

Interpretation of Base Kind

\[
\begin{align*}
\llbracket * \rrbracket_O & = \text{set} \\
\llbracket * \rrbracket_R & = \{ (X, Y, R \subseteq X \times Y) \mid X, Y \in \text{set} \} \\
\llbracket * \rrbracket_{\text{refl}}(X) & = (X, X, \text{Eq}_X) \\
\llbracket * \rrbracket_{\text{src}}(X, Y, R) & = X \\
\llbracket * \rrbracket_{\text{tgt}}(X, Y, R) & = Y
\end{align*}
\]

Interpretation of Types

\[\Theta \vdash A : \kappa\]

— interpreted as a morphism in Set\(^{RG}\)

— recreates the mutual induction used for System F

Interpretation of Terms

\[\Theta \mid \Gamma \vdash e : A\]

— interpreted as a natural transformations “without composition”

— yields the standard abstraction theorem
Interpretation of System Fω

Interpretation of Base Kind

\[
\begin{align*}
\llbracket * \rrbracket O &= \text{set} \\
\llbracket * \rrbracket R &= \{ (X, Y, R \subseteq X \times Y) \mid X, Y \in \text{set} \} \\
\llbracket * \rrbracket refl(X) &= (X, X, \text{Eq}_X) \\
\llbracket * \rrbracket src(X, Y, R) &= X \\
\llbracket * \rrbracket tgt(X, Y, R) &= Y
\end{align*}
\]

Interpretation of Types and Terms
the categories \(\text{Set}^{RG}(\Delta, \llbracket * \rrbracket) \)
— objects are “semantic types”
— morphisms are “semantic terms”
Dependent Types
Dependent Types

Types depend on terms

\[\Pi A : U. \, \Pi n : \text{nat.} \, T (\text{Vec} \, A \, n) \rightarrow T (\text{Vec} \, A \, n) \]

Types computed from Terms

\[\text{Vec} : U \rightarrow \text{nat} \rightarrow U \]
\[\text{Vec} = \lambda A \, n. \, \text{natrec}(x. \, U, \, \text{Unit}, \, x \, p. \, A \times p, \, n) \]

Martin-Löf Type Theory
(Martin-Löf, 1984)

– \(\Pi\)-types, natural numbers
– Tarski-style universe \((U, T)\) of small types
 – closed under \(\Pi\) and natural numbers
 – (optionally impredicative)
Relationally Parametric Models of Dependent Types
Models of Dependent Types

Families Fibration

\[\text{Fam}(\text{Set}) \]

\[\xrightarrow{p} \]

\[\text{Set} \]

Families

Objects of Fam(Set): \((X \in \text{Set}, A \in X \rightarrow \text{Set})\)
- Types: \(\Gamma \vdash A \text{ type}\)
 - \(X \in \text{Set}\) models the context \(\Gamma\);
 - \(A \in X \rightarrow \text{Set}\) models the type \(A\).
- Terms: \(\Gamma \vdash e : A\)
 - Morphisms \((X, \lambda x. 1) \rightarrow (X, A)\) in Fam(Set)
Relationally Parametric Models of Dependent Types

\[(Families Fibration)^{\text{RG}}\]

\[
\begin{array}{c}
\text{Fam(Set)}^{\text{RG}} \\
\downarrow^{p^{\text{RG}}} \\
\text{Set}^{\text{RG}}
\end{array}
\]

Families of Reflexive Graphs

For a reflexive graph Γ, a family of reflexive graphs A over Γ:

\[
\begin{align*}
A_O & \in \Gamma_O \to \text{Set} \\
A_R & \in \Gamma_R \to \text{Set} \\
A_{\text{refl}} & \in \forall \gamma_o \in \Gamma_O. \; A_O(\gamma_o) \to A_R(\Gamma_{\text{refl}}(\gamma_o)) \\
A_{\text{src}} & \in \forall \gamma_r \in \Gamma_R. \; A_R(\gamma_r) \to A_O(\Gamma_{\text{src}}(\gamma_r)) \\
A_{\text{tgt}} & \in \forall \gamma_r \in \Gamma_R. \; A_R(\gamma_r) \to A_O(\Gamma_{\text{tgt}}(\gamma_r))
\end{align*}
\]

$\text{RG-Fam}(\Gamma)$: the category of reflexive graph families over Γ
Families of Reflexive Graphs

For every $\gamma_o \in \Gamma_O$, a reflexive graph:

\[
A_O(\gamma_o) \\
\downarrow \\
A_R(\Gamma_{refl}(\gamma_o))
\]

For every $\gamma_r \in \Gamma_R$, a relation between reflexive graphs:

\[
A_R(\gamma_r) \\
A_O(\Gamma_{src}(\gamma_r)) \\
\downarrow \\
A_R(\Gamma_{refl}(\Gamma_{src}(\gamma_r))) \\
A_O(\Gamma_{tgt}(\gamma_r)) \\
\downarrow \\
A_R(\Gamma_{refl}(\Gamma_{tgt}(\gamma_r)))
\]
From System F(ω) types to Families

The Interpretation of Base Kind:

\[
\begin{align*}
[\star]_O & = \text{set} \\
[\star]_R & = \{(X, Y, R \subseteq X \times Y) \mid X, Y \in \text{set}\}
\end{align*}
\]
From System F(\(\omega\)) types to Families

The Interpretation of Base Kind:

\[
[\ast]_O = \text{set} \\
[\ast]_R = \{ (X, Y, R \subseteq X \times Y) \mid X, Y \in \text{set} \}
\]

For Semantic Types: \(A \in \text{Set}^{RG}(\Gamma, [\ast])\),
for all \(\gamma_o \in \Gamma_O\), \(A_O(\gamma_o)\) is a small set
for all \(\gamma_r \in \Gamma_R\), \(A_R(\gamma_r)\) is a triple:

\[
(A_O(\Gamma_{src}(\gamma_r)), A_O(\Gamma_{tgt}(\gamma_r)), R \subseteq A_O(\Gamma_{src}(\gamma_r)) \times A_O(\Gamma_{tgt}(\gamma_r)))
\]
From System F(ω) types to Families

The Interpretation of Base Kind:

\[
\begin{align*}
\lfloor * \rfloor_O &= \text{set} \\
\lfloor * \rfloor_R &= \{ (X, Y, R \subseteq X \times Y) \mid X, Y \in \text{set} \}
\end{align*}
\]

For Semantic Types: \(A \in \text{Set}^{\text{RG}}(\Gamma, \lfloor * \rfloor) \),
for all \(\gamma_o \in \Gamma_O \), \(A_O(\gamma_o) \) is a small set
for all \(\gamma_r \in \Gamma_R \), \(A_R(\gamma_r) \) is a triple:

\[
(A_O(\Gamma_{src}(\gamma_r)), A_O(\Gamma_{tgt}(\gamma_r)), R \subseteq A_O(\Gamma_{src}(\gamma_r)) \times A_O(\Gamma_{tgt}(\gamma_r)))
\]

In terms of Families of Reflexive Graphs: \(A \in \text{RG-Fam}(\Gamma) \) is:

- **small**, if \(A_O(\gamma_o) \) and \(A_R(\gamma_r) \) are small sets;
- **discrete**, if \((A_O(\gamma_o), A_R(\Gamma_{refl}(\gamma_o))) \) is iso. to \((X, X) \) for some \(X \);
- **proof-irrelevant**, if
 \[
 A_R(\gamma_r) \to A_O(\Gamma_{src}(\gamma_r)) \times A_O(\Gamma_{tgt}(\gamma_r)) \text{ is injective}
 \]
Representing System $F(\omega)$ types

Small, discrete, proof-irrelevant families

$\text{RG-Fam}_{\text{stpi}}(\Gamma)$
Representing System F(\(\omega\)) types

Small, discrete, proof-irrelevant families

\(\text{RG-Fam}_{\text{stpi}}(\Gamma)\)

Representation

\(\text{Set}^{\text{RG}}(\Gamma, [\ast]) \simeq \text{RG-Fam}_{\text{stpi}}(\Gamma)\)
Universes

Rules

\[\Gamma \vdash U : \text{type} \]
\[\Gamma \vdash M : U \]
\[\Gamma \vdash T(M) : \text{type} \]
\[\Gamma \vdash M : U \]
\[\Gamma, x : T(M) \vdash N : U \]
\[\Gamma \vdash \Pi x : M. N : U \]

Interpretation of the universe \(U \)

\[U_O(\gamma_0) = \text{small discrete reflexive graphs} \]
\[U_R(\gamma_r) = \{ (X, Y, R, R_{src}, R_{tgt}) \mid \langle R_{src}, R_{tgt} \rangle : R \to X_O \times Y_O \text{ is injective} \} \]

\[T \in \text{RG-Fam}(\Gamma, U) : \]
\[T_O(\gamma_0, (X_O, X_R)) = X_O \]
\[T_R(\gamma_r, (X, Y, R, R_{src}, R_{tgt})) = R \]
\[T_{refl}(\gamma_0, (X_O, X_R)) = X_{refl} \]
\[T_{src}(\gamma_r, (X, Y, R, R_{src}, R_{tgt})) = R_{src} \]
\[T_{tgt}(\gamma_r, (X, Y, R, R_{src}, R_{tgt})) = R_{tgt} \]
Natural Numbers

As a family of reflexive graphs:

\[
\begin{align*}
\text{nat}_O(\gamma_o) &= \mathbb{N} \\
\text{nat}_R(\gamma_r) &= \mathbb{N}
\end{align*}
\]

Structure:

- Easy to define zero, succ, natrec
- The family nat is small, discrete and proof-irrelevant
Π-types

- transformer on objects
- transformer on relations
- source and targets agree
- reflexive relations are preserved
\(\Pi\text{-types} \)

Objects

\[
(\Pi A B)_O(\gamma_0) = \{ (f_o, f_r) | \\
 f_o \in \forall a_o \in A_O(\gamma_0). B_O(\gamma_o, a_o), \\
 f_r \in \forall a_r \in A_R(\Gamma_{\text{refl}}(\gamma_0)). B_R(\Gamma_{\text{refl}}(\gamma_0), a_r), \\
 \forall a_r \in A_R(\Gamma_{\text{refl}}(\gamma_0)). \\
 B_{\text{src}}(\Gamma_{\text{refl}}(\gamma_0), a_r)(f_r a_r) = f_o(A_{\text{src}}(\Gamma_{\text{refl}}(\gamma_0))(a_r)), \\
 \forall a_r \in A_R(\Gamma_{\text{refl}}(\gamma_0)). \\
 B_{\text{tgt}}(\Gamma_{\text{refl}}(\gamma_0), a_r)(f_r a_r) = f_o(A_{\text{tgt}}(\Gamma_{\text{refl}}(\gamma_0))(a_r)), \\
 \forall a_o \in A_O(\gamma_0). B_{\text{refl}}(\gamma_0, a_o)(f_o a_o) = f_r(A_{\text{refl}}(\gamma_0)(a_o)) \}
\]

- Transformer on objects
\[(\Pi A B)_O(\gamma_o) = \{ (f_o, f_r) \mid \]
\[f_o \in \forall a_o \in A_O(\gamma_o). B_O(\gamma_o, a_o), \]
\[f_r \in \forall a_r \in A_R(\Gamma_{refl}(\gamma_o)). B_R(\Gamma_{refl}(\gamma_o), a_r), \]
\[\forall a_r \in A_R(\Gamma_{refl}(\gamma_o)). \]
\[B_{src}(\Gamma_{refl}(\gamma_o), a_r)(f_r a_r) = f_o(A_{src}(\Gamma_{refl}(\gamma_o))(a_r)), \]
\[\forall a_r \in A_R(\Gamma_{refl}(\gamma_o)). \]
\[B_{tgt}(\Gamma_{refl}(\gamma_o), a_r)(f_r a_r) = f_o(A_{tgt}(\Gamma_{refl}(\gamma_o))(a_r)), \]
\[\forall a_o \in A_O(\gamma_o). B_{refl}(\gamma_o, a_o)(f_o a_o) = f_r(A_{refl}(\gamma_o)(a_o)) \} \]

- Transformer on objects
- Transformer on relations
Π-types

Objects

\((\Pi \! AB)_O(\gamma_o) = \{ (f_o, f_r) | \)
\[
 f_o \in \forall a_o \in A_O(\gamma_o). B_O(\gamma_o, a_o), \\
 f_r \in \forall a_r \in A_R(\Gamma_{refl}(\gamma_o)). B_R(\Gamma_{refl}(\gamma_o), a_r), \\
 \forall a_r \in A_R(\Gamma_{refl}(\gamma_o)). \\
 B_{src}(\Gamma_{refl}(\gamma_o), a_r)(f_r a_r) = f_o(A_{src}(\Gamma_{refl}(\gamma_o))(a_r)), \\
 \forall a_r \in A_R(\Gamma_{refl}(\gamma_o)). \\
 B_{tgt}(\Gamma_{refl}(\gamma_o), a_r)(f_r a_r) = f_o(A_{tgt}(\Gamma_{refl}(\gamma_o))(a_r)), \\
 \forall a_o \in A_O(\gamma_o). B_{refl}(\gamma_o, a_o)(f_o a_o) = f_r(A_{refl}(\gamma_o)(a_o)) \} \]

▶ Transformer on objects
▶ Transformer on relations
▶ Source and targets agree
Π-types

Objects

\[(\Pi_{o} A B)_{O}(\gamma_{o}) = \{ (f_{o}, f_{r}) \mid \]
\[f_{o} \in \forall a_{o} \in A_{O}(\gamma_{o}). B_{O}(\gamma_{o}, a_{o}), \]
\[f_{r} \in \forall a_{r} \in A_{R}(\Gamma_{refl}(\gamma_{o})). B_{R}(\Gamma_{refl}(\gamma_{o}), a_{r}), \]
\[\forall a_{r} \in A_{R}(\Gamma_{refl}(\gamma_{o})). B_{src}(\Gamma_{refl}(\gamma_{o}), a_{r})(f_{r} a_{r}) = f_{o}(A_{src}(\Gamma_{refl}(\gamma_{o}))(a_{r})), \]
\[\forall a_{r} \in A_{R}(\Gamma_{refl}(\gamma_{o})). B_{tgt}(\Gamma_{refl}(\gamma_{o}), a_{r})(f_{r} a_{r}) = f_{o}(A_{tgt}(\Gamma_{refl}(\gamma_{o}))(a_{r})), \]
\[\forall a_{o} \in A_{O}(\gamma_{o}). B_{refl}(\gamma_{o}, a_{o})(f_{o} a_{o}) = f_{r}(A_{refl}(\gamma_{o})(a_{o})) \} \]

- Transformer on objects
- Transformer on relations
- Source and targets agree
- Reflexive relations are preserved
π-types

Relations

\[(\Pi \text{AB})_R(\gamma_r) = \]
\[\{ ((f^\text{src}_o, f^\text{src}_r), (f^\text{tgt}_o, f^\text{tgt}_r), r) | \]
\[(f^\text{src}_o, f^\text{src}_r) \in (\Pi \text{AB})_O(\Gamma_{\text{src}}(\gamma_r)), \]
\[(f^\text{tgt}_o, f^\text{tgt}_r) \in (\Pi \text{AB})_O(\Gamma_{\text{tgt}}(\gamma_r)), \]
\[r \in \forall a_r \in A_R(\gamma_r). B_R(\gamma_r, a_r), \]
\[\forall a_r \in A_R(\gamma_r). B_{\text{src}}(\gamma_r, a_r)(r a_r) = f^\text{src}_o(A_{\text{src}}(\gamma_r)(a_r)), \]
\[\forall a_r \in A_R(\gamma_r). B_{\text{tgt}}(\gamma_r, a_r)(r a_r) = f^\text{tgt}_o(A_{\text{tgt}}(\gamma_r)(a_r)) \} \]
Π-types

Relations

\[
(\Pi A B)_{R}(\gamma_r) = \{ ((f^{src}_o, f^{src}_r), (f^{tgt}_o, f^{tgt}_r), r) \mid (f^{src}_o, f^{src}_r) \in (\Pi A B)_{O}(\Gamma_{src}(\gamma_r)), (f^{tgt}_o, f^{tgt}_r) \in (\Pi A B)_{O}(\Gamma_{tgt}(\gamma_r)), \]
\[
r \in \forall a_r \in A_{R}(\gamma_r). B_{R}(\gamma_r, a_r), \forall a_r \in A_{R}(\gamma_r). B_{src}(\gamma_r, a_r)(r a_r) = f^{src}_o(A_{src}(\gamma_r)(a_r)), \forall a_r \in A_{R}(\gamma_r). B_{tgt}(\gamma_r, a_r)(r a_r) = f^{tgt}_o(A_{tgt}(\gamma_r)(a_r)) \}
\]

- Source and target Π-objects
(\Pi AB)_R(\gamma_r) =
\{ ((f^\text{src}_o, f^\text{src}_r), (f^\text{tgt}_o, f^\text{tgt}_r), r) |
(f^\text{src}_o, f^\text{src}_r) \in (\Pi AB)_O(\Gamma_{\text{src}}(\gamma_r)),
(f^\text{tgt}_o, f^\text{tgt}_r) \in (\Pi AB)_O(\Gamma_{\text{tgt}}(\gamma_r)),
\forall a_r \in A_R(\gamma_r). B_R(\gamma_r, a_r),
\forall a_r \in A_R(\gamma_r). B_{\text{src}}(\gamma_r, a_r)(r a_r) = f^\text{src}_o(A_{\text{src}}(\gamma_r)(a_r)),
\forall a_r \in A_R(\gamma_r). B_{\text{tgt}}(\gamma_r, a_r)(r a_r) = f^\text{tgt}_o(A_{\text{tgt}}(\gamma_r)(a_r)) \}

- Source and target \(\Pi\)-objects
- Relation transformer
$$\Pi$-types

Relations

$$(\Pi AB)_R(\gamma_r) = $$

$$\{ ((f^\text{src}_o, f^\text{src}_r), (f^t\text{gt}_o, f^t\text{gt}_r), r) |$$

$$(f^\text{src}_o, f^\text{src}_r) \in (\Pi AB)_O(\Gamma_{\text{src}}(\gamma_r)),$$
$$(f^t\text{gt}_o, f^t\text{gt}_r) \in (\Pi AB)_O(\Gamma_{\text{tgt}}(\gamma_r)),$$

$$r \in \forall a_r \in A_R(\gamma_r). B_R(\gamma_r, a_r),$$

$$\forall a_r \in A_R(\gamma_r). B_{\text{src}}(\gamma_r, a_r)(r \ a_r) = f^\text{src}_o(A_{\text{src}}(\gamma_r)(a_r)),$$

$$\forall a_r \in A_R(\gamma_r). B_{\text{tgt}}(\gamma_r, a_r)(r \ a_r) = f^t\text{gt}_o(A_{\text{tgt}}(\gamma_r)(a_r)) \}$$

- Source and target Π-objects
- Relation transformer
- Sources and targets agree
Dependent Products

Sound
This interpretation of \(\Pi \)-types is sound
- for \(\beta \)- and \(\eta \)-equality
- for general reasons
- so it is unique up to isomorphism

Small, discrete, proof-irrelevant
If \(B \in \text{RG-Fam}(\Gamma.A) \) is discrete and proof-irrelevant,
- then so is \(\Pi A B \)

If \(A \) and \(B \) are small, then so is \(\Pi A B \)
- if “set” is impredicative, then only \(B \) need be small
Classical Mechanics’ kinds as reflexive graphs:

$$[\text{GL}(n)] = ([*], \text{GL}(n), I)$$

GL(n) is the group of invertible linear transformations on $$\mathbb{R}^n$$
Classical Mechanics’ kinds as reflexive graphs:

\[\mathcal{GL}(n) = (\{\ast\}, \text{GL}(n), I) \]
GL(n) is the group of invertible linear transformations on \(\mathbb{R}^n \)

\[\mathcal{O}(n) = (\{\ast\}, \text{O}(n), I) \]
O(n) is the group of orthogonal transformations on \(\mathbb{R}^n \)
Classical Mechanics’ kinds as reflexive graphs:

$$\mathcal{GL}(n) = (\{\ast\}, \text{GL}(n), I)$$

GL(n) is the group of invertible linear transformations on \(\mathbb{R}^n\)

$$\mathcal{O}(n) = (\{\ast\}, \text{O}(n), I)$$

O(n) is the group of orthogonal transformations on \(\mathbb{R}^n\)

$$\mathcal{T}(n) = (\{\ast\}, \text{T}(n), 0)$$

T(n) is the group of translations on \(\mathbb{R}^n\)
Classical Mechanics’ kinds as reflexive graphs:

\[\begin{align*}
\mathbb{GL}(n) & = (\{\ast\}, \mathbb{GL}(n), I) \\
\text{GL}(n) & \text{ is the group of invertible linear transformations on } \mathbb{R}^n
\end{align*} \]

\[\begin{align*}
\mathbb{O}(n) & = (\{\ast\}, \mathbb{O}(n), I) \\
\text{O}(n) & \text{ is the group of orthogonal transformations on } \mathbb{R}^n
\end{align*} \]

\[\begin{align*}
\mathbb{T}(n) & = (\{\ast\}, \mathbb{T}(n), 0) \\
\text{T}(n) & \text{ is the group of translations on } \mathbb{R}^n
\end{align*} \]

\[\begin{align*}
\mathbb{Z} & = (\{\ast\}, \mathbb{Z}, 0) \\
\mathbb{Z} & \text{ is the additive group of integers}
\end{align*} \]
Classical Mechanics’ kinds as reflexive graphs:

\[\square \text{GL}(n) = (\{\ast\}, \text{GL}(n), I) \]

\(\text{GL}(n) \) is the group of invertible linear transformations on \(\mathbb{R}^n \)

\[\square \text{O}(n) = (\{\ast\}, \text{O}(n), I) \]

\(\text{O}(n) \) is the group of orthogonal transformations on \(\mathbb{R}^n \)

\[\square \text{T}(n) = (\{\ast\}, \text{T}(n), 0) \]

\(\text{T}(n) \) is the group of translations on \(\mathbb{R}^n \)

\[\square \mathbb{Z} = (\{\ast\}, \mathbb{Z}, 0) \]

\(\mathbb{Z} \) is the additive group of integers

\[\square \text{CartSp} = (\mathbb{N}, \text{diffeomorphisms on } \mathbb{R}^n, \text{id}) \]

Diffeomorphisms are smooth functions with smooth inverses
Applications of Relational Parametricity for Dependent Types
A Free Theorem

A Polymorphic Function

\[\Gamma \vdash M : \Pi a : U. \ T(a) \rightarrow T(a) \]

Free Theorem given:

- \(\Gamma \vdash X : U \)
- \(\Gamma \vdash Y : U \)
- \(\Gamma \vdash f : T(X) \rightarrow T(Y) \)
- \(\Gamma \vdash x : T(X) \)

we have the semantically justified axiom:

\[\Gamma \vdash f(M \ X \ x) = M \ Y \ (f \ x) : T(Y) \]

- Crucially use proof-irrelevance
Indexed Initial Algebras

(omitting the universe decoder T)

Specification

For functors \((F : (X \rightarrow U) \rightarrow (X \rightarrow U), \text{fmap}_F)\), \(\mu F : X \rightarrow U\), with

\[\text{in}_F : \Pi x : X. F(\mu F)x \rightarrow (\mu F)x \]

\[\text{fold}_F : \Pi A : X \rightarrow U. (\Pi x : X. FAx \rightarrow Ax) \rightarrow (\Pi x : X. (\mu F)x \rightarrow Ax) \]

with \(\beta\) - and \(\eta\)-laws

Implementation

\[\mu F = \lambda x.\Pi A : X \rightarrow U. (\Pi z : X. FAz \rightarrow Az) \rightarrow Ax \]

\[\text{fold}_F = \lambda A.\lambda f.\lambda x.\lambda e. e A f \]

\[\text{in}_F = \lambda x.\lambda e.\lambda A.\lambda f. f A (\text{fmap}_F (\mu F) A (\text{fold}_F A f) x e) \]

use relational parametricity to prove the \(\eta\)-law
Summary
Relationally parametric model of Dependent Types

{ Contexts as reflexive graphs
 Types as families of reflexive graphs

Applications of Dependently-Typed Parametricity

{ Free Theorems
 Initial Algebras for Indexed Types

Future work

{ Relationship with Homotopy Types?
 Higher Dimensions?
 Internalisation?
 Universe Hierarchy?
 Final coalgebras