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Goal: to translate high level specifications into SMT solvers with good error
messages and guaranteed semantic preservation.



Vehicle: a language for specifying neural networks

We are developing a language called Vehicle for specifying neural networks.

It is a high-level language with higher-order functions, dependent types,
arbitrary properties.

Multiple backends:

1. SMT(-like) solvers such as Marabou for verifying properties

2. ITPs such as Agda for using properties in larger proofs

3. Loss functions for training with built-in constraints

https://github.com/vehicle-lang/vehicle

https://github.com/vehicle-lang/vehicle


Translating to SMT

Translating into SMT solver from a high-level language requires some work:

▶ Properties need to be within the subset handled by the solver.

▶ Higher order functions need to be reduced away.

▶ Features like uninterpreted functions (used by Marabou to stand for the
neural net being analysed) and if-then-else need to be translated specially.

▶ We’d like to be confident that the translation is correct (equi-satisfiable).



A high-level specification language



type Input = Vec Real 5

fun f : Input -> Real

equalExceptAt : Index 5 -> Input -> Input -> Bool
equalExceptAt i x y = forall j. i != j => x!j == y!j

monotonic : Bool
monotonic =

forall x, y. equalExceptAt 2 x y and x!2 <= y!2 => f x <= f y



x0 == y0 ∧ x1 == y1 ∧ x2 <= y2 ∧ x3 == y3 ∧ x4 == y4 ∧

z1 == f [x0, x1, x2, x3, x4] ∧

z2 == f [y0, y1, y2, y3, y4] ∧

z1 > z2



inRange : Real -> Bool
inRange y = exists x. f x == y

-- Modular use:
zeroAndOneInRange : Bool
zeroAndOneInRange = inRange 0 and inRange 1

-- “Hidden” Mixed Quantifiers:
surjective : Bool
surjective = forall y. inRange y



Translation to SMT

To translate to a solver.

Avoid

1. Non-linear constraints

2. Mixed quantifiers

Translate away

1. Higher-order functions

2. Nested function applications and if-then-elses



Analysis target



Intermediate Language: Annotated Types

Annotate types with information about what kinds of properties they describe.

Real : Linearity -> Type
Bool : Linearity -> Polarity -> Type

C, L, N : Linearity
U, ∀, ∃, P, A : Polarity

We do not disallow non-linear or mixed quantifiers; we note that they are used.
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Intermediate Language: Annotated Operations

Arithmetic
+ : ∀ {l1 l2 l3}. {{MaxLin l1 l2 l3}} -> Real l1 -> Real l2 -> Real l3
* : ∀ {l1 l2 l3}. {{MulLin l1 l2 l3}} -> Real l1 -> Real l2 -> Real l3

Constraints
<= : ∀ {l1 l2 l3}. {{MaxLin l1 l2 l3}} ->

Real l1 -> Real l2 -> Bool l1 U

Logic
and : ∀ {l1 l2 l3 p1 p2 p3}.

{{MaxLin l1 l2 l3}} -> {{MaxPol p1 p2 p3}} ->
Bool l1 p1 -> Bool l2 p3 -> Bool l3 p3

forall : ∀ {t1 t2}. {{HasForall t1 t2}} -> t1 -> t2



Type class resolution rules provide evidence

Linear combination
MaxLin l1 l2 l3 exactly when l3 is the max of l1 and l2. C < L < N

Multiplicative combination

MulLin C C C MulLin C L L MulLin L C L

MulLin L L N · · ·

Quantification

ForallPol p1 p2
HasForall (Real L -> Bool l p1) (Bool p2)

HasForall (Index n -> Bool l p) (Bool p)



Analysis by Elaboration



Elaborating Types

Inserting extra type variables:

type Input = Vec Real 5

fun f : Input -> Real

becomes

type Input l = Vec (Real l) 5

fun f : ∀ {l1 l2}. {{MaxLin L l1 l2}} -> Input l1 -> Real l2
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Elaborating Definitions

For each user definition:

1. Insert linearity and polarity meta-variables into the type
2. Perform type checking and type class resolution to:

2.1 Solve where possible
2.2 Gather remaining constraints

3. Add constraints to track source-level function names
(used for error messages)

4. Generalise (Hindley-Milner style) to put unsolved constraints into the type



equalExceptAt : Index 5 -> Input -> Input -> Bool
equalExceptAt i x y = forall j. i != j => x ! j == y ! j



equalExceptAt : Index 5 -> Input ?0 -> Input ?1 -> Bool ?2 ?3
equalExceptAt i x y = forall j. i != j => x ! j == y ! j



Type check (bidirectionally with meta-variable insertion for implicits)

equalExceptAt : Index 5 -> Input ?0 -> Input ?1 -> Bool ?2 ?3
equalExceptAt i x y = forall j. i != j => x ! j == y ! j︸ ︷︷ ︸

Bool ?6 ?8
︸︷︷︸

Real ?0
︸︷︷︸

Real ?1︸ ︷︷ ︸
Bool ?7 ?9︸ ︷︷ ︸

Bool ?4 ?5︸ ︷︷ ︸
Bool ?2 ?3

Gathered constraints:
HasEq (Index 5) (Index 5) (Bool ?6 ?8)
HasEq (Real ?0) (Real ?1) (Bool ?7 ?9)
MaxLin ?6 ?7 ?4, ImpliesPol ?8 ?9 ?5
HasForall (Index 5 -> Bool ?4 ?5) (Bool ?2 ?3)



From type checking:

equalExceptAt : Index 5 -> Input ?0 -> Input ?1 -> Bool ?2 ?3

with constraints:

HasEq (Index 5) (Index 5) (Bool ?6 ?8)
HasEq (Real ?0) (Real ?1) (Bool ?7 ?9)
MaxLin ?6 ?7 ?4, ImpliesPol ?8 ?9 ?5
HasForall (Index 5 -> Bool ?4 ?5) (Bool ?2 ?3)

Solve (via the type class resolution rules and unification) to get:

equalExceptAt : Index 5 -> Input ?0 -> Input ?1 -> Bool ?2 U

with constraints: MaxLin ?0 ?1 ?7, MaxLin C ?7 ?2
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We have:

equalExceptAt : Index 5 -> Input ?0 -> Input ?1 -> Bool ?2 U

with constraints: MaxLin ?0 ?1 ?7, MaxLin C ?7 ?2

We could now generalise the type to include these constraints:

equalExceptAt :
∀ {l1 l2 l3 l4}. {{MaxLin l1 l2 l3}} -> {{MaxLin C l3 l4}} ->

Index 5 -> Input l1 -> Input l2 -> Bool l4 U

But this wouldn’t give good error messages: when functions are applied, we
unify variables and lose track of what functions are used.
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We have:

equalExceptAt : Index 5 -> Input ?0 -> Input ?1 -> Bool ?2 U

with constraints: MaxLin ?0 ?1 ?7, MaxLin C ?7 ?2

Function I/O constraints to track the function usage:

equalExceptAt : Index 5 -> Input ?10 -> Input ?11 -> Bool ?12 U

with constraints:
MaxLin ?0 ?1 ?7, MaxLin C ?7 ?2
InputLin "equalExceptAt" ?10 ?0
InputLin "equalExceptAt" ?11 ?1
OutputLin "equalExceptAt" ?2 ?12

These constraints will add provenance information (later...)
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The rest of the specification elaborated:
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From the type: this specification is linear and only uses universal quantification.
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What if it goes wrong?

What if we get a type we don’t like?

▶ Linearity and polarity values are annotated with provenance
▶ The internal representation of the type

monotonic : Bool L ∀
stores the fact that the ∀ came from the use of forall, and the L came from
the use of the unknown function f.

▶ Provenance information is used for returning error messages.



Error message example

inRange : Real -> Bool
inRange y = exists x. f x == y

surjective : Bool
surjective = forall y. inRange y

yields the type Bool L A (linear but alternating).

We can trace the provenance to get the error message:

Cannot verify specifications with alternating quantifiers. In particular:

1. the inner quantifier is the ‘exists’ located at line 2, columns 12-18

2. which is returned as the output of the call to the function ‘inRange‘ at line 1,
columns 24-31

3. which alternates with the outer ‘forall’ quantifier at line 5, columns 13-19.
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Analysis Summary

Have defined an analysis to discover what kind of property a specification
specifies:

1. Compositional: each definition is analysed once and summarised in its type.

2. Produces good error messages: provenance information is tracked to
pinpoint errors.

3. Evidence generating: the output is a typed program with information on why
each linearity and polarity decision holds.



Translating to SMT



Normalisation by Evaluation

We normalise a specification by evaluating it in a “non-standard” way as syntax.

▶ The Real type is interpreted as real-valued expressions
▶ The Bool type is interpreted as boolean-value expressions

Linearity and Polarity information refines these interpretations:
▶ Real C – constants
▶ Real L – linear expressions in some variables
▶ Real N – arbitrary expressions

Each primitive operation (e.g., +, and) is interpreted as a syntactic manipulation.

Closed term of type Bool L ∃ is guaranteed to yield an existential query with
linear constraints.
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Technicalities I : Free variables

Not-yet-quantified expressions and constraints may have free variables.

So type interpretations are parameterised by linear variable contexts

JReal CK : LinVarCtxt → Set

and must support renaming.

Types are presheaves over the category of linear variable contexts.

Most of the rest of the interpretation follows, using the standard interpretation
of λ-calculus in a presheaf category. Higher-order functions melt away.



Technicalities II : Function lifting and If-then-else

Specifications may mix linear expressions and uninterpreted functions:

f x + 5 < y

and these need to be translated into separate constraints:

∃ z. f x = z ∧ z + 5 < y

May also contain if-then-else:

(if p then x else y) < z

which must be translated into boolean logic:

(p ∧ x < z) ∨ (¬ p ∧ y < z)
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Technicalities II : Function lifting and If-then-else

Implementing these on syntax that does not support it is not possible.

So we add the ability tomake definitions (for function lifting) and to do
if-then-else as effects from a pervasive monad.

Define a monad Lift with the following operations:
(interpreted with respect to a linear variable context)
▶ if : Constraint → LiftA → LiftA → LiftA
▶ letExp : LinExp → (Var → LiftA) → LiftA
▶ letFun : Var → (Var → LiftA) → LiftA

The interpretation uses the Moggi Call-by-Value monadic translation.

With a Lift Constraint value, the operations are translated into real ones.
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Normalisation by Evaluation

The procedure has been formalised in Agda.

Syntax of the analysed source is in an intrinsically typed nameless
representation t : Γ ⊢ τ.

Normalisation is a function:

N J−K : ϵ ⊢ Bool L ∃ → PrenexFormula

We also defined a standard semantics:

SJ−K : (Q → Q) → ϵ ⊢ Bool l p → Set

parameterised by the interpretation of the uninterpreted function.



Correctness

Via a logical relations argument (actually another interpretation), we get
agreement between the standard and normalised semantics:

Theorem
For closed terms t : ⊢ Bool L ∃, the standard semantics and the interpretation of
the normalising semantics are equi-satisfiable, for all concrete interpretations of
the (syntactically) uninterpreted function f:

SJtK f ⇔ JN JtKK
Proved in Agda.



Conclusions



Contributions and Future Work

Goal: to translate high level specifications into SMT solvers with good error
messages and guaranteed semantic preservation.

▶ Compositional analysis
▶ Provenance tracking for good error messages
▶ Novel NbE procedure with correctness proof

https://github.com/vehicle-lang/vehicle
https://github.com/vehicle-lang/vehicle-formalisation

Future work:
▶ Close gaps between the formalisation and the real implementation
▶ Efficiency of constraint solving
▶ Other SMT theories
▶ Generalising and applying the NbE procedure to other DSLs
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