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Dependent Type Theory is both

—  Programming Language
So we can write programs
—  Proof Language

and reason about them
but only the “extensional behaviour”
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What if we want to reason about computational complexity?
Having predicates for complexity won’t work:
Ptime : (Nat — Nat) — Set

Allows the theory to distinguish extensionally equivalent functions.
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What if we want to reason about computational complexity?

Two ideas:
—  Implicit: all functions are in a fixed complexity class (e.g., PTIME)

—  Explicit: types tell us what the complexity is.



This talk
—  Implicit and explicit typed complexity analysis for Dependent Type Theory

Challenges
—  Nice systems for implicit and explicit complexity

— Integrating them with dependent types



Two Implicit PTIME systems
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Requirements

—  Extension of typed A-calculus; higher order
—  No impredicative polymorphism (no Church encodings)

—  Proper datatypes (definitely no Church encodings)
Forget dependent types for now

—  Simply typed A-calculus

— A natural number type NAT, zero, suc with an iterator

I'eM,: A Ix:A+rM;: A I'+ N: Nar
I' + iter(M,, x. Ms,N) : A




Easily yields exponential time:
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Easily yields exponential time:
iter(suc, f- Ax. f(f(x)), N) zero : NaT
computes 2N

Culprits
—  Duplication of the higher order value f

—  Construction of new numbers



Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.



Linearity?
Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x iter((zero, zero), (m, n).(suc m, suc n), x)



Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT —o NAT —o NAT is linear.



Linearity?
Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT — NAT —o NaT is linear.
— mul : NAT —o NAT —o NAT can be written using dup, add.



Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT —o NAT —o NAT is linear.
— mul : NAT —o NAT —o NAT can be written using dup, add.
— exp : NAT —o NAT —o NAT can be written using dup, mul.



Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT — NAT —o NaT is linear.

— mul : NAT —o NAT —o NAT can be written using dup, add.
— exp : NAT —o NAT —o NAT can be written using dup, mul.
—  Get exponential time.
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Linearity + No constructors

— Can’t write dup or add (or mul or exp)

—  Tterable NAT:
—  Not constructible
— Has an iterator

—  Non-iterable NAT®:
—  Constructible
— Case analysis

Iie-M,: A Iy, x:NAT° F M, : A

I's - N: Nat®

I',T5, T3 + case(M,, x. Mg, N) : A
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—  Only source of iterable NAT is the input
—  So only linear time in the size of the NAT “fuel” provided

—  To get polytime, allow duplication of variables of type NAT.



Is this enough?

—  Only source of iterable NAT is the input
—  So only linear time in the size of the NAT “fuel” provided

—  To get polytime, allow duplication of variables of type NAT.

Completeness

—  Given a step function s : TAPE —o TAPE, and a N-polynomial p(n) = Za;n’
— niterations: iter(Ax.x, f.Ax. s(fx), n) : TAPE —o TAPE

—  n?iterations: iter(Ax.x, f.Ax. iter(Ax.x, f.Ax. s(fx), n), n) : TAPE — TAPE
—  n'iterations...

— Addition by composition



Recovering Constructibility?

—  This system works, but is restricted to everything being driven by NaT-iteration

—  Some programs are more easily expressible by iteration over trees, etc.



Martin Hofmann’s LFPL: principle of “conservation of iterability”

A special type <, representing a chunk of iterability

Required for construction:
zero : & —o NAT suc : & —o NAT —o NAT

Recovered on iteration:

I',d:o+M,: A d: O, x:ArM: A I'y + N: NAaT
I', T +iter(d. M, dx. Ms,N) : A

Extends easily to other datatypes



Iterating a step function

— Assume we have a function s : TAPE —o TAPE
one step of a Turing machine

—  Linear (’11) iterations:

I = A(n, t).iter(d. (zero(d), t), : NAT ® TAPE —o NAT ® TAPE
d(n,t). (suc(d, n),st),
n)

— (g) iterations:

L = A(n, t).iter(d. (zero(d), 1), : NAT®TAPE — NAT®TAPE
d(n,t).let (n,t) = I;(n, t) in (suc(d, n), s(t)),
n)

— (g’) iterations: Iterate the above



Iterating a step function

—  Obtain a (}) iterator for any k
—  And get the original number back as an output

—  Chain them together to get any polynomial:

k
p(n) = ZPL(Z)

—  So we get polytime completeness



Explicit Complexity



Amortised Resource Analysis — (Hofmann & Jost, POPL 2003)

— Reinterpret < as the cost of a step of iteration

— Inspired by Tarjan’s amortised complexity analyis
—  storing potential inside data structures

—  Building a NarT still requires <¢s:

zero : O —o NAT suc : & —o NAT —o NAT

— But iteration no longer gives you them back:

I'+M,: A x:ArM;: A I'; - N: NAT
I',Ty Fitera(M,, x.M;,N) : A

—  Back to linear time...



More flexibility

—  Annotate data structures with number of ¢s per constructor

Nat?

—  Duplication:
NAT”*P2 —0 NAT”' ® NAT"

—  Hofmann & Jost (2001) used linear programming to infer the ps



Regaining polynomial time — (Hoffmann & Hofmann, ESOP 2010)

— Annotate with sequences of naturals:

— Interpretation is that

is the number of ¢s is attached to a natural n.



Regaining polynomial time — (Hoffmann & Hofmann, ESOP 2010)

— Annotate with sequences of naturals:

— Interpretation is that

M~
S
oz
-

=1
is the number of ¢s is attached to a natural n.

—  Iterator:
I'rM,: A

n: NATPrPepetpspe) g oP x: A M, : A

',y Fiter(M,,ndx.Mg,N) : A



Adapting these systems to dependent types



Dependency and Accountancy
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X1 S, xS M T

variables xi, . . ., x, are mixed usage
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In Linear Logic

X1 X1, Xyt XpFMY

the presence of a variable x records its usage
each x; must be “used” by M exactly once

Enables:
1. Insight into computational behaviour

2. e.g., time complexity
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n: Nat,x: Fin(n) + x: Fin(n)

Can we read this judgement linearly?
> n appears in the context, but is not used computationally
> n appears twice in types

Is n even used at all?



n: Nat | x: Fin(n) v x: Fin(n)
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n: Nat | x: Fin(n) + x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

> Types can depend on intuitionistic data, but not linear data

Barber, 1996)

Cervesato and Pfenning, 2002)
Krishnaswami, Pradic, and Benton, 2015)
Vakar, 2015)

—~ e~~~
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P Pn
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Quantitative Coeffect calculi:

P Pn
X ! StyeeinXxy P Sy b M:T

> The p; record usage from some semiring R
.1€e R—ause
.0 € R—not used
. p1 + p2 — adding up uses (e.g., in an application)
. p1p2 — nested uses
(Petricek, Orchard, and Mycroft, 2014)

(Brunel, Gaboardi, Mazza, and Zdancewic, 2014)
(Ghica and Smith, 2014)
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P Pn
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> o = 1 — the “real” computational world
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Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)
P Pn
X1 21 51,...,xn : SnI-MO—T

where o € {0, 1}.

> o = 1 — the “real” computational world

> o = 0 — the types world
(allowing arbitrary p yields a system where substitution is inadmissible (Atkey, 2018))

1
F'eM:T
Zero-ing is an admissible rule: — allowing promotion to the type world.
ore-M: T



Zero-ing is admissible
1
reM: T
0
or-mM: T
means that every linear term has an “extensional” counterpart (or constitutent)

which can be used at type checking time to construct types

has the effect of making the linear system a restriction of the intuitionistic



A suitable semiring for affine linearity?

—  Carrier: {0,1,w}
—  Ordered: w <1<0

—  Operations:

—  Would admit an unrestricted ! modality.



Strict resource counting

—  Carrier: N
— Ordered: ---<2<1<0

—  Operations: normal operations on N



Diamonds

or +
't Ty-Dia ———— Tm-D1a

oreo o rF=*:90

— Inthe o = 0 fragment, ¢s are free.



LFPL

—  Natural number introduction

rv+d? o rrd?¢ Trn? Nar

I' + zero(d) 7 NaT I' + succe(d, n) 7 NaT



LFPL

—  Natural number elimination (o~ = 1 case)

O, x:NATF A

Iy, d: o M, : A{zero(*)/x}

d: o, n ° Nar, r A{n/x} v M; : A{succ(*, n)/x}
Ty + N NaT

I+, =T

I+ iter(x.A, d.M,, dn r.Mg,N) : A{N/x}

—  Crucial: nis not available for computational use in M;.



Encoding lists
—  Define (in o = 0 fragment):
Vec A : NAT — Set
by iteration on the natural number.

—  Lists: .
List A= (n:NAT) @ Vec A n



Amortised Analysis

—  Unrestricted introduction rules for natural numbers:

I+ I'+ N7 Nar
T zero ¢ NAT I' F suc(N) 7 NAT
—  Postulate:
0
'+ n:Nar
(PP NAT — Set Tk oo ()
—  with:



Amortised Analysis
— Natural number elimination (o~ = 1 case)

oI, x(:) NAT + A

'+ M, : A{zero/x}

n: NaT, r A{n/x} + M; : A{succ(n)/x}
I+ N} NaT

Ty D: oW(N)

I'+I+I5=T

I' +iter(x.A, M,, n r.M;, N, D) : A{N/x}

— nis available for use in M;
—  Pay up front for the iteration with D
—  Get nested iteration by passing in enough <s to pay for it

Aln] = O Provess Pk)(n) — B[n]



Semantic Interpretation : Soundness



Realisability for ICC (Dal Lago & Hofmann, 2011)
Resource monoids

—  Let N_q be category with objects NU {—co} and m — nif m < n, with —co < n
—  Strict symmetric monoidal category with (+, 0)

—  Aresource monoid M is a N_-enriched strict symmetric monoidal category.



Realisability for ICC (Dal Lago & Hofmann, 2011)
Resource monoids

—  Let N_q be category with objects NU {—co} and m — nif m < n, with —co < n
—  Strict symmetric monoidal category with (+, 0)

—  Aresource monoid M is a N_-enriched strict symmetric monoidal category.

— (M, +,0) is a commutative monoid

— 0 M(a,a)

—  M(a, B) € N_y is the difference between @ and 8
—  M(a,B) +M(B,y) < M(a,y)

— M(a.p) < M(a+y.B+7)



Resource monoids
Linear time:

— M=N

—  Differencing:

m—n n<m
—0 otherwise

M(n, m) = {

—  Wrinkle: counts recursion steps, not the actual number of steps.



Resource Monoids: Polynomial time (for LFPL)

—  M> (n,p), where
— n € Nis the amount of iterability (number of ¢s)
—  pisapolynomial with N coefficients
— (np+(mq=(Mn+mp+q.
—  Cost differencing:

q(m) —p(m) n < mand (q— p) is non-negative
M((n, p), (m,q)) = and non-decreasing > m
—0 otherwise



Resource Monoids: Polynomial time (for Constructor-free System)

—  M> (n,p), where
— n € Nis the amount of iterability (number of ¢s)
—  pisapolynomial with N coefficients

(n,p) + (m, g) = (max n m, p+g).

—  Cost differencing:

g(m) — p(m) n < mand (q— p) is non-negative
M((n,p), (m,q)) = and non-decreasing > m
—o0 otherwise

— Hofmann and Dal Lago used this resource monoid for Lafont’s Soft Linear Logic.



Cost model
—  Assume a model of computation with a cost model:

en kv

step count k, expressions e € &, values ve V.



Interpretation of Types and Terms

—  Types are interpreted by (|X], Fx) where:
—  |X]is aset
- Ex S WMxV)x|X].

— Functions f: X —» Y-

B Y

— exists e € &,y € M, such that

—  forall @, v, x.

(@, v) Ex x implies
exists 3, k, v s.t.

6, [V] Uk V,,
(B, V) Ey flx),
k<M(a+vy,8)



Some types

In the amortised system:
— O:({*},(n,*) |:<>*<:n21)

In LFPL:

— Oo={xh((nphxForen21,p>0)
— Nar=N,((n,p),nfEe m) &S n=mp=>0)

In the constructor free system:
— Nar= N, ((n,p).nFom) & nzmp20)



Summary
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Related Work

> Sized types
Used for controlling well foundedness
For complexity analysis require “tick” monads

» Gaboardi and Dal Lago: Linear Dependent Types for ICC
Dependent Types only for counting time

> Future:

> LAL, EAL, BLL, Logspace, ...
> Polytime mathematics?



