Resource Constrained Programming
with Full Dependent Types

Robert Atkey
Strathclyde University, Glasgow
robert.atkey@strath.ac.uk

CCS Colloquium, Augusta University
20th November 2020

Dependent Type Theory is both

— Programming Language

— Proof Language

Dependent Type Theory is both

— Programming Language
So we can write programs

— Proof Language

Dependent Type Theory is both
— Programming Language
So we can write programs

— Proof Language
and reason about them

Dependent Type Theory is both

— Programming Language
So we can write programs
— Proof Language

and reason about them
but only the “extensional behaviour”

What if we want to reason about computational complexity?

What if we want to reason about computational complexity?
Having predicates for complexity won’t work:
Ptime : (Nat — Nat) — Set

Allows the theory to distinguish extensionally equivalent functions.

What if we want to reason about computational complexity?

What if we want to reason about computational complexity?

Two ideas:
— Implicit: all functions are in a fixed complexity class (e.g., PTIME)

— Explicit: types tell us what the complexity is.

This talk
— Implicit and explicit typed complexity analysis for Dependent Type Theory

Challenges
— Nice systems for implicit and explicit complexity

— Integrating them with dependent types

Two Implicit PTIME systems

Requirements

— Extension of typed A-calculus; higher order
— No impredicative polymorphism (no Church encodings)

— Proper datatypes (definitely no Church encodings)

Requirements

— Extension of typed A-calculus; higher order
— No impredicative polymorphism (no Church encodings)

— Proper datatypes (definitely no Church encodings)
Forget dependent types for now

— Simply typed A-calculus

— A natural number type NAT, zero, suc with an iterator

I'eM,: A Ix:A+rM;: A I'+ N: Nar
I' + iter(M,, x. Ms,N) : A

Easily yields exponential time:

iter(suc, f. Ax. f(f(x)), N) zero : NaT

computes 2N

Easily yields exponential time:
iter(suc, f- Ax. f(f(x)), N) zero : NaT
computes 2N

Culprits
— Duplication of the higher order value f

— Construction of new numbers

Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

Linearity?
Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x iter((zero, zero), (m, n).(suc m, suc n), x)

Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT —o NAT —o NAT is linear.

Linearity?
Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT — NAT —o NaT is linear.
— mul : NAT —o NAT —o NAT can be written using dup, add.

Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT —o NAT —o NAT is linear.
— mul : NAT —o NAT —o NAT can be written using dup, add.
— exp : NAT —o NAT —o NAT can be written using dup, mul.

Linearity?

Disallows:
iter(suc, f- Ax. f(f(x)), N) zero : NaT

because f is used twice.

But

Can write:
dup ¢ Nar — NaT ® Nar

dup x = iter((zero, zero), (m, n).(suc m,suc n), x)

— add : NAT — NAT —o NaT is linear.

— mul : NAT —o NAT —o NAT can be written using dup, add.
— exp : NAT —o NAT —o NAT can be written using dup, mul.
— Get exponential time.

Linearity + No constructors

— Can’t write dup or add (or mul or exp)

Linearity + No constructors
— Can’t write dup or add (or mul or exp)
— Iterable NAT:

— Not constructible
— Has an iterator

Linearity + No constructors

— Can’t write dup or add (or mul or exp)

— Tterable NAT:
— Not constructible
— Has an iterator

— Non-iterable NAT®:
— Constructible
— Case analysis

Iie-M,: A Iy, x:NAT° F M, : A

I's - N: Nat®

I',T5, T3 + case(M,, x. Mg, N) : A

Is this enough?

— Only source of iterable NAT is the input
— So only linear time in the size of the NAT “fuel” provided

— To get polytime, allow duplication of variables of type NAT.

Is this enough?

— Only source of iterable NAT is the input
— So only linear time in the size of the NAT “fuel” provided

— To get polytime, allow duplication of variables of type NAT.

Completeness

— Given a step function s : TAPE —o TAPE, and a N-polynomial p(n) = Za;n’
— niterations: iter(Ax.x, f.Ax. s(fx), n) : TAPE —o TAPE

— n?iterations: iter(Ax.x, f.Ax. iter(Ax.x, f.Ax. s(fx), n), n) : TAPE — TAPE
— n'iterations...

— Addition by composition

Recovering Constructibility?

— This system works, but is restricted to everything being driven by NaT-iteration

— Some programs are more easily expressible by iteration over trees, etc.

Martin Hofmann’s LFPL: principle of “conservation of iterability”

A special type <, representing a chunk of iterability

Required for construction:
zero : & —o NAT suc : & —o NAT —o NAT

Recovered on iteration:

I',d:o+M,: A d: O, x:ArM: A I'y + N: NAaT
I', T +iter(d. M, dx. Ms,N) : A

Extends easily to other datatypes

Iterating a step function

— Assume we have a function s : TAPE —o TAPE
one step of a Turing machine

— Linear (’11) iterations:

I = A(n, t).iter(d. (zero(d), t), : NAT ® TAPE —o NAT ® TAPE
d(n,t). (suc(d, n),st),
n)

— (g) iterations:

L = A(n, t).iter(d. (zero(d), 1), : NAT®TAPE — NAT®TAPE
d(n,t).let (n,t) = I;(n, t) in (suc(d, n), s(t)),
n)

— (g’) iterations: Iterate the above

Iterating a step function

— Obtain a (}) iterator for any k
— And get the original number back as an output

— Chain them together to get any polynomial:

k
p(n) = ZPL(Z)

— So we get polytime completeness

Explicit Complexity

Amortised Resource Analysis — (Hofmann & Jost, POPL 2003)

— Reinterpret < as the cost of a step of iteration

— Inspired by Tarjan’s amortised complexity analyis
— storing potential inside data structures

— Building a NarT still requires <¢s:

zero : O —o NAT suc : & —o NAT —o NAT

— But iteration no longer gives you them back:

I'+M,: A x:ArM;: A I'; - N: NAT
I',Ty Fitera(M,, x.M;,N) : A

— Back to linear time...

More flexibility

— Annotate data structures with number of ¢s per constructor

Nat?

— Duplication:
NAT”*P2 —0 NAT”' ® NAT"

— Hofmann & Jost (2001) used linear programming to infer the ps

Regaining polynomial time — (Hoffmann & Hofmann, ESOP 2010)

— Annotate with sequences of naturals:

— Interpretation is that

is the number of ¢s is attached to a natural n.

Regaining polynomial time — (Hoffmann & Hofmann, ESOP 2010)

— Annotate with sequences of naturals:

— Interpretation is that

M~
S
oz
-

=1
is the number of ¢s is attached to a natural n.

— Iterator:
I'rM,: A

n: NATPrPepetpspe) g oP x: A M, : A

',y Fiter(M,,ndx.Mg,N) : A

Adapting these systems to dependent types

Dependency and Accountancy

In Martin-Lof Type Theory

X1 S, xS M T

In Martin-Lof Type Theory

X1 S, xS M T

variables xi, . . ., x, are mixed usage

n: Nat,x: Fin(n) + x: Fin(n)

n: Nat,x: Fin(n) + x: Fin(n)

x is used computationally

n: Nat,x: Fin(n) + x: Fin(n)

x is used computationally

nis used logically

In Linear Logic

X1 X1, Xyt XpFMY

In Linear Logic

X1 X1, Xyt XpFMY

the presence of a variable x records its usage
each x; must be “used” by M exactly once

In Linear Logic

X1 X1, Xyt XpFMY

the presence of a variable x records its usage
each x; must be “used” by M exactly once

Enables:
1. Insight into computational behaviour

2. e.g., time complexity

n: Nat,x: Fin(n) + x: Fin(n)

Can we read this judgement linearly?

n: Nat,x: Fin(n) + x: Fin(n)

Can we read this judgement linearly?

> n appears in the context, but is not used computationally

n: Nat,x: Fin(n) + x: Fin(n)

Can we read this judgement linearly?
> n appears in the context, but is not used computationally

> n appears twice in types

n: Nat,x: Fin(n) + x: Fin(n)

Can we read this judgement linearly?
> n appears in the context, but is not used computationally
> n appears twice in types

Is n even used at all?

n: Nat | x: Fin(n) v x: Fin(n)

n: Nat | x: Fin(n) v x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

n: Nat | x: Fin(n) v x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

> Types can depend on intuitionistic data, but not linear data

n: Nat | x: Fin(n) + x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

> Types can depend on intuitionistic data, but not linear data

Barber, 1996)

Cervesato and Pfenning, 2002)
Krishnaswami, Pradic, and Benton, 2015)
Vakar, 2015)

—~ e~~~

Quantitative Coeffect calculi:

P Pn
X ! StyeeinXxy P Sy b M:T

Quantitative Coeffect calculi:

P Pn
X ! StyeeinXxy P Sy b M:T

> The p; record usage from some semiring R

.1€e R—ause

.0 € R—not used

. p1 + p2 — adding up uses (e.g., in an application)
. p1p2 — nested uses

Quantitative Coeffect calculi:

P Pn
X ! StyeeinXxy P Sy b M:T

> The p; record usage from some semiring R
.1€e R—ause
.0 € R—not used
. p1 + p2 — adding up uses (e.g., in an application)
. p1p2 — nested uses
(Petricek, Orchard, and Mycroft, 2014)

(Brunel, Gaboardi, Mazza, and Zdancewic, 2014)
(Ghica and Smith, 2014)

Can we adapt this idea to dependent types?

Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)

Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)

P Pn
X1 ! Si,o., Xt Sn»—M‘:TT
where o € {0, 1}.
> o = 1 — the “real” computational world
> o = 0 — the types world
(allowing arbitrary p yields a system where substitution is inadmissible (Atkey, 2018))

Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)
P Pn
X1 21 51,...,xn : SnI-MO—T

where o € {0, 1}.

> o = 1 — the “real” computational world

> o = 0 — the types world
(allowing arbitrary p yields a system where substitution is inadmissible (Atkey, 2018))

1
F'eM:T
Zero-ing is an admissible rule: — allowing promotion to the type world.
ore-M: T

Zero-ing is admissible
1
reM: T
0
or-mM: T
means that every linear term has an “extensional” counterpart (or constitutent)

which can be used at type checking time to construct types

has the effect of making the linear system a restriction of the intuitionistic

A suitable semiring for affine linearity?

— Carrier: {0,1,w}
— Ordered: w <1<0

— Operations:

— Would admit an unrestricted ! modality.

Strict resource counting

— Carrier: N
— Ordered: ---<2<1<0

— Operations: normal operations on N

Diamonds

or +
't Ty-Dia ———— Tm-D1a

oreo o rF=*:90

— Inthe o = 0 fragment, ¢s are free.

LFPL

— Natural number introduction

rv+d? o rrd?¢ Trn? Nar

I' + zero(d) 7 NaT I' + succe(d, n) 7 NaT

LFPL

— Natural number elimination (o~ = 1 case)

O, x:NATF A

Iy, d: o M, : A{zero(*)/x}

d: o, n ° Nar, r A{n/x} v M; : A{succ(*, n)/x}
Ty + N NaT

I+, =T

I+ iter(x.A, d.M,, dn r.Mg,N) : A{N/x}

— Crucial: nis not available for computational use in M;.

Encoding lists
— Define (in o = 0 fragment):
Vec A : NAT — Set
by iteration on the natural number.

— Lists: .
List A= (n:NAT) @ Vec A n

Amortised Analysis

— Unrestricted introduction rules for natural numbers:

I+ I'+ N7 Nar
T zero ¢ NAT I' F suc(N) 7 NAT
— Postulate:
0
'+ n:Nar
(PP NAT — Set Tk oo ()
— with:

Amortised Analysis
— Natural number elimination (o~ = 1 case)

oI, x(:) NAT + A

'+ M, : A{zero/x}

n: NaT, r A{n/x} + M; : A{succ(n)/x}
I+ N} NaT

Ty D: oW(N)

I'+I+I5=T

I' +iter(x.A, M,, n r.M;, N, D) : A{N/x}

— nis available for use in M;
— Pay up front for the iteration with D
— Get nested iteration by passing in enough <s to pay for it

Aln] = O Provess Pk)(n) — B[n]

Semantic Interpretation : Soundness

Realisability for ICC (Dal Lago & Hofmann, 2011)
Resource monoids

— Let N_q be category with objects NU {—co} and m — nif m < n, with —co < n
— Strict symmetric monoidal category with (+, 0)

— Aresource monoid M is a N_-enriched strict symmetric monoidal category.

Realisability for ICC (Dal Lago & Hofmann, 2011)
Resource monoids

— Let N_q be category with objects NU {—co} and m — nif m < n, with —co < n
— Strict symmetric monoidal category with (+, 0)

— Aresource monoid M is a N_-enriched strict symmetric monoidal category.

— (M, +,0) is a commutative monoid

— 0 M(a,a)

— M(a, B) € N_y is the difference between @ and 8
— M(a,B) +M(B,y) < M(a,y)

— M(a.p) < M(a+y.B+7)

Resource monoids
Linear time:

— M=N

— Differencing:

m—n n<m
—0 otherwise

M(n, m) = {

— Wrinkle: counts recursion steps, not the actual number of steps.

Resource Monoids: Polynomial time (for LFPL)

— M> (n,p), where
— n € Nis the amount of iterability (number of ¢s)
— pisapolynomial with N coefficients
— (np+(mq=(Mn+mp+q.
— Cost differencing:

q(m) —p(m) n < mand (q— p) is non-negative
M((n, p), (m,q)) = and non-decreasing > m
—0 otherwise

Resource Monoids: Polynomial time (for Constructor-free System)

— M> (n,p), where
— n € Nis the amount of iterability (number of ¢s)
— pisapolynomial with N coefficients

(n,p) + (m, g) = (max n m, p+g).

— Cost differencing:

g(m) — p(m) n < mand (q— p) is non-negative
M((n,p), (m,q)) = and non-decreasing > m
—o0 otherwise

— Hofmann and Dal Lago used this resource monoid for Lafont’s Soft Linear Logic.

Cost model
— Assume a model of computation with a cost model:

en kv

step count k, expressions e € &, values ve V.

Interpretation of Types and Terms

— Types are interpreted by (|X], Fx) where:
— |X]is aset
- Ex S WMxV)x|X].

— Functions f: X —» Y-

B Y

— exists e € &,y € M, such that

— forall @, v, x.

(@, v) Ex x implies
exists 3, k, v s.t.

6, [V] Uk V,,
(B, V) Ey flx),
k<M(a+vy,8)

Some types

In the amortised system:
— O:({*},(n,*) |:<>*<:n21)

In LFPL:

— Oo={xh((nphxForen21,p>0)
— Nar=N,((n,p),nfEe m) &S n=mp=>0)

In the constructor free system:
— Nar= N, ((n,p).nFom) & nzmp20)

Summary

> Quantitative Type Theory for Complexity Analysis
> Careful combination of dependency and linearity
> Dependent Types for reasoning about programs

> Dependent Types for reasoning about complexity (in the explicit system)

> Quantitative Type Theory for Complexity Analysis

> Careful combination of dependency and linearity

> Dependent Types for reasoning about programs

> Dependent Types for reasoning about complexity (in the explicit system)

Related Work

> Sized types
Used for controlling well foundedness
For complexity analysis require “tick” monads

» Gaboardi and Dal Lago: Linear Dependent Types for ICC
Dependent Types only for counting time

> Future:

> LAL, EAL, BLL, Logspace, ...
> Polytime mathematics?

