Syntax and Semantics of Quantitative Type Theory

Robert Atkey
Strathclyde University, Glasgow
robert.atkey@strath.ac.uk

LICS 2018
11th July 2018

robert.atkey@strath.ac.uk

Dependency and Accountancy

In Martin-Lof Type Theory

X1 S, Xy Sy b M T

In Martin-Lof Type Theory

X1 S, Xy Sy b M T

variables xi, . . ., x,, are mixed usage

n: Nat,x : Fin(n) + x: Fin(n)

n: Nat, x : Fin(n) v x: Fin(n)

x is used computationally

n: Nat, x : Fin(n) v x: Fin(n)

x is used computationally

nis used logically

In Linear Logic

X1 X, Xt XpbM:Y

In Linear Logic

X1 X, Xt XpbM:Y

presence of a variable records usage
each x; must be used by M exactly once

n: Nat, x : Fin(n) + x: Fin(n)

Can we read this judgement linearly?

n: Nat, x : Fin(n) + x: Fin(n)

Can we read this judgement linearly?

> n appears in the context, but is not used computationally

n: Nat, x : Fin(n) + x: Fin(n)

Can we read this judgement linearly?
> n appears in the context, but is not used computationally

> n appears twice in types

n: Nat, x : Fin(n) + x: Fin(n)

Can we read this judgement linearly?
> n appears in the context, but is not used computationally
> n appears twice in types

Is n even used at all?

n: Nat | x: Fin(n) v x: Fin(n)

n: Nat | x: Fin(n) v x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

n: Nat | x: Fin(n) v x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

> Types can depend on intuitionistic data, but not linear data
will come back to this...

n: Nat | x: Fin(n) v x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

> Types can depend on intuitionistic data, but not linear data
will come back to this...

(Barber, 1996)

(Cervesato and Pfenning, 2002)
(Krishnaswami, Pradic, and Benton, 2015)
(Vakar, 2015)

Separation interferes with dependency:

n:Nat | x: Fin(n) r (xrefl(x)) : (y: Fin(n)) X (x=y)

Separation interferes with dependency:

n:Nat | x: Fin(n) r (xrefl(x)) : (y: Fin(n)) X (x=y)

n: Nat,x: Fin(n) | %: Fin(n, x) F (x X refl(x)) : (y : Fin(n)) X Fin(n,y) ® (x = y)

Quantitative Coeffect calculi:

p1 P
X1 Sty Xy Sy kM T

Quantitative Coeffect calculi:

p1 P
X1 Sty Xy Sy kM T

> The p; record usage from some semiring R
.1€eR—ause
.0 € R—not used
. p1 + p2 — adding up uses (e.g., in an application)
. p1p2 — nested uses

Quantitative Coeffect calculi:

P1 P
X1 Sty Xy Sy kM T

> The p; record usage from some semiring R
.1€R—ause
.0 € R—not used
. p1 + p2 — adding up uses (e.g., in an application)
. p1p2 — nested uses

(Petricek, Orchard, and Mycroft, 2014)
(Brunel, Gaboardi, Mazza, and Zdancewic, 2014)
(Ghica and Smith, 2014)

Can we adapt this idea to dependent types?

Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)

Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)

xlpil 51,...,xnp:nSnI—M‘?— T
where o € {0, 1}.
> o = 1 — the “real” computational world
> 0 = 0 — the types world

(allowing arbitrary p yields a system where substitution is inadmissible)

Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)
xlpil 51,...,xnp:nSnI—M‘?— T
where o € {0, 1}.
> o = 1 — the “real” computational world
> 0 = 0 — the types world

(allowing arbitrary p yields a system where substitution is inadmissible)

1
'eM: T
Zero-ing is an admissible rule: ———— allowing promotion to the type world.
0
or+M: T

Quantitative Type Theory

Quantitative Type Theory
Contexts

I'r oresS

ok I'x: S+

Quantitative Type Theory
Contexts

I'r oresS

ok I'x: S+

Types
or+Ss

Quantitative Type Theory

Contexts
'+ or'r S

— Emp — 5. ExT

ok I''x: S+
Types

o'+ S
Terms > >
O, x : S 0T F 'rM:S O0'+S=T
VAR Conv

O, x% SOl Fx“ S M T

Quantitative Type Theory
[I-type formation
OC+S OT,xPSkT

O0F(x8) > T

Quantitative Type Theory
[I-type formation
OC+S OT,xPSkT

O0F(x8) > T

I1-type introduction and elimination

Lx SkMTT
CrAXSMI Y (x58) > T

IrM?(xT8) =T TorN%TS 00 =00 o' =06 (x=0Vo=0)
g
Fl +7TF2 F APP(X”S)T(MN) : HN/X]

Quantitative Type Theory
[I-type elimination

IrM?(xT8) =T TorN%TS 00 =00 o' =06 (x=0Vo=0)
g
'y +#als+ App(xgs)T(M,N) . TIN/]

There are three cases:

Quantitative Type Theory
[I-type elimination

IrM?(xT8) =T TorN%TS 00 =00 o' =06 (x=0Vo=0)
g
'y +#als+ App(xgs)T(M,N) . TIN/]

There are three cases:

1. c=1Ln#0,0' =1
Function uses its argument “computationally”;

Quantitative Type Theory
[I-type elimination

IrM?(xT8) =T TorN%TS 00 =00 o' =06 (x=0Vo=0)
g
'y +#als+ App(xgs)T(M,N) . TIN/]

There are three cases:
1. c=1Ln#0,0' =1
Function uses its argument “computationally”;
2. 0=1,n=0,0'=0
Function yields computational data, but doesn’t use its argument;

Quantitative Type Theory
[I-type elimination

IrM?(xT8) =T TorN%TS 00 =00 o' =06 (x=0Vo=0)
g
'y +#als+ App(xgs)T(M,N) . TIN/]

There are three cases:
1. c=1Ln#0,0' =1
Function uses its argument “computationally”;
2. 0=1,n=0,0'=0
Function yields computational data, but doesn’t use its argument;
3.0 =0,0'=0
We are not using the function for its computational content, so 7 does not matter.

In the paper... additional type formers
1. Quantitative X-types;
2. Boolean type;

3. Universe of small sets (only exists in the o = 0 fragment).

Quantitative Type Theory
Zero-ing
IrM?S
— Tm-ZEro
or'eM:S

Quantitative Type Theory
Zero-ing
IrM?S

or-M?s

TM-ZERO

Zero needs nothing: TrMYs = or=r

Zero-ing

I'rMSS

— TMm-ZERO

or'v-M:S
Zero needs nothing: TrMYs = or=r
Weakening

IT'v+9g orrU
WEAKEN

Cx UIF T

Quantitative Type Theory

Quantitative Type Theory
Zero-ing
IrM?S

or-M?s

TM-ZERO

Zero needs nothing: TrMYs = or=r

Weakening
IT'v+9g orrU

WEAKEN

Cx UIF T

Substitution
Tux?ST FMIT TerNES 00 =0T o' =06 p=0
(T + pI'2), I’ [N/x] F M[N/x] © TIN/x|

Semantic Interpretation

Quantitative Category with Families

1. Category L for interpreting contexts and simultaneous substitutions;

Quantitative Category with Families

1. Category L for interpreting contexts and simultaneous substitutions;

2. U: £ — C forgetting the computational content;

Quantitative Category with Families

1. Category L for interpreting contexts and simultaneous substitutions;
2. U: £ — C forgetting the computational content;
3. Addition and scaling structure on £, fibred over U,

Quantitative Category with Families

. Category L for interpreting contexts and simultaneous substitutions;
U: L — C forgetting the computational content;
. Addition and scaling structure on £, fibred over U;

. Semantic types formed with respect to C:

SeTy(A), A € ObC;

Quantitative Category with Families

. Category L for interpreting contexts and simultaneous substitutions;
U: L — C forgetting the computational content;
. Addition and scaling structure on £, fibred over U;

. Semantic types formed with respect to C:
S e Ty(A), A € ObC;

. Semantic terms, resourced and unresourced:

MeTm(A,S), AeObC,SeTy(A)
MeRTm(L,S), T €ObL,Se Ty(Ul);

Ll

Quantitative Category with Families

Category L for interpreting contexts and simultaneous substitutions;
U: L — C forgetting the computational content;
Addition and scaling structure on £, fibred over U,

Semantic types formed with respect to C:
S e Ty(A), A € ObC;

Semantic terms, resourced and unresourced:

MeTm(A,S), AeObC,SeTy(A)
MeRTm(L,S), T €ObL,Se Ty(Ul);

. Semantic zero-ing: U: RTm(I, S) —» Tm(UL, S);

Ll

Quantitative Category with Families

Category L for interpreting contexts and simultaneous substitutions;
U: L — C forgetting the computational content;
Addition and scaling structure on £, fibred over U,

Semantic types formed with respect to C:

SeTy(A), A € ObC;

. Semantic terms, resourced and unresourced:

MeTm(A,S), AeObC,SeTy(A)
MeRTm(L,S), T €ObL,Se Ty(Ul);

. Semantic zero-ing: U: RTm(I, S) —» Tm(UL, S);

7. Resourced counterparts of substitution and comprehension, preserved by U.

Realisability Models
R-Linear Combinatory Algebras (R-LCAs)
(Abramsky, Haghverdi, and Scott, 2002)

A carrier A with an application operator (-) and unary operators !,,, p € R, and:

B-x-y-z = x(y-2)
C-x-y-z = x-z-y
I-x = x
K-x-1yy - ¥

W”P'x !7r+Py - x'!ﬂy'!py
D-!x = x

Onp ’,rpx = !,r!px
Fy-lox- 1,y = L(xy)

Realisability Models
R-Linear Combinatory Algebras (R-LCAs)
(Abramsky, Haghverdi, and Scott, 2002)

A carrier A with an application operator (-) and unary operators !,,, p € R, and:

B-x-y-z = x-(y-2)
C-x-y-z = x-z-y
I-x = x
K-x-lyy = x

W”P "X !7r+Py = X !ﬂy' !py
D-!x = x

Onp * npXx = llx
Fy-lox- 1,y = L(xy)

For example: any LCA gives a 0, 1, w-LCA; any BCI algebra gives a N-LCA; any SK
algebra gives a {0, 1}-LCA.

Realisability Models

1. Let C = Set, category of sets and functions

2. Let L be Assemblies over A
sets with computational information

3. U: L — C forgets the computational information

4. Types S € Ty(A) include computational information, but:
only depend on non-computational part

5. Terms M € RTm(I, S) are tracked by realisers from A

6. Terms M € Tm(A, S) are set theoretic functions

Read constructively, yields an “efficient” compilation method for QTT, which respects
and uses the usage information.

Main contribution

An interpretation of Type Theory that allows for “sub-computational” models

Main contribution

An interpretation of Type Theory that allows for “sub-computational” models

1. No longer need the full power of SK;

2. R-LCAs allow for interesting refined models of computation;

3. For example — (future work!)
3.1 Hofmann and Dal Lago’s realisability models of Implicit Computational Complexity;
3.2 Geometry of Interaction models,
incl Abramsky’s A structural approach to reversible computation, 2005;
3.3 Imperative models, after Ahmed, Fluet, Morrisett’s L3;
3.4 Staged models

Summary

> Quantitative Type Theory:
Fixed and extended formulation of McBride’s “Plenty o’ Nuttin™ system

> Categorical and Realisability models
QCwFs, and models in R-LCAs

> Quantitative Type Theory:
Fixed and extended formulation of McBride’s “Plenty o’ Nuttin™ system

> Categorical and Realisability models
QCwFs, and models in R-LCAs

Future work
» More R-LCAs, for more applications (ICC, reversible computation, ...)
» Combination with split context systems
» Implementation (already started in Idris)

» Internalisation of extensional properties yielded by quantitative information

> Quantitative Type Theory:
Fixed and extended formulation of McBride’s “Plenty o’ Nuttin™ system

> Categorical and Realisability models
QCwFs, and models in R-LCAs

Future work
» More R-LCAs, for more applications (ICC, reversible computation, ...)
» Combination with split context systems
» Implementation (already started in Idris)

» Internalisation of extensional properties yielded by quantitative information

Thank You for Listening!

