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Dependency and Accountancy
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presence of a variable records usage
each x; must be used by M exactly once
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Can we read this judgement linearly?
> n appears in the context, but is not used computationally
> n appears twice in types

Is n even used at all?
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n: Nat | x: Fin(n) v x: Fin(n)

> Separate intuitionistic / unrestricted uses and linear uses

> Types can depend on intuitionistic data, but not linear data
will come back to this...

(Barber, 1996)

(Cervesato and Pfenning, 2002)
(Krishnaswami, Pradic, and Benton, 2015)
(Vakar, 2015)
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Separation interferes with dependency:

n:Nat | x: Fin(n) r (xrefl(x)) : (y: Fin(n)) X (x=y)

n: Nat,x: Fin(n) | %: Fin(n, x) F (x X refl(x)) : (y : Fin(n)) X Fin(n,y) ® (x = y)



Quantitative Coeffect calculi:

p1 P
X1 Sty Xy Sy kM T



Quantitative Coeffect calculi:

p1 P
X1 Sty Xy Sy kM T

> The p; record usage from some semiring R
.1€eR—ause
.0 € R—not used
. p1 + p2 — adding up uses (e.g., in an application)
. p1p2 — nested uses



Quantitative Coeffect calculi:

P1 P
X1 Sty Xy Sy kM T

> The p; record usage from some semiring R
.1€R—ause
.0 € R—not used
. p1 + p2 — adding up uses (e.g., in an application)
. p1p2 — nested uses

(Petricek, Orchard, and Mycroft, 2014)
(Brunel, Gaboardi, Mazza, and Zdancewic, 2014)
(Ghica and Smith, 2014)
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Can we adapt this idea to dependent types?

McBride’s idea:
> allow 0-usage data to appear in types.
(McBride, 2016)
xlpil 51,...,xnp:nSnI—M‘?— T
where o € {0, 1}.
> o = 1 — the “real” computational world
> 0 = 0 — the types world

(allowing arbitrary p yields a system where substitution is inadmissible)

1
'eM: T
Zero-ing is an admissible rule: ———— allowing promotion to the type world.
0
or+M: T
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Quantitative Type Theory

Contexts
'+ or'r S

— Emp — 5. ExT

ok I''x: S+
Types

o'+ S
Terms > >
O, x : S 0T F 'rM:S O0'+S=T
VAR Conv
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[I-type formation
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I1-type introduction and elimination

Lx SkMTT
CrAXSMI Y (x58) > T
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Quantitative Type Theory
[I-type elimination

IrM?(xT8) =T TorN%TS 00 =00 o' =06 (x=0Vo=0)
g
'y +#als+ App(xgs)T(M,N) . TIN/]

There are three cases:
1. c=1Ln#0,0' =1
Function uses its argument “computationally”;
2. 0=1,n=0,0'=0
Function yields computational data, but doesn’t use its argument;
3.0 =0,0'=0
We are not using the function for its computational content, so 7 does not matter.



In the paper... additional type formers
1. Quantitative X-types;
2. Boolean type;

3. Universe of small sets (only exists in the o = 0 fragment).



Quantitative Type Theory
Zero-ing
IrM?S
— Tm-ZEro
or'eM:S



Quantitative Type Theory
Zero-ing
IrM?S

or-M?s

TM-ZERO

Zero needs nothing: TrMYs = or=r



Zero-ing

I'rMSS

— TMm-ZERO

or'v-M:S
Zero needs nothing: TrMYs = or=r
Weakening

IT'v+9g orrU
WEAKEN

Cx UIF T

Quantitative Type Theory



Quantitative Type Theory
Zero-ing
IrM?S

or-M?s

TM-ZERO

Zero needs nothing: TrMYs = or=r

Weakening
IT'v+9g orrU

WEAKEN

Cx UIF T

Substitution
Tux?ST FMIT  TerNES 00 =0T o' =06 p=0
(T + pI'2), I’ [N/x] F M[N/x] © TIN/x|
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Quantitative Category with Families

Category L for interpreting contexts and simultaneous substitutions;
U: L — C forgetting the computational content;
Addition and scaling structure on £, fibred over U,

Semantic types formed with respect to C:

SeTy(A), A € ObC;

. Semantic terms, resourced and unresourced:

MeTm(A,S), AeObC,SeTy(A)
MeRTm(L,S), T €ObL,Se Ty(Ul);

. Semantic zero-ing: U: RTm(I, S) —» Tm(UL, S);

7. Resourced counterparts of substitution and comprehension, preserved by U.



Realisability Models
R-Linear Combinatory Algebras (R-LCAs)
(Abramsky, Haghverdi, and Scott, 2002)
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Realisability Models
R-Linear Combinatory Algebras (R-LCAs)
(Abramsky, Haghverdi, and Scott, 2002)

A carrier A with an application operator (-) and unary operators !,,, p € R, and:

B-x-y-z = x-(y-2)
C-x-y-z = x-z-y
I-x = x
K-x-lyy = x

W”P "X !7r+Py = X !ﬂy' !py
D-!x = x

Onp * npXx = llx
Fy-lox- 1,y = L(xy)

For example: any LCA gives a 0, 1, w-LCA; any BCI algebra gives a N-LCA; any SK
algebra gives a {0, 1}-LCA.



Realisability Models

1. Let C = Set, category of sets and functions

2. Let L be Assemblies over A
sets with computational information

3. U: L — C forgets the computational information

4. Types S € Ty(A) include computational information, but:
only depend on non-computational part

5. Terms M € RTm(I, S) are tracked by realisers from A

6. Terms M € Tm(A, S) are set theoretic functions

Read constructively, yields an “efficient” compilation method for QTT, which respects
and uses the usage information.
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Main contribution

An interpretation of Type Theory that allows for “sub-computational” models

1. No longer need the full power of SK;

2. R-LCAs allow for interesting refined models of computation;

3. For example — (future work!)
3.1 Hofmann and Dal Lago’s realisability models of Implicit Computational Complexity;
3.2 Geometry of Interaction models,
incl Abramsky’s A structural approach to reversible computation, 2005;
3.3 Imperative models, after Ahmed, Fluet, Morrisett’s L3;
3.4 Staged models



Summary
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Thank You for Listening!



