Theorems for Free

Robert Atkey bob.atkey@gmail.com

6th November 2012

For any program *M* with the type:

$$\forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

For any program *M* with the type:

$$\forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

Deduce the following "Free Theorem":

for all types X, Y, for all functions $f: X \to Y$, for all lists l: List X, $M \pmod{f l} = \max f(M l)$.

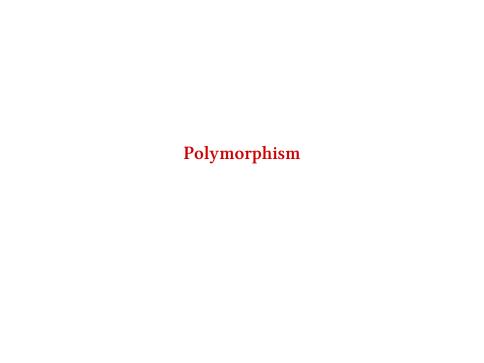
For any program *M* with the type:

$$\forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

Deduce the following "Free Theorem":

for all types X, Y, for all functions $f: X \to Y$, for all lists l: List X, $M \pmod{f l} = \max f(M l)$.

Without looking at the implementation of M.



 $\text{add}: \mathsf{Integer} \to \mathsf{Integer} \to \mathsf{Integer} \\ \mathsf{add}: \mathsf{Float} \to \mathsf{Float} \to \mathsf{Float} \\ \end{pmatrix} \textit{multiple implementations}$

implementation chosen at either compile-time or run-time

 $\text{add}: \mathsf{Integer} \to \mathsf{Integer} \to \mathsf{Integer} \\ \mathsf{add}: \mathsf{Float} \to \mathsf{Float} \to \mathsf{Float} \\ \end{pmatrix} \textit{multiple implementations}$

implementation chosen at either compile-time or run-time

Parametric Polymorphism

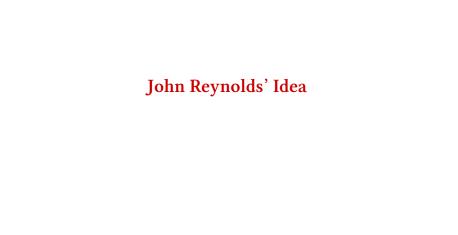
$$\text{add}: \mathsf{Integer} \to \mathsf{Integer} \to \mathsf{Integer} \\ \mathsf{add}: \mathsf{Float} \to \mathsf{Float} \to \mathsf{Float} \\ \end{pmatrix} \textit{multiple implementations}$$

implementation chosen at either compile-time or run-time

Parametric Polymorphism

$$\forall \alpha. \text{ List } \alpha \rightarrow \text{List } \alpha$$
 $\}$ single implementation

single implementation works for all types



If we have a single implementation that works for all types, then it must be uniform in some way.

If we have a single implementation that works for all types, then it must be uniform in some way. We can capture uniformity through *preservation of relations*.

If we have a single implementation that works for all types, then it must be uniform in some way. We can capture uniformity through *preservation of relations*.

Preservation of Relations

 $M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$

If we have a single implementation that works for all types, then it must be uniform in some way. We can capture uniformity through *preservation of relations*.

Preservation of Relations

$$M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

Assume two types *X* and *Y* and a relation $R: X \leftrightarrow Y$

If we have a single implementation that works for all types, then it must be uniform in some way. We can capture uniformity through *preservation of relations*.

Preservation of Relations

$$M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

Assume two types X and Y and a relation $R: X \leftrightarrow Y$ let $l_X = [x_1, x_2, x_3]$ be a list of Xs

If we have a single implementation that works for all types, then it must be uniform in some way. We can capture uniformity through *preservation of relations*.

Preservation of Relations

$$M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

Assume two types X and Y and a relation $R: X \leftrightarrow Y$ let $l_X = [x_1, x_2, x_3]$ be a list of Xs let $l_Y = [y_1, y_2, y_3]$ be a list of Ys

If we have a single implementation that works for all types, then it must be uniform in some way. We can capture uniformity through *preservation of relations*.

Preservation of Relations

$$M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

Assume two types X and Y and a relation $R: X \leftrightarrow Y$ let $l_X = [x_1, x_2, x_3]$ be a list of Xs let $l_Y = [y_1, y_2, y_3]$ be a list of Ys such that $x_1Ry_1, x_2Ry_2, x_3Ry_3$

If we have a single implementation that works for all types, then it must be uniform in some way. We can capture uniformity through *preservation of relations*.

Preservation of Relations

$$M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$$

Assume two types X and Y and a relation $R: X \leftrightarrow Y$ let $l_X = [x_1, x_2, x_3]$ be a list of Xs let $l_Y = [y_1, y_2, y_3]$ be a list of Ys such that $x_1Ry_1, x_2Ry_2, x_3Ry_3$ then: $M l_X = [x_1', ..., x_n'], M l_Y = [y_1', ..., y_n'] \text{ and for all } i, x_i'Ry_i'$

From Types to Relations

If A is a type with free variables $\alpha_1, ..., \alpha_n$ and we have types $X_1, ..., X_n$, and $Y_1, ..., Y_n$ and relations $R_1: X_1 \leftrightarrow Y_1, ..., R_n: X_n \leftrightarrow Y_n$

then $|A|: (A[X_1/\alpha_1,...,X_n/\alpha_n]) \leftarrow (A[Y_1/\alpha_1,...,Y_n/\alpha_n])$

From Types to Relations

If *A* is a type with free variables $\alpha_1, ..., \alpha_n$ and we have types $X_1, ..., X_n$, and $Y_1, ..., Y_n$ and relations $R_1 : X_1 \leftrightarrow Y_1, ..., R_n : X_n \leftrightarrow Y_n$ then $|A| : (A[X_1/\alpha_1, ..., X_n/\alpha_n]) \leftarrow (A[Y_1/\alpha_1, ..., Y_n/\alpha_n])$

Definition

$$\begin{array}{lll} \left[\alpha_{i}\right] & = & R_{i} \\ \left[\forall\alpha.A\right] & = & \left\{(x,x') \mid \forall X,Y,R:X \leftrightarrow Y.\ x \lfloor A \rfloor x'\right\} \\ \left[A \rightarrow B\right] & = & \left\{(f,g) \mid \forall (x,x') \in \lfloor A \rfloor.\ (fx,g\ x') \in \lfloor B \rfloor\right\} \\ \left[\text{List } A\right] & = & \left\{(l,l') \mid |l| = |l'| \text{ and for all } i,\ l_{i}\lfloor A \rfloor l'_{i}\right\} \end{array}$$

Reynolds' Abstraction Theorem

If M has type A, then $M \lfloor A \rfloor M$.

Reynolds' Abstraction Theorem

If *M* has type *A*, then M|A|M.

Caveats

Depends heavily on the language!

Depends heavily on the language.

general recursion : (some) relations must be admissible effects : (some) relations must be $\top \top$ -closed

seq : (some) relations must be bottom-reflecting

typecase : things get weird

$M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$

and we have types X, Y and a function $f: X \to Y$

 $M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$

and we have types X, Y and a function $f: X \to Y$

 $By\ Reynolds'\ Abstraction\ Theorem$

 $M [\forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha] M$

$M: \forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha$

and we have types X, Y and a function $f: X \to Y$

By Reynolds' Abstraction Theorem

 $M[\forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha]M$

Which means

For all types X, Y and relations $R: X \leftrightarrow Y$, for all l_X and l_Y such that $l_X \lfloor \text{List } \alpha \rfloor l_Y$, $(M l_X) \rfloor \text{List } \alpha \rfloor (M l_Y)$

$M: \forall \alpha. \text{ List } \alpha \rightarrow \text{List } \alpha$

and we have types X, Y and a function $f: X \to Y$

By Reynolds' Abstraction Theorem

 $M[\forall \alpha. \ \mathsf{List} \ \alpha \to \mathsf{List} \ \alpha]M$

Which means

For all types X, Y and relations $R: X \leftrightarrow Y$, for all l_X and l_Y such that $l_X \lfloor \text{List } \alpha \rfloor l_Y$, $(M l_X) \lfloor \text{List } \alpha \rfloor (M l_Y)$

Instantiating

Set $R = \{(x, y) \mid fx = y\}$ then $l_X \lfloor \text{List } \alpha \rfloor l_Y \Leftrightarrow l_Y = \text{map } f l_X$ so for all $l_X \mid M \mid \text{map } f \mid l_X \mid M \mid l_X \mid l$

Representing Datatypes

$$\forall \alpha. \ \alpha \to (A \to \alpha \to \alpha) \to \alpha$$
 \cong
 $\mathsf{List}(A)$

$$\forall \alpha. \ \alpha \rightarrow (A \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha \\ \cong \\ \mathsf{List}(A)$$

 λ nil. λ cons. cons a_1 (cons a_2 nil) $\approx [a_1, a_2]$

$$\forall \alpha. \ \alpha \to (A \to \alpha \to \alpha) \to \alpha$$

$$\cong$$

$$\mathsf{List}(A)$$

 λ nil. λ cons. cons a_1 (cons a_2 nil) $\approx [a_1, a_2]$

Representing Syntax

$$\forall \alpha. ((\alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha \to \alpha) \to \alpha$$

 \cong

Terms of the untyped λ -calculus with no free type variables

$$\forall \alpha. \ \alpha \to (A \to \alpha \to \alpha) \to \alpha$$

$$\cong$$

$$\mathsf{List}(A)$$

 λ nil. λ cons. cons a_1 (cons a_2 nil) $\approx [a_1, a_2]$

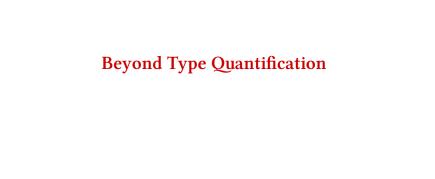
Representing Syntax

$$\forall \alpha. ((\alpha \to \alpha) \to \alpha) \to (\alpha \to \alpha \to \alpha) \to \alpha$$

$$\cong$$

Terms of the untyped λ -calculus with no free type variables

 λ lam. λ app. lam (λx . lam (λy . app x y)) $\approx \lambda x y . x y$



$$area: \forall B: \mathsf{GL}_2, t: \mathsf{T}_2.$$

$$\mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B| \rangle$$

$$\begin{array}{c} \mathit{area} : \forall \mathit{B} : \mathsf{GL}_2, \mathit{t} : \mathsf{T}_2. \\ & \mathsf{vec} \langle \mathit{B}, \mathit{t} \rangle \rightarrow \mathsf{vec} \langle \mathit{B}, \mathit{t} \rangle \rightarrow \mathsf{vec} \langle \mathit{B}, \mathit{t} \rangle \rightarrow \mathsf{real} \langle | \mathsf{det} \, \mathit{B} | \rangle \end{array}$$

Deduce translation invariance:

$$\forall \vec{t}, \vec{v_1}, \vec{v_2}, \vec{v_3}$$
. area (v_1+t) (v_2+t) $(v_3+t)=$ area v_1 v_2 v_3

$$area: \forall B: \mathsf{GL}_2, t: \mathsf{T}_2. \ \ \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B| \rangle$$

Deduce translation invariance:

$$\forall \vec{t}, \vec{v_1}, \vec{v_2}, \vec{v_3}. \ \textit{area} \ (\nu_1 + t) \ (\nu_2 + t) \ (\nu_3 + t) = \textit{area} \ \nu_1 \ \nu_2 \ \nu_3$$

Deduce orthogonal transformation invariance:

$$\forall O, \vec{v_1}, \vec{v_2}, \vec{v_3}. \ area \ (Ov_1) \ (Ov_2) \ (Ov_3) = area \ v_1 \ v_2 \ v_3$$

$$\begin{aligned} \mathit{area} : \forall B : \mathsf{GL}_2, t : \mathsf{T}_2. \\ \mathsf{vec}\langle B, t \rangle &\to \mathsf{vec}\langle B, t \rangle &\to \mathsf{real}\langle |\mathsf{det}\, B| \rangle \end{aligned}$$

Deduce translation invariance:

$$\forall \vec{t}, \vec{v_1}, \vec{v_2}, \vec{v_3}. \ \textit{area} \ (v_1+t) \ (v_2+t) \ (v_3+t) = \textit{area} \ v_1 \ v_2 \ v_3$$

Deduce orthogonal transformation invariance:

$$\forall O, \vec{v_1}, \vec{v_2}, \vec{v_3}. \ area \ (Ov_1) \ (Ov_2) \ (Ov_3) = area \ v_1 \ v_2 \ v_3$$

Deduce scaling variance:

$$\forall s, \vec{v_1}, \vec{v_2}, \vec{v_3}. \ area \ (s \cdot v_1) \ (s \cdot v_2) \ (s \cdot v_3) = s^2 \cdot area \ v_1 \ v_2 \ v_3$$

Types to Relations

```
    \begin{bmatrix} \forall B : \mathsf{GL}_2.A \end{bmatrix} = \{(x, x') \mid \forall B : \mathsf{GL}_2. \ x \lfloor A \rfloor x' \} 

    \begin{bmatrix} \forall t : \mathsf{T}_2.A \end{bmatrix} = \{(x, x') \mid \forall t : \mathsf{T}_2. \ x \lfloor A \rfloor x' \} 

    |\forall s : \mathsf{GL}_1.A | = \{(x, x') \mid \forall s : \mathsf{GL}_1. \ x | A | x' \}
```

area : $\forall B: \mathsf{GL}_2, t: \mathsf{T}_2$.

 $ext{vec}\langle B,t
angle o ext{vec}\langle B,t
angle o ext{vec}\langle B,t
angle o ext{real}\langle | ext{det}\,B|
angle$

 $area: \forall B: \mathsf{GL}_2, t: \mathsf{T}_2.$ $\mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B| \rangle$

Symmetry as a Guide:

 $area: \forall B: \mathsf{GL}_2, t: \mathsf{T}_2.$ $\mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B| \rangle$

Symmetry as a Guide:

We have $p_1 : \text{vec}\langle B, t \rangle, p_2 : \text{vec}\langle B, t \rangle, p_3 : \text{vec}\langle B, t \rangle$

 $area: \forall B: \mathsf{GL}_2, t: \mathsf{T}_2. \ \ \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B|
angle$

Symmetry as a Guide:

We have $p_1: \text{vec}\langle B, t \rangle, \, p_2: \text{vec}\langle B, t \rangle, \, p_3: \text{vec}\langle B, t \rangle$ goal is $\text{real}\langle |\text{det } B| \rangle$

area: $\forall B: \mathsf{GL}_2, t: \mathsf{T}_2$. $\operatorname{vec}\langle B, t \rangle \to \operatorname{vec}\langle B, t \rangle \to \operatorname{vec}\langle B, t \rangle \to \operatorname{real}\langle |\det B| \rangle$

Symmetry as a Guide:

We have $p_1 : \text{vec}\langle B, t \rangle, p_2 : \text{vec}\langle B, t \rangle, p_3 : \text{vec}\langle B, t \rangle$ goal is real $\langle |\det B| \rangle$

select one to be the "origin":

$$(p_2-p_1): \mathtt{vec}\langle \mathit{B}, \mathit{0} \rangle \text{ and } (p_3-p_1): \mathtt{vec}\langle \mathit{B}, \mathit{0} \rangle$$

area: $\forall B: \mathsf{GL}_2, t: \mathsf{T}_2$. $\operatorname{vec}\langle B, t \rangle \to \operatorname{vec}\langle B, t \rangle \to \operatorname{vec}\langle B, t \rangle \to \operatorname{real}\langle |\det B| \rangle$

Symmetry as a Guide:

We have $p_1 : \text{vec}\langle B, t \rangle, p_2 : \text{vec}\langle B, t \rangle, p_3 : \text{vec}\langle B, t \rangle$ goal is real $\langle |\det B| \rangle$

select one to be the "origin":

$$(p_2-p_1): \mathrm{vec}\langle B,0 \rangle$$
 and $(p_3-p_1): \mathrm{vec}\langle B,0 \rangle$

remove rotational symmetry and get area of parallelogram:

$$(p_2 - p_1) \times (p_2 - p_1)$$
 : real $\langle \det B \rangle$

 $area: \forall B: \mathsf{GL}_2, t: \mathsf{T}_2. \ \ \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B| \rangle$

Symmetry as a Guide:

We have $p_1 : \text{vec}\langle B, t \rangle, p_2 : \text{vec}\langle B, t \rangle, p_3 : \text{vec}\langle B, t \rangle$ goal is real $\langle |\det B| \rangle$

select one to be the "origin":

$$(\textit{p}_2-\textit{p}_1): \text{vec}\langle \textit{B}, 0\rangle \text{ and } (\textit{p}_3-\textit{p}_1): \text{vec}\langle \textit{B}, 0\rangle$$

remove rotational symmetry and get area of parallelogram:

$$(p_2-p_1) imes (p_3-p_1): \mathtt{real}\langle \det B
angle$$

remove reflectional symmetry:

$$|(p_2-p_1) imes(p_3-p_1)|: \mathtt{real}\langle |\!\det B|
angle$$

 $\mathit{area}: \forall B : \mathsf{GL}_2, t : \mathsf{T}_2. \ \ \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B| \rangle$

Symmetry as a Guide:

We have $p_1 : \text{vec}\langle B, t \rangle$, $p_2 : \text{vec}\langle B, t \rangle$, $p_3 : \text{vec}\langle B, t \rangle$ goal is real $\langle |\det B| \rangle$

select one to be the "origin":

$$(p_2-p_1): \mathrm{vec}\langle {\it B}, 0 \rangle \ \mathrm{and} \ (p_3-p_1): \mathrm{vec}\langle {\it B}, 0 \rangle$$

remove rotational symmetry and get area of parallelogram:

$$(p_2 - p_1) \times (p_3 - p_1)$$
: real $\langle \det B \rangle$ remove reflectional symmetry:

$$|(p_2-p_1)\times(p_2-p_1)|: \operatorname{real}\langle |\det B|\rangle$$

halve:

$$\frac{1}{2} * |(p_2 - p_1) \times (p_3 - p_1)| : \text{real}\langle |\det B| \rangle$$

 $\mathit{area}: \forall B : \mathsf{GL}_2, t : \mathsf{T}_2. \ \ \mathsf{vec}\langle B, t \rangle \to \mathsf{vec}\langle B, t \rangle \to \mathsf{real}\langle |\det B| \rangle$

Symmetry as a Guide:

We have $p_1 : \text{vec}\langle B, t \rangle$, $p_2 : \text{vec}\langle B, t \rangle$, $p_3 : \text{vec}\langle B, t \rangle$ goal is real $\langle |\det B| \rangle$

select one to be the "origin":

$$(p_2-p_1): \mathrm{vec}\langle {\it B}, 0 \rangle \ \mathrm{and} \ (p_3-p_1): \mathrm{vec}\langle {\it B}, 0 \rangle$$

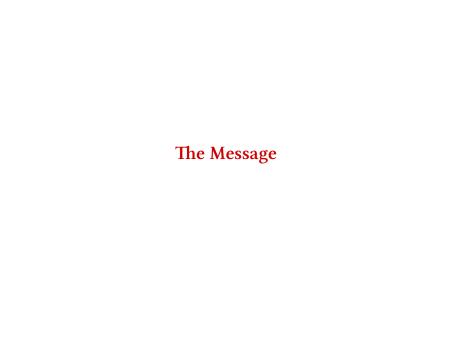
remove rotational symmetry and get area of parallelogram:

$$(p_2 - p_1) \times (p_3 - p_1)$$
: real $\langle \det B \rangle$ remove reflectional symmetry:

$$|(p_2-p_1)\times(p_2-p_1)|: \operatorname{real}\langle |\det B|\rangle$$

halve:

$$\frac{1}{2} * |(p_2 - p_1) \times (p_3 - p_1)| : \text{real}\langle |\det B| \rangle$$



Polymorphism means Uniformity

If a type has a \forall , then implementations are uniform under change:

 $\forall \alpha$. : uniform under change of data representation

 $\forall B: \mathsf{GL}_2.$: uniform under change of basis

 $\forall t : \mathsf{T}_2$. : uniform under change of origin

 $\forall s : \mathsf{GL}_1$. : uniform under change of scale

Uniformity allows one to deduce "free theorems"

Polymorphism means Uniformity

If a type has a \forall , then implementations are uniform under change:

 $\forall \alpha$. : uniform under change of data representation

 $\forall B: \mathsf{GL}_2.$: uniform under change of basis $\forall t: \mathsf{T}_2.$: uniform under change of origin

 $\forall s: \mathsf{GL}_1.$: uniform under change of scale

Uniformity allows one to deduce "free theorems"

What other sorts of uniformity are useful?