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For any program M with the type:

Va. List o — List o

Deduce the following “Free Theorem”:

for all types X, Y,
for all functions f: X — Y,
for all lists I : List X,

M (map fI) = map f(MI).

Without looking at the implementation of M.
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Ad-hoc Polymorphism

add : Integer — Integer — Integer

add : Float — Float — Float } multiple implementations

implementation chosen at either compile-time or run-time
Parametric Polymorphism

Va. List a — List o } single implementation

single implementation works for all types
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John Reynolds’ Idea (1983)

If we have a single implementation that works for all types, then it
must be uniform in some way. We can capture uniformity through
preservation of relations.

Preservation of Relations
M : Va. List o — List «

Assume two types X and Yand a relation R: X <+ Y
let Ix = [x1, x2, x3] be a list of Xs
let Iy = [yy, ¥4, y3] be alist of Ys
such that x1 Ry, x2Ry,, x3Ry,
then:
MIx=1[x,....,x], Mly=[3,...,¥,] and for all i, x/Ry,

oy Ap
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From Types to Relations
If A is a type with free variables o, ..., o,
and we have types Xj, ..., Xp, and Y1, ..., Y,
and relations Ry : X3 < Y1, ... R, : X, & Y,
then |A] : (A[X1/aq, ..., Xn/au]) < (A[Y1/0a, ..., Yo/ cum])

Definition

L] = R
IVa.A] = {(x¥)| VX, Y,R: X+ Y. x|A|¥}
[A=B] = {(fg|V¥(x¥) €Al (fxg¥) € [B]}
|[ListA] = {(LI)||]] =]|!|andforalli L|AJL}



Reynolds’ Abstraction Theorem
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Reynolds’ Abstraction Theorem
If M has type A, then M| A|M.

Caveats
Depends heavily on the language!
general recursion  : (some) relations must be admissible
effects : (some) relations must be T T-closed

seq : (some) relations must be bottom-reflecting
typecase : things get weird



M : V. List @« — List

and we have types X, Yand a function f: X - Y



M : V. List @« — List

and we have types X, Yand a function f: X - Y

By Reynolds’ Abstraction Theorem
M|Va. List a — List a|M



M : V. List @« — List

and we have types X, Yand a function f: X - Y

By Reynolds’ Abstraction Theorem
M|Va. List a — List a|M

Which means
For all types X, Y and relations R : X <+ Y,
for all Ix and Iy such that Ix|List a1y,
(M Ix)| List | (M ly)



M : V. List @« — List

and we have types X, Yand a function f: X - Y

By Reynolds’ Abstraction Theorem
M|Va. List a — List a|M

Which means
For all types X, Y and relations R : X <+ Y,
for all Ix and Iy such that Ix|List a1y,
(M Ix)| List | (M ly)

Instantiating
Set R={(x,y) | fi =}
then Ix|List o] ly < Iy = map flx
so for all [, M (map f1) = map f (M)
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Representing Lists

Vao.ao = (A—a—a) =«

>~

List(A)

Anil. Acons. cons a; (cons ag nil) ~ [ay, a2]

Representing Syntax

Va. ((a v a) »a) » (a > a—a) 5«

~

Terms of the untyped A-calculus with no free type variables

Alam. Aapp. lam (Ax. lam (Ay. app x y)) =~ A\xy.xy
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For any function area with the type:

area : VB:GLg, t:To.
vec(B, t) — vec(B,t) — vec(B, ) — real(|det B|)

Deduce translation invariance:

VE v, v3, V3. area (vi + t) (vo + t) (v3 + £) = area v; vy v3

Deduce orthogonal transformation invariance:

VO, vi, v, vi. area (Ovy) (Ovg) (Ovs) = area vi va v3

Deduce scaling variance:

Vs, Vi, V3, va. area (s- v1) (s-va) (s-v3) = s> - area vi vo V3



Types to Relations

x, %)
x, %)
x,x) | Vs
1, V2
X1, %2) | %2
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Polymorphism means Uniformity
If a type has a V, then implementations are uniform under change:

Vo

VB
Vit
Vs

: GLo.
ZT2.
:GLl.

: uniform under change of data representation
: uniform under change of basis

: uniform under change of origin

: uniform under change of scale

Uniformity allows one to deduce “free theorems”

What other sorts of uniformity are useful?



