
A Deep Embedding of Parametric Polymorphism in Coq

Robert Atkey
LFCS, School of Informatics, University of Edinburgh

bob.atkey@ed.ac.uk

1 Introduction

We describe a deep embedding of System F inside Coq, along
with a denotational semantics that supports reasoning using
Reynolds parametricity [4]. The denotations of System F types
are given exactly by objects of sort Set in Coq, and the relations
used to formalise Reynolds parametricity are Coq predicates with
values in Prop. A key feature of the model is the extensive use of
dependent types to maintain agreement between the parts of the
model. We use type dependency to represent well-formedness of
types and terms, and to keep track of the relation between the de-
notations of types and the parametricity relations between them.

We have used an extension of this formalisation in other re-
search [1], where we proved that the parametric polymorphic
representation of Higher-Order Abstract Syntax is adequate.

More information, and the formalisation itself, are available
from: http://homepages.inf.ed.ac.uk/ratkey/parametricity/.

2 Preparing the Metatheory

In order to use Coq Sets as denotations of System F types, we
require impredicativity. The denotation of the type ∀α.τ quan-
tifies over all denotations of types (i.e. Sets). By default,
Coq’s type theory is predicative for Set (although it is impred-
icative in the type of propositions, Prop), so one cannot con-
struct a new object of sort Set by quantifying over all objects
of sort Set. Fortunately, Coq supports a command line option
-impredicative-set that allows us to proceed.

We also require three axioms to be added to Coq’s theory. The
first of these is proof irrelevance, which states that all proofs of a
given proposition are equal:

∀P : Prop. ∀p1, p2 : P. p1 = p2.

We also require extensionality for functions, which states that
two functions are equal if they are equal for all inputs:

∀A : Type, B : A→ Type, f , g : (∀a.Ba).(∀x. f x = gx)→ f = g

Extensionality for functions allows our denotational model to
support the η-equality rules of System F. We also require propo-
sitional extensionality, which will allow us to treat equivalent
propositions as equal:

∀P,Q : Prop, (P↔ Q)→ P = Q

These axioms allow us to define data with embedded proofs that
are equal if their computational contents are equal, which will aid
us in proving equalities between denotations of System F types.

We informally justify our use of these axioms, plus impred-
icativity, by the existence of models of CIC in intuitionistic set
theory.

3 Syntax and Semantics of Types
We represent the syntax of System F types using de Bruijn in-
dicies for the bound type variables. Defining the syntax and the
well-formedness condition at the same time makes the rest of the
development easier.

Inductive variable : nat → Set :=
| var : ∀g i, i < g → variable g.

Inductive type : nat → Set :=
| ty_var : ∀g, variable g → type g

| ty_arr : ∀g, type g → type g → type g

| ty_univ : ∀g, type (S g) → type g.

System F types are interpreted as functions from type environ-
ments to Coq Sets. Type environments are themselves vectors of
Sets:

Inductive ty_environment : nat → Type :=
| ty_nil : ty_environment 0

| ty_cons : ∀i, Set → ty_environment i →

ty_environment (S i).

The denotation of the parametric universal type quantifier de-
pends on the relational interpretation of types, so we must mu-
tually define the relational interpretation with the underlying de-
notation of types. The relational interpretation will be a function
from relation environments, which are parameterised by a pair of
type environments:

Inductive rel_environment :
∀n, ty_environment n → ty_environment n → Type :=

| rel_nil : rel_environment ty_nil ty_nil

| rel_cons : ∀(n:nat) (A B:Set)

(env1 env2:ty_environment n),

(A → B → Prop) →

rel_environment env1 env2 →

rel_environment (A;:env1) (B;:env2).

The definition of the denotations of types and derived relations
between them is given by induction on the structure of the type:

Definition ty_sem_rel (g:nat) (t:type g) :
{ ty_sem : ty_environment g → Set

& ∀(e1 e2 : ty_environment g),

rel_environment e1 e2 →

ty_sem e1 → ty_sem e2 → Prop }.

In normal mathemetical notation the denotations and relational
interpretations of types are given by the following clauses:

T JαKγ = γ(α)
T Jτ1 → τ2Kγ = T Jτ1Kγ → T Jτ2Kγ
T J∀α.τKγ = { x : ∀A : Set. T JτK(γ[α 7→ A])

| ∀A1, A2,R : Rel(A1, A2).
RJτK(∆γ[α 7→ R]) (x A1) (x A2) }

RJαKρ x y = ρ(α) x y

RJτ1 → τ2Kρ f g = ∀x : T Jτ1Kγ1, y : T Jτ1Kγ1.
RJτ1Kρ x y→ RJτ2Kρ (f x) (gy)

1

http://homepages.inf.ed.ac.uk/ratkey/parametricity/

RJ∀α.τKρ x y = ∀A1, A2,R : Rel(A1, A2).
RJτK(ρ[α 7→ R]) (x A1) (y A2)

Note that the clause for T J∀α.τK restricts to Set-indexed values
that are parametric. The notation ∆γ denotes the diagonal relation
for the type environment γ; in Coq this is written diagonal γ.

We define aliases for the projection functions from this defini-
tion for type denotations and relational interpretations:

Definition ty_sem (g:nat)
(e:ty_environment g) (t:type g) : Set.

Definition ty_rel (g:nat) (e1 e2:ty_environment g)
(re:rel_environment e1 e2) (t:type g) :

ty_sem e1 t → ty_sem e2 t → Prop.

A key property of the relational interpretation of types is the
identity extension lemma:

Lemma rel_diagonal : ∀g (e:ty_environment g) ty x y,
ty_rel (diagonal e) ty x y ↔ x = y.

4 Type Shifting and Substitution
The definition of the semantics of terms requires the shifting and
substitution on of types. In the case where we only want to shift
or substitute the first variable we have the following operations
on terms:

Definition shift1 : ∀g, type g → type (S g).
Definition subst1 : ∀g, type (S g) → type g → type g.

Note that, by our representation of types, the definitions of shift-
ing and substitution automatically preserve well-formedness. As
one would expect, defining these operations actually requires
defining them for arbitrarily deep contexts.

Semantically, shifting a type into a larger context should not
change its denotation. Informally, this is obvious since types τ
and shift1 τ are syntactically the same. However, to Coq they
have different (Coq) types, so we need to prove that the denota-
tions of shifted types are equal:

Lemma shift1_equal : ∀g (ty : type g) e A,
ty_sem e ty = ty_sem (A;:e) (shift1 ty).

Again, this lemma is a consequence of the analogous lemma for
arbitrary contexts. Also, we must prove equality of type denota-
tions in tandem with equality of relational interpretations under
shifting. At the empty context level, this is the following lemma:

Lemma rel_shift1_equal : ∀g (e1 e2:ty_environment g)
(re : rel_environment e1 e2) ty

(A1 A2 : Set) (R : A1 → A2 → Prop) t1 t2 t1’ t2’,

JMeq t1 t1’ → JMeq t2 t2’ →

ty_rel re ty t1 t2 = ty_rel (R;;re) (shift1 ty) t1’ t2’.

We have used John Major equality [3], JMeq, to express the
equality between the elements t1,t2 of the denotation of the un-
shifted type and the elements t1’,t2’ of the shifted type.

Likewise, we state the semantic effect of substitution:

Lemma subst1_equal : ∀g ty1 ty2 (e:ty_environment g),
ty_sem (ty_sem e ty2;:e) ty1 =

ty_sem e (subst1 ty1 ty2).

Lemma rel_subst1_equal :
∀g ty1 ty2 (e1 e2 : ty_environment g)

(re : rel_environment e1 e2) t1 t2 t1’ t2’,

JMeq t1 t1’ → JMeq t2 t2’ →

ty_rel (ty_rel re ty1;;re) ty2 t1’ t2’ =

ty_rel re (subst1 ty2 ty1) t1 t2.

5 Semantics of Terms
As with types we formalise terms using de Bruijn indicies, defin-
ing well-typed terms as an inductive family:
Inductive term : ∀g, context g → type g → Set := . . .

where context g is a list of System F types well-formed in a
type environment of size g.

Our main result is that all well-typed terms can be understood
as functions from the denotations of contexts (with the evident
extension of type denotations to contexts) to the denotation of
the result type. Moreover, this function preserves all relations:
Definition term_sem : ∀g ctxt ty,
term ctxt ty →

{ x : ∀(e : ty_environment g),

context_sem e ctxt → ty_sem e ty

| ∀(e1 e2 : ty_environment g)

(re : rel_environment e1 e2)

(g1:context_sem e1 ctxt) (g2:context_sem e2 ctxt),

context_rel ctxt re g1 g2 →

ty_rel re ty (x e1 g1) (x e2 g2) }.

The definition/proof of this result relies on the identity extension
lemma above, and the semantic properties of shifting and substi-
tution from the previous section.

6 Proofs using Parametricity
The objective of this formalisation is to carry out mechanised
proofs of the correctness of parametric polymorphic representa-
tions of datatypes. For example, it is not too hard to prove that
T J∀α.α → (α → α) → αK∅ � nat, and that T J∀α.α → (σ →
α → α) → αK∅ � list(T JσK∅) for all closed types σ. The proofs
all proceed much as they would on paper, functions are defined
in both directions, and parametricity is used to prove that they
form an isomorphism. It often turns out to be easier to use tactics
to define the witnessing functions.

As we mentioned in the introduction, this model has also been
extended to parametricity over Kripke relations, and has been
used to prove that the denotation of the type ∀α.((α → α) →
α) → (α → α → α) → α is isomorphic to the Set of all closed
de Bruijn terms [1]. Thus, we have shown that the representation
of HOAS using polymorphism is adequate in this model.

Obviously, there is much further one could go here. In the fu-
ture we intend to formalise the general theorem for parametric
representations of inductive and co-inductive datatypes over rep-
resentable functors, and also to extend the parametric represen-
tations of HOAS to arbitrary binding algebras. Also we wish to
extend the formalisation to include parametricity for type opera-
tors (i.e. System Fω) and also to formalisations of domain theory
[2], so that parametricity results for programming languages may
be formalised.

References
[1] Robert Atkey. Syntax for free: Representing syntax with binding using para-

metricity. In Typed Lambda Calculi and Applications (TLCA), volume 5608
of LNCS, pages 35–49. Springer, 2009. To appear.

[2] Nick Benton, Andrew Kennedy, and Carsten Varming. Some Domain
Theory and Denotational Semantics in Coq. In Proceedings of the 22nd
International Conference on Theorem Proving in Higher Order Logics
(TPHOLs’09), volume 5674 of LNCS. Springer, 2009.

[3] Conor McBride. Elimination with a motive. In Paul Callaghan, Zhaohui
Luo, James McKinna, and Robert Pollack, editors, TYPES, volume 2277 of
LNCS, pages 197–216. Springer, 2000.

[4] John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In
IFIP Congress, pages 513–523, 1983.

2

