
Relational Parametricity for Higher Kinds
Robert Atkey1

1 University of Strathclyde, UK
Robert.Atkey@strath.ac.uk

Abstract
Reynolds’ notion of relational parametricity has been extremely influential and well studied for
polymorphic programming languages and type theories based on System F. The extension of
relational parametricity to higher kinded polymorphism, which allows quantification over type
operators as well as types, has not received as much attention. We present a model of relational
parametricity for System Fω, within the impredicative Calculus of Inductive Constructions, and
show how it forms an instance of a general class of models defined by Hasegawa. We investigate
some of the consequences of our model and show that it supports the definition of inductive types,
indexed by an arbitrary kind, and with reasoning principles provided by initiality.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of
Programming Languages

Keywords and phrases Relational Parametricity, Higher Kinds, Polymorphism

1 Introduction

Reynolds defined relational parametricity to formalise the intuition that, in the absence of
introspection capabilities, a polymorphic program must act uniformly in the choice of type
instantiation [14]. The inability of a program to rely on details of data representation that it
has not been explicitly exposed to forms the backbone of reasoning based on information
hiding and abstraction. The core of Reynolds’ idea is that a parametrically polymorphic
program should preserve all relations between any pair of types that it is instantiated with.

Since Reynolds’ definition, many interesting consequences have been revealed. Wadler
called some of these consequences “Theorems for free” [20] where theorems can be stated
about polymorphically typed programs just by looking at their types. It is also possible to
prove that the polymorphic λ-calculus allows encodings of categorical constructions such as
finite products and coproducts, initial algebras and final coalgebras, as long as the model is
parametric in Reynolds’ sense, as demonstrated by Hasegawa [7].

Most of the previous work on parametricity has been based on languages and type theories
building on System F, where type quantification is only over types. Modern programming
languages now include higher kinded polymorphism where programs may be parameterised
by type operators of kinds like ∗ → ∗ as well as normal types of kind ∗. Type operators are
simply functions operating on types, where the kinds act as a type system at “one level up”
to classify types. The purely functional language Haskell uses type operators of kind ∗ → ∗
to represent constructions such as monads [11], and the GHC compiler has recently added
support for user defined kinds [21]. The JVM-based language Scala [12] also includes support
for type operators. Languages in the ML family such as OCaml and SML do not support
higher kinded polymorphism in their core languages, but do support a form of it through
their module systems. Indeed, Rossberg et al. [16] have shown that ML-style modules can
be understood by translation into a language with higher kinds.

In this paper, we consider the prototypical calculus with type operators and higher kinded
polymorphism, System Fω. We give a concrete model of this calculus within the impredicative

© Robert Atkey;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Relational Parametricity for Higher Kinds

variant of the Calculus of Inductive Constructions, building on the interpretation of kinds as
reflexive graphs, due to Hasegawa [8, 7] and Robinson and Rosolini [15]. The use of reflexive
graphs builds Reynolds’ identity extension principle into the interpretation, ensuring that
we are able to perform hypothetical reasoning with parametric functions. We make use of
this ability to show that we can represent κ indexed inductive types, for arbitrary kinds κ,
within System Fω, and prove their initiality. Proving initiality is essential for reasoning about
members of inductive types. When κ = ∗, we obtain a method for encoding and reasoning
about Generalised Algebraic Data Types (GADTs) [5].

1.1 Background
To our knowledge, the earliest formulation of a theory of relational parametricity for higher
kinded types is due to Hasegawa [8], building on his previous work on relationally parametric
System F [7]. Hasegawa gives a category theoretic approach, based on interpreting kinds and
types in categories of r-frames: sets equipped with a notion of reflexive relations between
their elements, building in Reynolds’ identity extension property. We recall Hasegawa’s
definition of r-frame in Section 3.3, and describe how it relates to our model construction,
and to the reflexive graph approach of Robinson and Rosolini [15]. Hasegawa presents a set
of general requirements on a model in order for it to interpret System Fω, and demonstrates
two instances: a PER-based model and a syntactic model. Hasegawa also develops a number
of applications of models, using notions of enriched category theory, including the existence
of initial algebras and final coalgebras for a certain class of internally defined functors.

Takeuti [17] formulated a definition of relational parametricity for dependent type theories
in the λ-cube, including System Fω, and developed a small amount of enriched category
theory in this setting.

Bernardy, Jansson and Paterson [3] present a slightly different formulation of parametricity
for pure type systems (PTSs), including those in the λ-cube. A key feature of this work is that
the relational interpretation of a type is expressed within an augmented version of the PTS
that is started with. Bernardy et al. prove an abstraction theorem for their translation, with
the neat property that the same translation that translates types to relational interpretations
also translates terms to the proof of the abstraction theorem for that term. This work does
not take into account the identity extension aspect of parametricity, nor do the authors
construct a model with the property that all members of universal types are relationally
parametric, so the constructions we present in Section 4 are not possible in their setting.

Voigtländer [18] has examined an extension of free theorems to a fragment of System Fω,
where he only considers functions with types of form ∀κα. A[α]→ B[α], where κ may be a
higher kind. Voigtländer derives several useful free theorems relating functions that operate
polymorphically over monads. We expect that all his free theorems are true in our model.

Vytiniotis and Weirich [19] present a syntactic model of parametricity for System Fω
extended with representation types. They define a relational interpretation of types where
great care is required, in their syntactic setting, to ensure that the interpretation is coherent
under type equality. This is handled for us in our extensional denotational setting. Vytiniotis
and Weirich consider an extended system with type representations and prove that, due to
parametricity, run-time type casting using type representations will always be equivalent
to the identity function. In comparison to the present work, they do not need to consider
a definition of the interpretation of kinds that forces there to be a distinguished identity
relation for every type, because they need only consider the types that are syntactically
definable. We have also considered constructions within parametric System Fω beyond
equality types.

Robert Atkey 3

α : κ ∈ Θ
Θ ` α : κ

Θ, α : κ1 ` A : κ2

Θ ` λα : κ1. A : κ1 → κ2

Θ ` F : κ1 → κ2 Θ ` A : κ1

Θ ` FA : κ2

Θ ` A : ∗ Θ ` B : ∗
Θ ` A→ B : ∗

Θ, α : κ ` A : ∗
Θ ` ∀κα. A : ∗

Figure 1 Types and their Kinds

1.2 Contributions of this Paper
We define a concrete type theoretic model of relationally parametric System Fω, a
polymorphic λ-calculus with higher kinded types. We give our model in direct terms, not
using category theoretic language, in an attempt to make the definition more accessible.
We also relate our model to a standard non-parametric semantics (Theorem 4), in order to
show that the relationally parametric model can be used to reason about interpretations
in the non-parametric model.
We demonstrate that our relationally parametric model of System Fω allows for the
definition of indexed inductive types, with an initiality property that allows for reasoning.
Hasegawa also proves the existence of initial algebras in relationally parametric models
of System Fω, for functors satisfying a condition he calls the middle-lax property. We
demonstrate initial algebras for all definable functors, and present our proof in more
elementary terms. We also demonstrate how to interpret data kinds, such as type-level
natural numbers.

We emphasise that even though our model is constructed on paper with the impredicative
Calculus of Inductive Constructions, we have not yet completed a full verification of all our
results in Coq. Also, there are evidently many more constructions that one might consider
in a relationally parametric model of System Fω, including final coalgebras. We have some
preliminary results in this direction, but leave development of them to future work.

2 Type Polymorphism with Higher Kinds

To fix notation we define the syntax and typing of System Fω in this section, following
the standard presentations [13]. There are three levels: kinds, which classify types, which
classify terms. The language of kinds consists of simple types over a single base kind ∗ that
represents all types that can classify terms. We use meta-syntactic variables κ, κ1, κ2, ... to
stand for kinds. The grammar κ ::= ∗ | κ1 → κ2 defines the collection of kinds that we
consider. We will look at extending the calculus with additional kinds in Section 5.

The language of types is an applied simply-typed λ-calculus with constants for function
and universal types. The kinding rules that classify types by kind are shown in Section 1.
We will use the general name “type” for both proper types of kind ∗ and for higher kinded
type operators. We use Θ as a meta-variable to stand for kinding contexts α1 : κ1, ..., αn : κn,
Greek letters α, β, ... for type variables in the calculus and capital roman letters A,B, F, ...
for meta-syntactic variables standing for arbitrary types. Types come equipped with an
equational theory (≡) built from the standard typed βη rules for the simply typed λ-calculus.

The typing rules for terms are shown in Section 2. These are the standard rules for
System Fω. We assume throughout that all the types in the typing context Γ are of base

4 Relational Parametricity for Higher Kinds

x : A ∈ Γ
Θ | Γ ` x : A

Θ | Γ ` e : A Θ ` A ≡ B : ∗
Θ | Γ ` e : B

Θ | Γ, x : A ` e : B
Θ | Γ ` λx : A. e : A→ B

Θ | Γ ` e1 : A→ B Θ | Γ ` e2 : A
Θ | Γ ` e1e2 : B

Θ, α : κ | Γ ` e : A α 6∈ fv(Γ)
Θ | Γ ` Λα : κ. e : ∀κα.A

Θ | Γ ` e : ∀κα.A Θ ` B : κ
Θ | Γ ` e [B] : A{B/α}

Figure 2 Terms and their Types

kind according to the kinding context Θ. We use the notation A{B/α} to represent capture
avoiding substitution of B for all occurrences of α in A. The final typing rule imports
the equational theory of types into the typing judgement, allowing a term to have many
syntactically different types. Terms come equipped with an equational theory of their own:
βη equalities for λ-abstraction and Λ-abstraction.

3 A Relationally Parametric Model

We now present the construction of a relationally parametric model of System Fω in the
impredicative Calculus of Inductive Constructions (CIC). CIC is a dependently typed
λ-calculus with impredicative polymorphism and inductive types, and forms the basis of
the Coq proof assistant. The presence of impredicative polymorphism in our meta-theory
simplifies the presentation of our model, allows us to concentrate on the parametricity aspects,
and permits straightforward reasoning inside the model. This technique has been used to
construct models of System F with Kripke parametricity for the purposes of studying the
adequacy of Higher Order Abstract Syntax (HOAS) encodings [1]. Our model is an instance
of the class of models defined by Hasegawa, and also those defined by Robinson and Rosolini.
We cover the connection in Section 3.3. We motivate this class of models in Section 3.2.

3.1 Setting up the Metatheory
Impredicative CIC allows us to quantify over all objects of sort Set to generate a new
object of sort Set. This feature can be enabled in the Coq proof assistant by means of the
-impredicative-set command line option. CIC already includes an impredicative sort
of propositions Prop. Importantly, this is disjoint from the sort Set, where we build our
denotations of types.

We require two additional axioms to be added to CIC. The first of these is extensionality
for functions, which states that two functions are equal if they are equal for all inputs:
∀A ∈ Type, B ∈ A → Type, f, g ∈ (∀a.Ba). (∀x. fx = gx) → f = g. Extensionality
for functions allows our denotational model to smoothly support the η equality rules of
System Fω, without requiring complex constructions involving setoids. We also require
propositional extensionality, which will allow us to treat equivalent propositions as equal:
∀P,Q ∈ Prop, (P ↔ Q) → P = Q. Propositional extensionality implies proof irrelevance:
all proofs of a given proposition are equal: ∀P ∈ Prop. ∀p1, p2 ∈ P. p1 = p2. These axioms
allow us to define data with embedded proofs that are equal when their computational parts
are equal, which allows us to prove more equalities between denotations of types.

Robert Atkey 5

We informally justify our use of these axioms, plus impredicativity, by the existence of
models of CIC in intuitionistic set theory. In the remainder of the paper, we use informal
set theoretic notation and do not explicitly highlight the uses of these axioms. Note that
everywhere we refer to “set”s, we mean CIC objects of sort Set.

3.2 Types, Relations and Identity Extension
We consider the extension of Reynolds’ definition of relational parametricity to a type system
with higher kinds, in order to motivate the model construction in the rest of this section.

If we model types of kind ∗ as sets, then the modelling of the rest of the kind hierarchy
has an obvious choice: we interpret kinds of the form κ1 → κ2 as functions:

J∗K = Set Jκ1 → κ2K = Jκ1K→ Jκ2K

To define relational parametricity, we need to consider what relations between the inter-
pretations of types look like. At the base kind, ∗, this will be just the collection of all
relations between a pair of sets: we denote the collection of relations between sets A and B
as Rel(A,B). At higher kinds, an obvious approach is to consider relation transformers:

JκKR ∈ JκK× JκK→ Set
J∗KR = (A,B) 7→ Rel(A,B)

Jκ1 → κ2KR = (F,G) 7→ ∀A,B ∈ Jκ1K.Jκ1KR(A,B)→ Jκ2KR(FA,GB)

Following relationally parametric models of System F (e.g., Jacobs [9], Section 8.4), for any
well-kinded type α1 : κ1, · · · , αn : κn ` A : κ, we will have an underlying interpretation
JAKf ∈ Jκ1K×· · ·×JκnK→ JκK and a relational interpretation JAKr ∈ ∀

−→
A,
−→
B.Jκ1KR(A1, B1)×

· · · × JκnKR(An, Bn)→ JκKR(F−→A,F−→B).
However, this interpretation of kinds suffers from a problem. In order to allow for

hypothetical reasoning using relational parametricity, we must ensure that the interpretation
of a type of the form ∀κα.A only contains elements that actually preserve all relations
(i.e., are parametric). If the type A is open—it has free type variables—then in order to
state this property we need a default relational interpretation for each of the free type
variables. In Reynolds’ formulation of relational parametricity, where all type variables
have kind ∗, the default relational interpretation is given by equality. Moreover, given a
type with free type variables, substituting the equality relation for all the free variables in
the relational interpretation of the type should give the equality relation: this is Reynolds’
identity extension property, which is needed to prove the abstraction theorem (see Theorem
3, below).

In the situation with higher kinds, some of the variables may be of functional kinds like
κ1 → κ2, so to even state identity extension we need a notion of identity relation for any
type at these kinds. We cannot use equality, because we require a relation transformer.
Moreover, this transformer should obey the identity extension property itself; sending the
identity relations for kind κ1 to the identity relations for kind κ2. But what are these
identity relations? There does not seem to be an obvious way to assign an identity relation
transformer to an arbitrary type operator, so we need to equip each element of Jκ1 → κ2K
with a distinguished relation transformer with the identity extension property.

3.3 Kinds as Reflexive Graphs
Hasegawa [7, 8] and Robinson and Rosolini [15] give us the solution. Instead of defining the
underlying and relational semantics of kinds separately, we treat each kind as a reflexive

6 Relational Parametricity for Higher Kinds

graph. A reflexive graph consists of two collections: one of objects and one of relations.
Every relation is assigned a source and target object, and every object a has a distinguished
“identity” relation, whose source and target are a. Hasegawa calls such structures r-frames,
and notes that they are essentially categories without composition. Robinson and Rosolini
note that the category of reflexive graphs is just the category of presheaves over the category
• i // •δ0vv

δ1
hh such that δ0 ◦ i = id and δ1 ◦ i = id. It immediately follows that there is an

interpretation of higher kinds, using the cartesian closed structure of this presheaf category,
although Robinson and Rosolini do not make use of this fact. This solves the problem we
identified above: the assignment of a distinguished identity relation to every inhabitant of
the denotation of a higher kind. Dunphy and Reddy [6] also use reflexive graphs to study
relational parametricity.

It the rest of this section, we present a concrete model of System Fω within CIC that
interprets kinds as reflexive graphs. We do not make explicit use of the presheaf structure
underlying the model, in order to keep the presentation straightforward and accessible.

3.4 Interpretation of Kinds
A kind κ is interpreted as a triple of a carrier A; a function that takes a pair of elements
of A and returns the set of “relations” between them; and a special distinguished “identity”
relation for every element of A. We write this specification as a CIC type as follows:

ΣA ∈ Type. ΣR ∈ A×A→ Type. ∀a ∈ A. R(a, a)

In the following, we make use of the projection functions −U , −R and −∆ to obtain the first,
second and third components of the interpretations of kinds.

We define an interpretation for all kinds by induction on their structure. At base kind,
the carrier is simply the type of all sets; relations between A and B are subsets of A×B;
and the distinguished identity relation is exactly the equality relation:

J∗K = (Set,Rel,≡)

At higher kinds κ1 → κ2, the interpretation is more involved. The carrier is the set of pairs of
functions from the carrier of κ1 to the carrier of κ2, along with their associated distinguished
identity-preserving identity relations; the relations between two semantic type operators
(F,R) and (G,S) are relation transformers; and the distinguished identity relation for (F,R)
is just R.

Jκ1 → κ2K = ({(F,R) | F ∈ Jκ1KU → Jκ2KU , R ∈ (∀AB. Jκ1KR(A,B)→ Jκ2KR(FA,FB)),
∀A ∈ Jκ1KU . RAA(Jκ1K∆A) = Jκ2K∆(FA)},

((F,R), (G,S)) 7→ ∀AB.Jκ1KR(A,B)→ Jκ2KR(FA,GB),
(F,R) 7→ R)

Kinding contexts Θ = α1 : κ1, ..., αn : κn are interpreted as follows:

Jα1 : κ1, ..., αn : κnK = (Jκ1KU × ...× JκnKU ,
(θ, θ′) 7→ Jκ1KR(π1θ, π1θ

′)× ...× JκnKR(πnθ, πnθ′),
θ 7→ (Jκ1K∆(π1θ), ..., JκnK∆(πnθ)))

We use πi to denote the ith projection. The carrier component of the interpretation of a
kinding context is simply the product of the underlying semantics of the context members,
and the relational component is simply the product of the relational components of the
context members. This naturally leads to the identity component being defined as the tuple
of the identity components of the interpretations of the context members. We overload the
projections −U , −R and −∆ for the denotations of kinding contexts as well as kinds.

Robert Atkey 7

3.5 Interpretation of Types
A kinding judgement Θ ` A : κ establishing the well-formedness of a type A is interpreted
as a pair of a function JAKf ∈ JΘKU → JκKU and a relation transformer JAKr ∈ (∀θθ′ ∈
JΘKU .JΘKR(θ, θ′) → JκKR(JAKfθ, JAKfθ′)) such that the identity extension property holds.
We give the full statement below in Theorem 1.

We now give an interpretation of the kinding judgements of Section 1, by induction on
the kinding derivation. Type variables Θ ` αi : κi, where αi is the ith variable in Θ, are
interpreted using projections:

JαiKfθ = πiθ JαiKrθθ′ρ = πiρ

For λ-abstraction of types, we must return a pair of the type operator and the distinguished
identity relation on the operator. This is derived from the relational interpretation of the
premise and the identity relation on the context. In essence, type-level λ-abstraction in
System Fω is interpreted as λ-abstraction at the meta-level:

Jλα : κ1. AKfθ = (λX ∈ Jκ1KU . JAKf (θ,X),
λXY ∈ Jκ1KU , R ∈ Jκ1KR(X,Y). JAKr(θ,X)(θ, Y)(JΘK∆θ,R))

Jλα : κ1. AKrθθ′ρ = λXY ∈ Jκ1KU , R ∈ Jκ1KR(X,Y). JAKr(θ,X)(θ′, Y)(ρ,R)

Type-level application is interpreted as application at the meta-level:

JF AKfθ = π1(JF Kf θ) (JAKf θ)
JF AKrθθ′ρ = JF Krθθ′ρ (JAKfθ)(JAKfθ′)(JAKrθθ′ρ)

We now turn to the interpretation of the two constructors of actual types in the kinding
system of Section 1. For function types, we use the standard logical relations interpretation
of function types as preservation of relations:

JA→ BKfθ = JAKfθ → JBKfθ

JA→ BKrθθ′ρ = {(f, g) | ∀(x, y) ∈ JAKrθθ′ρ. (fx, gy) ∈ JBKrθθ′ρ}

Finally, a universal type ∀κα.A is interpreted as the set of all type-parameterised inhabitants
of the open type A that are relationally parametric. We use the distinguished identity relation
on contexts in this definition, where Θ is the current context in the kinding derivation. The
interpretation of universally quantified types as just those elements that are relationally
parametric is key to the applications of the model that we present in Section 4. This definition
allows us to state results that range over all inhabitants of J∀κα.AKf , not just those that
arise from closed programs.

J∀κα. AKfθ = {x ∈ (∀X ∈ JκKU . JAKf (θ,X)) |
∀XY,R ∈ JκKR(X,Y). (xX, xY) ∈ JAKr(θ,X)(θ, Y)(JΘK∆θ,R)}

J∀κα. AKrθθ′ρ = {(x, y) | ∀XY,R ∈ JκKR(X,Y). (xX, yY) ∈ JAKr(θ,X)(θ′, Y)(ρ,R)}

The following theorem states that the clauses above are well-defined: all the definitions
above are well-typed, and the identity extension property is preserved.

I Theorem 1. For all well-kinded types Θ ` A : κ there exist functions:
JAKf ∈ JΘKU → JκKU and JAKr ∈ (∀θθ′ ∈ JΘKU .JΘKR(θ, θ′) → JκKR(JAKfθ, JAKfθ′))

such that identity extension holds: ∀θ ∈ JΘKU . JAKrθθ(JΘK∆θ) = JκK∆(JAKfθ)

I Theorem 2 (Soundness of βη). If Θ ` A ≡ B : κ then JAKf = JBKf and JAKr = JBKr.

8 Relational Parametricity for Higher Kinds

We extend the interpretation of types to the interpretation of typing contexts in the obvious
way: contexts Γ = x1 : A1, ..., xn : An (where all the Ai are of base kind) are interpreted as
tuples of the the interpretations of the individual types, and the relational interpretation is
the standard one for logical relations on products.

3.6 Semantics of Terms
We omit the interpretation of terms, which is similar to the interpretation of the terms of
System F in a relationally parametric model (see, for example, Bainbridge et al. [2]). We
just state the key result—the abstraction theorem for System Fω.

I Theorem 3. For all well-typed terms Θ | Γ ` e : A there is a function (the −P superscript
stands for “parametric”)

JeKP ∈ (∀θ ∈ JΘKU . JΓKfθ → JAKfθ)

such that, for all θ, θ′ ∈ JΘKU , ρ ∈ JΘKR(θ, θ′), γ ∈ JΓKfθ and γ′ ∈ JΓKfθ′,

if (γ, γ′) ∈ JΓKrθθ′ρ then (JeKPθγ, JeKPθ′γ′) ∈ JAKrθθ′ρ.

Moreover, this interpretation is sound for the βη equational theory of the terms.

The interpretation of terms and the proof that they satisfy the abstraction property must
be carried out simultaneously in order to show that the interpretation of Λ-abstraction is
well-defined. This is due to the interpretation of the ∀κ-types as sets of type indexed values
that preserve all relations.

The next theorem relates the model we have defined in this section to the standard
non-parametric model in CIC, where we interpret higher kinds simply as functions, and
∀κ-types just using the impredicative quantification of the meta-theory. The intention is
that this non-parametric semantics represents the “natural” semantics of System Fω in CIC,
without the artificial scaffolding of relational parametricity. To state this theorem, it is
necessary to extend the calculus with a type of booleans to act as observable values.

I Theorem 4. For any closed term − | − ` e : bool, the parametric semantics of Theorem
3 and the non-parametric semantics are equal.

The proof of this theorem is carried out by the construction of a logical relation between the
parametric and non-parametric semantics. The importance of this theorem is that it allows
us to use equalities between terms that we prove in the parametric semantics of Theorem
3 to reason about contextual equivalence in the non-parametric semantics. If we prove
an equivalence Je1KP = Je2KP in the parametric semantics, where e1 and e2 may be open
terms, then for all contexts C[−] of type bool, we have, by the compositionality of J−KP ,
JC[e1]KNP = JC[e1]KP = JC[−]KPJe1KP = JC[−]KPJe2KP = JC[e2]KP = JC[e2]KNP , where
J−KNP is the non-parametric semantics, and J−KP is the parametric semantics.

4 Applications of Higher Kinded Parametricity

We now demonstrate how, in System Fω, we can define useful data type constructions
for indexed data types, of kind κ → ∗. Such indexed data types include Generalised
Algebraic Data Types (GADTs) [5], by setting κ = ∗. We build towards the construction of
indexed inductive types in stages, defining equality types, existential types at higher kinds,

Robert Atkey 9

product and sum types and then finally indexed inductive types as initial algebras. For each
construction, relational parametricity is used to justify the η equality rules.

We reason within CIC, using the model that we constructed in the previous section.
When we quantify over all types of a particular kind, we mean to interpret this as all semantic
inhabitants of the denotation of this kind. Similarly, when we quantify over terms of a
particular type, we mean semantic inhabitants of the denotation of the type. We often omit
semantic brackets to reduce clutter. When F is a semantic type of kind κ, we write ∆F for
F ’s distinguished identity relation JκK∆(F) ∈ JκKR(F, F). As a shorthand for the relational
interpretations of certain types, we often write type expressions with free type variables
replaced by relations.

4.1 Equality Types
It is possible (Jacobs [9], Section 8.1) to extend System Fω with an equality type that records
when two types (of arbitrary but equal kinds) are equal. One adds an additional kind indexed
family of type operators Eqκ : κ→ κ→ ∗ and two kind indexed families of term constants:

reflκ : ∀κα. Eqκαα elimEqκ : ∀καβ. Eqκαβ → ∀κ→κ→∗ρ.(∀κγ. ργγ)→ ραβ

that obey the following β and η equality rules:

A : κ G : κ→ κ→ ∗ f : ∀κα.Gαα
elimEqκ [A] [A] (refl [A]) [G] f = f [A]

(β)

A,B : κ z : EqκAB G : κ→ κ→ ∗ t : ∀καβ. Eqκ α β → Gαβ

elimEqκ [A] [B] z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] z
(η)

We can define a substitution operation, using elimEqκ, which will be used in Section 5 below.

substκ : ∀καβ.Eqκαβ → ∀κ→∗ρ. ρα→ ρβ

substκ = Λαβ.λe.Λρ.λx. elimEqκ [α] [β] e [λγ1γ2. ργ1 → ργ2] (Λγ.λx.x) x

In System Fω, it is possible to implement the equality type. We make the following definitions,
encoding the equality type as it own eliminator.

Eqκ = λαβ. ∀κ→κ→∗ρ. (∀κγ. ργγ)→ ραβ

reflκ = Λα. Λρ. λf. f [α]
elimEqκ = Λαβ. λe. Λρ. λf. e [ρ] f

The β equality rule for this implementation of equality types holds in all models of System
Fω, just by β reduction. In the parametric model of Section 3, we can also show that the η
equality rule holds, by using higher kinded relational parametricity.

I Lemma 5. Let A,B be types of kind κ, and G be a type of kind κ→ κ→ ∗. Then for any
z : EqκAB, and t : ∀καβ. Eqκαβ → Gαβ, we have (in the model of Section 3):

t [A] [B] (z [Eqκ] reflκ) = z [G] (Λγ. t [γ] [γ] (reflκ [γ]))

Proof. Let ∆G = Jκ → κ → ∗K∆(G), the identity-preserving identity relation transformer
associated with G. Define another relation transformer R ∈ Jκ → κ → ∗KR(Eqκ, G) as
RABSA′B′S′ = {(x, y) | (t [A] [A′] x, y) ∈ ∆GSS

′}. We know from the parametricity
property derived from z’s type that:

(z [Eqκ], z [G]) ∈ (∀κγ. Rγγ)→ R∆A∆B (1)

10 Relational Parametricity for Higher Kinds

where ∆A = JκK∆(A) and ∆B are the identity relations appropriate to κ for the semantic
types A and B. We will instantiate (1) with reflκ and Λγ. t [γ] [γ] (reflκ [γ]), so we must
ensure that these are related at ∀κγ. Rγγ. But, for any X,Y and S ∈ JκKR(X,Y) this
reduces to whether (t [X] [X] (reflκ [X]), t [Y] [Y] (reflκ [Y])) ∈ ∆GSS, which follows from
t’s parametricity property, ensured by its membership of the denotation of a universal type.

Now, (z [Eqκ] reflκ, z [G] (Λγ. t [γ] [γ] (reflκ [γ]))) ∈ R∆A∆B . By the construction of iden-
tity relations at higher kinds, ∆G∆A∆B = ∆GAB = (≡), so when we unfold the definition ofR,
we have shown that, in the model, t [A] [B] (z [Eqκ] reflκ) = z [G] (Λγ. t [γ] [γ] (reflκ [γ])). J

I Theorem 6. The β and η rules stated above for refl and elimEq hold for the implementations
refl and elimEq when interpreted in the model of Section 3.

Proof. The β equality rule can be seen to hold by expanding the definitions and applying β
reduction. Showing that the η equality rule holds requires parametricity. Unfolding and β
reducing, the equation to show becomes z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] z. From
Lemma 5 we know that z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] (z [Eqκ] reflκ). Now we
use Lemma 5 again, with an arbitrary G and f : ∀κγ.Gγγ, setting t = Λαβ.λx.x [G] f . This
gives us z [Eqκ] reflκ [G] f = z [G] f , and so by extensionality, z [Eqκ] reflκ = z. Thus we
have shown z [G] (Λγ. t [γ] [γ] (reflκ [γ])) = t [A] [B] z, as required. J

4.2 Existential Types
As with System F, it is possible to encode existential types in System Fω, only now we have
the option of doing so for higher kinds. The specification for existential types goes as follows:
for every type F : κ→ ∗, there is a type ∃κα. Fα, and two combinators:

packκ : ∀κ→∗ρ. ∀κα. ρα→ (∃κα. ρα)
elimExκ : ∀κ→∗ρ. ∀∗β. (∀κα. ρα→ β)→ (∃κα. ρα)→ β

that obey the following equational rules:

F : κ→ ∗ A : κ x : FA B : ∗ f : ∀κα. Fα→ B

elimExκ [F] [B] f (packκ [F] [A] x) = f [A] x
(β)

F : κ→ ∗ e : ∃κα. Fα B : ∗ t : (∃κα. Fα)→ B

elimExκ [F] [B] (Λα. λx. t (packκ [F] [α] x)) e = t e
(η)

We can implement this specification in System Fω by copying the implementation of existen-
tials in System F. Set ∃κα.Fα = ∀∗β.(∀κα.Fα→ β)→ β and define

packκ = Λρα.λx.Λβ.λf.f [α] x
elimExκ = Λρβ.λfe. e [β] f

In the proof of the next lemma, we make use of functional relations. This is a standard
concept used in relationally parametric reasoning for System F (for example, Birkedal and
Møgelberg [4]). They are called graph relations by Hasegawa [8].

I Definition 7 (Functional Relations at Base Kind). For types A,B of kind ∗ and an inhabitant
f of the type A→ B, we define the relation 〈f〉 ∈ J∗KR(A,B) as 〈f〉 = {(a, b) | fa = b}.

I Lemma 8. For all F : κ→ ∗ and B : ∗, t : (∃κα.Fα)→ B and e : ∃κα.Fα, we have

t (e [∃κα.Fα] (packκ [F])) = e [B] (Λα.λx. t (packκ [F] [α] x))

Robert Atkey 11

Proof. By e’s parametricity, we know that (e [∃κα.Fα], e [B]) ∈ (∀κα.∆Fα → 〈t〉) → 〈t〉.
We will apply this pair to packκ [F] and Λα.λx. t (packκ [F] [α] x), so we must show
that they are related by ∀κα.∆Fα → 〈t〉. Given X,Y ∈ JκKU , S ∈ JκKR(X,Y) and
(x, y) ∈ ∆FS, we want to prove (packκ [F] [X] x, t (packκ [F] [Y] y)) ∈ 〈t〉 which is
equivalent to t (Λβ.λf. f [X] x) = t (Λβ.λf. f [Y] y), by unfolding the definition of 〈t〉 and
packκ. Now it is possible to prove this equality by using extensionality and f ’s parametricity.

Thus we have shown (e [∃κα.Fα] (packκ [F]), e [B] (Λα.λx.t (packκ [F] [α] x))) ∈ 〈t〉.
Unfolding the definition of 〈t〉, this gives us what we want. J

I Theorem 9. This implementation of ∃κα.Fα, packκ and elimExκ satisfies the βη equality
rules for existential types when interpreted in the model of Section 3.

Proof. The β equality rule follows simply by expanding the definitions and applying the β
equality rules of System Fω. For the η rule, we use Lemma 8 to reason as follows:

elimExκ [F] [B] (Λα.λx.t (packκ [F] [α] x)) e = e [B] (Λα.λx.t (packκ [F] [α] x))
= t (e [∃κα.Fα] (packκ [F]))

The first equality is by unfolding the definition of elimExκ and the second is by Lemma
8. We now make use of Lemma 8 again, with an arbitrary B and f : ∀κα.Fα → B,
setting t = λx.x [B] f . This yields e [∃κα.Fα] (packκ [F]) [B] f = e [B] f , and hence, by
extensionality, e [∃κα.Fα] (packκ [F]) = e. Thus we can rewrite the final line in the sequence
of equations above to get t e, as required. J

4.3 Categories of Indexed Types
For every kind κ, we define the category of κ indexed types as follows. The objects are types
of kind κ→ ∗ and morphisms between F and G are inhabitants of the type ∀κγ.Fγ → Gγ.
We write F ⇒ G as shorthand for this type. Identities and composition in these categories
are defined as follows:

idF : F ⇒ F ◦ : (G⇒ H)→ (F ⇒ G)→ (F ⇒ H)
idF = Λγ.λx. x ◦ = λf g.Λγ.λx. f [γ] (g [γ] x)

The categories of κ indexed types have all finite products and coproducts (sum types).
We only sketch the proof here, which is a straightforward extension of the proof for the
existence of non-indexed finite products and coproducts in System F.

I Theorem 10. The categories of κ indexed types have all finite products and coproducts.

Proof. (Sketch) Pointwise extension of the corresponding constructions for types of base
kind in System F [4, 7]. For example, A× B = λα. ∀∗β. (Aα → Bα → β) → β. To prove
the required universal properties, parametricity is needed. J

4.4 Functors and Initial Algebras
For a kind κ, an endofunctor on the category of κ indexed types consists of a pair (F, fmapF)
of a type F of kind (κ→ ∗)→ (κ→ ∗) and an associated function fmapF : ∀κ→∗αβ.(α⇒
β)→ (Fα⇒ Fβ) that preserves identities and composition.

We now show that any such functor has an initial algebra, and so we can define κ indexed
inductive types. To do so, we need the higher kinded generalisation of the functional relations
previously defined at base kind in Definition 7.

12 Relational Parametricity for Higher Kinds

I Definition 11 (Functional Relations at Higher Kind). Given types F,G of kind κ → ∗
(i.e., objects of the category of κ indexed types) and f of type A⇒ B define the functional
relation 〈f〉 ∈ Jκ→ ∗KR(A,B) as 〈f〉XY S = {(x, y) | (f [X] x, y) ∈ ∆BS}.

I Lemma 12 (Graph Lemma). For a functor (F, fmapF) and morphism f : A⇒ B, then it
is the case that ∆F 〈f〉 ⊆ 〈fmapF [A] [B] f〉.

Proof. Of course, by the inclusion in the lemma statement, we mean that the inclusion
holds for all X,Y ∈ JκKU and S ∈ JκKR(X,Y). We know by the parametricity property
for fmapF that (fmapF [A] [B], fmapF [B] [B]) ∈ (〈f〉 ⇒ ∆B) → (∆F 〈f〉 ⇒ ∆FB). We
proceed by supplying the suitably related arguments (f, idB) ∈ 〈f〉 ⇒ ∆B and then S,
to obtain (fmapF [A] [B] f X, idFBY) ∈ ∆F 〈f〉S → ∆FBS. So, if (x, y) ∈ ∆F 〈f〉S then
(fmapF [A] [B] f X x, y) ∈ ∆FBS, which implies that (x, y) ∈ 〈fmapF [A] [B] f〉S. J

We now show that every endofunctor on the categories of κ indexed types has an initial
algebra. This result allows us to define κ indexed inductive types within System Fω and
use initiality to reason about them. Following the purely category theoretic definition,
we define, for a functor (F, fmapF), an F -algebra to consist of a pair of a type A of kind
κ → ∗ and a morphism kA : FA ⇒ B. Given two F -algebras A, kA and B, kB, an F -
algebra homomorphism between them is a morphism f : A ⇒ B such that the equation
kB ◦ fmapF [A] [B] f = f ◦ kA holds. An initial F -algebra is an F -algebra µF, inF such that
for any other F -algebra A, kA there exists a unique F -algebra homomorphism µF ⇒ A.

We state the existence of initial F -algebras in type theoretic terms as follows. For any
functor (F, fmapF), we require a type µF : κ→ ∗, along with two combinators:

inF : F (µF)⇒ F

foldF : ∀κ→∗ρ.(Fρ⇒ ρ)→ (µF ⇒ ρ)

that satisfy the following βη equality rules:

A : κ→ ∗ kA : FA⇒ A C : κ e : F (µF)C
foldF [A] kA [C] (inF [C] e) = kA [C] (fmapF [µF] [A] (foldF [A] kA) [C] e)

(β)

A : κ→ ∗ kA : FA⇒ A f : µF ⇒ A f is an F -algebra homomorphism
f = foldF [A] kA

(η)

The β equality rule states that, for any F -algebra A, kA, foldF [A] kA is an F -algebra
homomorphism. The η equality rule states that foldF [A] kA is the unique F -algebra
homomorphism from µF, inF to A, kA.

Within System Fω we can implement the above specification for any functor (F, fmapF)
and show that the β equality rule holds. Moreover, using parametricity we can further show
that the η equality rule holds. We define

µF = λα.∀κ→∗ρ.(Fρ⇒ ρ)→ ρα

foldF = Λρ.λf.Λα.λx. x [ρ] f
inF = Λγ.λx.Λρ.λf. f [γ] (fmapF [µF] [ρ] (foldF [ρ] f) [γ] x)

I Lemma 13. Let (F, fmapF) be a functor. Given two F algebras A : κ→ ∗, kA : FA⇒ A

and B : κ→ ∗, kB : FB ⇒ B, and an F -algebra homomorphism h : A⇒ B, then for any
type C of kind κ and e : (µF)C, we have h [C] (e [A] kA) = e [B] kB.

Robert Atkey 13

Proof. By e’s parametricity, we know that (e [A], e [B]) ∈ (∆F 〈h〉 ⇒ 〈h〉) → 〈h〉∆C .
We will apply this pair to (kA, kB), so we must show that (kA, kB) ∈ ∆F 〈h〉 ⇒ 〈h〉.
Given X,Y ∈ JκKU , S ∈ JκKR(X,Y) and (x, y) ∈ ∆F 〈h〉S, we need to demonstrate that
(kA [X] x, kB [Y] y) ∈ 〈h〉S. Unfolding the definition of 〈h〉, this means we need to show
that (h [X] (kA [X] x), kB [Y] y) ∈ ∆BS. Since h is an F -algebra homomorphism, it suffices
to show that

(kB [X] (fmap [A] [B] h [X] x), kB [Y] y) ∈ ∆BS (2)

We know by Lemma 12 that (x, y) ∈ 〈fmap [A] [B] h〉S. Unfolding this use of a functional
relation, this gives (fmap [A] [B] h [X] x, y) ∈ ∆FBS. Now we may use the parametricity
property of kB to show (2).

We now have (e [A] kA, e [B] kB) ∈ 〈h〉∆C , and unfolding the definition of 〈h〉 yields
(h [C] (e [A] kA), e [B] kB) ∈ ∆B∆C . Since ∆B∆C = ∆BC = (≡), we have shown that
h [C] (e [A] kA) = e [B] kB , as required. J

I Theorem 14. The implementations of µF , inF and foldF satisfy the βη equality rules
stated above, in the model of Section 3.

Proof. The β equality rule is seen to hold by expanding the definitions and β reducing. By
itself, this ensures that our definition is a weakly initial algebra. For the η equality rule, we
unfold foldF , and η expand to see that we need to prove f [C] e = e [A] kA. By Lemma
13, and that f is an F -algebra homomorphism, we have f [C] (e [µF] in) = e [A] kA. We
now use Lemma 13 again, with an arbitrary B and kB : FB ⇒ B, setting h = foldF [B] kB
(which we know to be an F -algebra homomorphism by the β-equality rule). This gives us
e [µF] inF [B] kB = e [B] kB, and so, by extensionality, e [µF] inF = e. Thus we have
shown f [C] e = e [A] kA, as required. J

4.5 Generalised Algebraic Data Types
Given that we can encode existential types, products, coproducts, equality types and initial
algebras in parametric System Fω, it is now possible to encode Generalised Algebraic Data
Types (GADTs) [5], using the encoding of Johann and Ghani [10] into a system with initial
algebras and equality types (the same encoding was used implicitly by Cheney and Hinze
[5]). For example, the following Haskell declaration:

data Z; data S a
data Vec :: * -> * -> * where

VNil :: Vec a Z; VCons :: a -> Vec a n -> Vec a (S n)

can be encoded, assuming a kinding context containing Z : ∗, S : ∗ → ∗ and α : ∗, by the
initial algebra of the functor Fρα = Eq∗ α Z+ (∃∗η.α× ρη×Eq∗ α (Sη)). We have used the
equality type to encode the “transmuting” effect of the constructors on the type parameters.

This encoding is not immediately useful within System Fω because we are not guaranteed
anything about equalities between types. Specifically, we cannot be sure that the types Z
and Sη are not equal, so it is not possible to directly translate the following Haskell function:

head :: Store a (S n) -> a; head (SCons a _) = a

where we know head is total because Z 6= S n for all n, by Haskell’s generative seman-
tics for data declarations. We can simulate this by adding the assumption ZisNotS :
∀∗η.Eq Z (Sη)→ 0 to the context, where 0 = ∀∗α.α is the encoding of the terminal object.

14 Relational Parametricity for Higher Kinds

This allows us to define the function within System Fω. In the next section we show how to
extend the calculus and model with a data kind of natural numbers, which means that we
do not have to abuse types to stand for natural numbers.

5 Extension of System Fω with Additional Kinds

In the previous section, we used abstract type constructors Z and S to simulate natural
numbers. However, recent versions of the GHC Haskell compiler have been extended with
data kinds, which lift some inductive data types up to the type level. Yorgey et al. [21]
provide the details of this lifting. As a step towards modelling data kinds, we demonstrate
how our model can be extended with a kind of natural numbers by interpreting them as a
discrete “category without composition”.

Syntactically, we extend the grammar of kinds with a new kind of natural numbers:
κ ::= ... | nat. We also extend the language of types with two new constants and a kind
indexed family of constants, with the following kindings:

zero : nat succ : nat→ nat recκ : κ→ (nat→ κ→ κ)→ nat→ κ

with the β-equality rules recκ A B zero ≡ A and recκ A B (succ n) ≡ B n (recκ A B n).
Semantically, we define JnatK = (N, λn1, n2.{∗ | n1 = n2}, λn.∗), where N is the set of

all natural numbers and the notation {∗ | n1 = n2} denotes the set {∗} when n1 = n2 and
the empty set otherwise. Following Hasegawa, and thinking of the interpretation of kinds
as categories without composition, the interpretation of nat is “discrete”: there are only
relations between equal objects. It is straightforward to define the semantic interpretations
of the zero, succ and recκ constants.

Given the extension of the calculus and model with this new kind, we can use Theorem
14 to define the inductive type of nat indexed vectors. We set

Fαρn = (Eqnat n zero) + (∃natn
′. α× ρn′ × Eqnat n (succ n′))

so that the type of nat indexed vectors with elements of type A is given by µ(FA). It is
now possible to write the head function within System Fω without any further assumptions:
we can write a term that demonstrates that succ n and zero are not equal, using the subst
function defined in Section 4.1, and type-level computation using recκ:

zeroIsNotSucc : ∀natn. Eq zero (succ n)→ 0
zeroIsNotSucc = Λn.λe. substnat [zero] [succ n] e [rec∗ 1 (λn α. 0)] ∗

where 1 = ∀α.α→ α, the standard encoding of the unit type, and ∗ is the unique inhabitant.

6 Conclusions

We have defined a concrete type theoretic model of relationally parametric System Fω
(Theorem 3), based on the idea of interpreting kinds as reflexive graphs, due to Hasegawa
and Robinson and Rosolini. This model allows us to reason relationally about the standard
non-parametric semantics (Theorem 4). We have investigated some of the consequences of
our model, and shown that it is possible to define indexed inductive types within System Fω,
with an initiality property that allows for reasoning (Theorem 14). We have also shown that
it is possible to extend the model with data kinds, such as the natural numbers.
Acknowledgements Thanks to Patricia Johann, Neil Ghani, Alex Simpson, Thorsten
Altenkirch and Lars Birkedal for suggestions and comments on this work. This work was
funded by EPSRC grant EP/G068917/1.

Robert Atkey 15

References
1 R. Atkey. Syntax For Free: Representing Syntax with Binding using Parametricity. In

Typed Lambda Calculi and Applications (TLCA), volume 5608 of Lecture Notes in Computer
Science, pages 35–49. Springer, 2009.

2 E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott. Functorial polymorphism. Theor.
Comput. Sci., 70(1):35–64, 1990.

3 J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent types. In Proc.
15th ACM SIGPLAN International Conference on Functional Programming, ICFP 2010,
pages 345–356, 2010.

4 L. Birkedal and R. E. Møgelberg. Categorical models for Abadi-Plotkin’s Logic for Para-
metricity. Mathematical Structures in Computer Science, 15(4):709–772, 2005.

5 J. Cheney and R. Hinze. A lightweight implementation of generics and dynamics. In Proc.
2002 ACM SIGPLAN Workshop on Haskell, Haskell ’02, pages 90–104, 2002.

6 B. Dunphy and U. S. Redddy. Parametric limits. In Proc. 19th IEEE Symp. on Logic in
Computer Science, LICS 2004, pages 242–251, 2004.

7 R. Hasegawa. Categorical data types in parametric polymorphism. Mathematical Structures
in Computer Science, 4(1):71–109, 1994.

8 R. Hasegawa. Relational limits in general polymorphism. Publications of the Research
Institute for Mathematical Sciences, 30:535–576, 1994.

9 B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.
10 P. Johann and N. Ghani. Foundations for structured programming with GADTs. In Proc.

35th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL
2008, pages 297–308, 2008.

11 M. P. Jones. A System of Constructor Classes: Overloading and Implicit Higher-Order
Polymorphism. J. Funct. Program., 5(1):1–35, 1995.

12 A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind. In Proc. 23rd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2008, pages 423–438, 2008.

13 B. Pierce. Types and Programming Languages. MIT Press, 2002.
14 J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. In Proc. IFIP 9th

World Computer Congress, volume 83 of Information Processing, pages 513–523, 1983.
15 E. Robinson and G. Rosolini. Reflexive graphs and parametric polymorphism. In Proc. 9th

Annual IEEE Symp. on Logic in Computer Science, LICS 1994, pages 364–371, 1994.
16 A. Rossberg, C. V. Russo, and D. Dreyer. F-ing modules. In Proc. ACM SIGPLAN

International Workshop on Types in Language Design and Implementation, TLDI 2010,
pages 89–102, 2010.

17 I. Takeuti. The theory of parametricity in the lambda cube. Technical Report 1217, Kyoto
University, 2001.

18 J. Voigtländer. Free Theorems Involving Type Constructor Classes: Functional Pearl. In
Proc. 14th ACM SIGPLAN International Conference on Functional programming, ICFP
2009, pages 173–184, 2009.

19 D. Vytiniotis and S. Weirich. Parametricity, type equality, and higher-order polymorphism.
J. Funct. Program., 20(2):175–210, 2010.

20 P. Wadler. Theorems for free! In Proc. Fourth International Conference on Functional
Programming Languages and Computer Architecture, FPCA’89, pages 347–359, 1989.

21 B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P. Magalhães.
Giving Haskell a Promotion. In Proc. 8th ACM SIGPLAN Workshop on Types in Language
Design and Implementation, TLDI ’12, pages 53–66, 2012.

	Introduction
	Background
	Contributions of this Paper

	Type Polymorphism with Higher Kinds
	A Relationally Parametric Model
	Setting up the Metatheory
	Types, Relations and Identity Extension
	Kinds as Reflexive Graphs
	Interpretation of Kinds
	Interpretation of Types
	Semantics of Terms

	Applications of Higher Kinded Parametricity
	Equality Types
	Existential Types
	Categories of Indexed Types
	Functors and Initial Algebras
	Generalised Algebraic Data Types

	Extension of System F with Additional Kinds
	Conclusions

