
A λ-Calculus For Resource Separation

Robert Atkey

LFCS Edinburgh, Mayfield Rd, Edinburgh EH9 3JZ, UK
bob.atkey@ed.ac.uk

Abstract. We present a system of typed λ-calculus, named λsep, which
has a semantics based on the relative separation of the resources used
by its objects. λsep is an extension of the affine αλ-calculus of O’Hearn
and Pym that allows finer grained expression of separation constraints.
We describe the syntax and typing rules of the system; give a categorical
semantics which is coherent, sound and complete; and give a functor-
category semantics which treats as distinct the combination of objects
and their relationships, showing how the system can represent constraints
on resources.

1 Introduction

Functional programming languages present the programmer with the neat ab-
straction that they are always dealing with values. The programmer is lead into
the comfortable illusion that these values have no physical presence, that they
may be created and discarded as one creates and discards thoughts. However, on
a real computer these values take up memory space. Different values may share
sections of memory, potentially inhibiting code transformations which speed up
functional code by using imperative techniques.

This paper presents a system of typed λ-calculus, λsep, which attempts to
record in the typing judgements the relationships between the resources used
by the objects of the system. We adapt the techniques used by other substruc-
tural type systems such as the linear λ-calculus [BBdPH93] and the αλ-calculus
[O’H03], [Pym02] to record and enforce relationships between the objects.

The relationship that we are concerned with here is separation; we record the
relative separation between resources used by objects. In an application based
on memory regions this would record the fact that two objects occupy separate
regions of memory. In other applications it could record the fact that two objects
are derived from independent statistical data; or that they refer to geographically
separate locations. The notion of separation of resources has particular proper-
ties that are reflected in the type system; it is a symmetric binary relation on
“resources”, it is not in general reflexive, nor in general transitive. It has the
distributivity property that if an object is separate from a collection of objects
then it is also separate from them individually, and vice versa.

To incorporate such relationships in the typing judgements we adopt a strat-
egy, inspired by that of the αλ-calculus, of introducing new ways of forming
contexts. We no longer think of the context as a list or set of type assignments.

Rather, we now regard the context as an undirected graph of type assignments,
with edges recording the relationships between members. We also consider sub-
graphs that have uniform relationships to the rest of the context; representing
collections that may be treated as one. The allowable manipulations on contexts,
the structural rules, correspond to the properties of separation.

The αλ-calculus uses two different context formers, represented by the comma
and semicolon. Both are binary constructors used to construct contexts from
nested “bunches” of type assignments. The two constructors obey different struc-
tural rules; the comma disallowing everything except reordering (exchange),
and the semicolon allowing the full range of intuitionistic structural rules. The
two constructors may then given different semantics; a common one is that
the comma combines two objects which use separate resources, the semicolon
combines two objects which may use overlapping resources. In this way the sys-
tem can express relationships between objects. The system presented here, λsep,
generalises this situation to n places with attached binary relations expressing
separation constraints between members. An example typing judgement is:

[1#2, 1#3](x : A, y : B, z : B) ` e : C

This judgement asserts that e has type C in a context which ensures that x,
of type A, is separate from both y and from z, both of type B. The symbol
indicates separation between positions. By the properties of separation listed
above, it is valid to rewrite this context to group the variables y and z into a
sub-context:

[1#2](x : A, [](y : B, z : B)) ` e : C

Since y and z are not required to be separate we may identify them. This gives
a restricted rule of contraction, allowing one to derive:

[1#2](x : A, y : B) ` e[y/z] : C

If y and z had been required to be separate then this inference step would not be
valid; in the case of memory regions for example, we would be essentially using
a reference to a single region of memory twice and expect the two instances
to point to separate regions of memory. Contraction is disallowed as a direct
result of the fact that separation is not reflexive (except inthe special case of the
“empty” resource).

The complexity of these manipulations on contexts, and their lack of term
syntax, motivates the formulation of a categorical semantics which allow us to
state clearly the conditions required of models to be coherent.

As a simple example showing how λsep captures separation constraints, con-
sider a set of primitives for constructing jobs for processing. Each of these jobs
consists of two items of data, which are operated on in parallel; they must oc-
cupy separate regions of memory (to allow for temporary in-place mutation, for
example). This constraint can be captured by a job construction operation:

consJob : [1#2](D,D)→ J

This construction is also possible in the αλ-calculus.
Now consider a collection of such jobs to be run in sequence. Since they are

to be run in sequence it does not matter if any of the jobs overlap in memory.
A collection of three such jobs, over four items of data, can be represented as:

(consJob(a, b), consJob(b, c), consJob(c, d)) : [](J, J, J)

Now a context for this term should represent the constraints here as accurately
as possible; it should constrain sharing where required, but allow sharing as often
as possible. In λsep the context can be given as:

[a#b, b#c, c#d](a : D, b : D, c : D, d : D)

Here the only constraints are between members of the context whose separation is
forced by the construction of the term. In contrast, the affine αλ-calculus cannot
express this configuration. The restriction to binary combinations for expressing
separation forces a context where there is extraneous separation enforced. One
can get close using a context such as (where ’;’ represents possible sharing, and
’,’ no sharing):

((a : D; d : D), b : D, c : D)

However, this requires that a and c be separate, whereas λsep does not require
this. We also claim that the Separation Typing scheme of separating the sepa-
ration constraints from the body of the context allows for a clearer and more
intuitive expression of constraints.

The rest of this paper is laid out as follows. The following section introduces
the formal type system and states some simple syntactic results. The follow-
ing sections consider the semantics of the system. Section 3 gives a categorical
semantics. Section 4 gives a resource aware semantics using functor categories,
formalising the idea of relationships between resources described in this intro-
duction. Section 5 concludes with a brief discussion of related and further work.

2 The Type System

We first define separation relations and an operation of flattening. Separation
relations represent the graphs of relationships between objects.

Definition 1 (Separation Relation). A Separation Relation, S, (of size n)
is a binary, symmetric, non-reflexive relation on the set {1, . . . , n}. |S| denotes
the size of a separation relation. For separation relations S, S′, with |S| = |S′|,
S ⊆ S′ if for all i, j we have that iSj implies iS′j.

For a list of separation relations S1, . . . , Sn, define two functions based on
the concatenation of this list:

base(j) = Σ1≤i<j |Si|, the 0th index of the jth part

part(j) = the k such that base(k) < j ≤ base(k + 1)

For a separation relation S, of size n, we define an operation of flattening on
the list:

(i, j) ∈ S[S1, . . . , Sn] iff

{
(i− base(k), j − base(k)) ∈ Sk if k = part(i) = part(j)
(part(i),part(j)) ∈ S otherwise

We write specific separation relations as lists of related pairs [r1, . . . , rk]n, where
each rl is of the form i#j, i < j, denoting the related pairs of the relation, and
n is the size of the relation. We will write S[S′/i] or sometimes just S[S′] for
S[[]1, . . . , []1, S

′, []1, . . . , []1] when S′ is at position i. Observe that the empty sep-
aration relation []0 acts similarly to a unit under flattening. Flattening formalises
the distributivity property mentioned above.

The types of the calculus is generated by the following grammar, given some
primitive types X1, X2, ...:

A ::= Xi | A1, . . . , An
S−→ B | S(A1, . . . , An)

where S is a separation relation of size n + 1 for function types and size n for
tuple types. The extra place for function types represents the resources used by
the function itself. The types then generate the contexts:

Γ ::= x : A | S(Γ1, . . . , Γn)

where S is a separation relation, A is a type and no identifier appears more than
once. We define V(Γ) to be the list of identifiers in Γ built from a depth first,
left-to-right traversal.

We also define two forms of equivalence for contexts. The first is normal
α-equivalence; the second encodes some of the properties of separation, via the
flattening operations.

Definition 2 (Equivalences for Contexts).

1. Γ ∼= Γ ′ when Γ and Γ ′ are identical up to renaming of the identifiers.
2. ≡ is the smallest equivalence relation which is also a congruence satisfying

the following equations:

S(
−→
Γ , S′(

−→
∆),
−→
Γ ′) ≡ S[S′](

−→
Γ ,
−→
∆,
−→
Γ ′) S(

−→
Γ) ≡ σS(σ

−→
Γ)

where σ is a permutation of the set {1, . . . , |S|}; −→Γ ,
−→
∆ and

−→
Γ ′ represent

sequences of contexts.

The terms of the calculus are generated from a collection of primitive operations
Σ = {f1 : A1 → B1, ...}:

e ::= x | S(e1, . . . , en) | λS(x1, . . . , xn).e | fie

| let S(x1, . . . , xn) = e1 in e2 | e@S(e1, . . . , en)

The typing rules are shown in figure 1. They have been split into structural rules
and the introduction and elimination rules.

Structural rules

x : A ` x : A
(ID)

S(
−→
Γ , [](∆,∆′)) ` e : A ∆ ∼= ∆′

S(
−→
Γ ,∆) ` e[V(∆)/V(∆′)] : A

(CONTR)

Γ ` e : A Γ ≡ Γ ′

Γ ′ ` e : A
(EQUIV)

S(
−→
Γ) ` e : A S ⊆ S′

S′(
−→
Γ) ` e : A

(S-WEAKEN)

S(
−→
Γ , []0()) ` e : A

S(
−→
Γ ,∆) ` e : A

(WEAKEN)

Connective rules

Γ1 ` e1 : A1 . . . Γn ` en : An

S(Γ1, . . . , Γn) ` S(e1, . . . , en) : S(A1, . . . , An)
(S-I)

Γ ` e1 : S(A1, . . . , An) S′(
−→
∆,S(x1 : A1, . . . , xn : An)) ` e2 : B

S′(
−→
∆,Γ) ` let S(x1, . . . , xn) = e1 in e2 : B

(S-E)

S(Γ, x1 : A1, . . . , xn : An) ` e : B

Γ ` λS(x1, . . . , xn).e : A1, . . . , An
S−→ B

(→-I)

Γ ` f : A1, . . . , An
S−→ B for 1 ≤ i ≤ n. ∆i ` ai : Ai

S(Γ,∆1, . . . ,∆n) ` f@S(a1, . . . , an) : B
(→-E)

Γ ` e : A f : A −→ B ∈ Σ
Γ ` fe : B

(PRIM)

Fig. 1. Typing Rules

The judgement is of the form Γ ` e : A. Contexts Γ fill a purpose beyond
listing a superset of the free variables in the term; they also represent the re-
sources used by the term e. That is, the resources occupied by the free variables
of a term are also (a superset of) the resources used by the term. This reading
provides the informal justification for the rules concerning the type constructors.
For example, the rule S-I uses the same relationship between the contexts on
the left as the terms on the right; so if the free variables of the terms obey the
correct separation, then so will the corresponding terms.

The rules →-I and →-E can be understood similarly. In the introduction
rule we have the sub-context Γ representing the resources used by the function
itself, treated as a single block. The function’s required separation between the
arguments and its own resources is then recorded in its type. This separation is
then reconstituted in the elimination rule.

(Γ ` e = e′ : A) ∈ Φ
Γ ` e = e′ : A

(AXIOM)
Γ ` e = e′ : A Γ ≡ Γ ′

Γ ′ ` e = e′ : A
(EQ-EQUIV)

S(
−→
Γ) ` e = e′ : A S ⊆ S′

S′(
−→
Γ) ` e = e′ : A

(EQ-S-WEAKEN)

S(
−→
Γ , [](∆,∆′)) ` e = e′ : A ∆ ∼= ∆′

S(
−→
Γ ,∆) ` e[V(∆)/V(∆′)] = e′[V(∆)/V(∆′)] : A

(EQ-CONTR)

S(
−→
Γ , []0) ` e = e′ : A

S(
−→
Γ ,∆) ` e = e′ : A

(EQ-WEAKEN)

Plus congruence, reflexivity, symmetry and transitivity rules.

Fig. 2. Structural Equational Rules

We can provide informal justification for the structural rules by appealing to
the properties of separation. The fact that separation obeys a distributivity-like
property explains the flattening and unflattening parts of the ≡ equivalence.
Permutation is explained by observing that it does not matter in which order we
combine resources, it is the separation that matters. This then explains the rule
EQUIV, which allows us to replace ≡-equivalent contexts. We can understand
S-WEAKEN by observing that once a term is constructed then it does not matter
if we enforce more separation than is actually required, since all the required
separation will still be present. In the rule CONTR it is possible to duplicate
objects as long as we do not require their underlying resources to be separate.

Lemma 1 (Substitution). The following rule is admissible:

Γ (x1 : A1, . . . , xn : An) ` e : B for all i ≤ n, ∆i ` ei : Ai

Γ (∆1, . . . ,∆n) ` e[e1/x1, . . . , en/xn] : B

Given a collection of axioms, Φ, of the form Γ ` e = e′ : A where Γ ` e : A and
Γ ` e′ : A, we define the equational theory of the calculus to be generated by the
rules in figures 2 and 3. We define the set of term contexts for the commuting
conversions rule (CC) to be:

C[−] ::= − | S(. . . , C[−], . . .) | λS(x1, . . . , xn).C[−] | fC[−]

| let S(x1, . . . , xn) = C[−] in e2 | let S(x1, . . . , xn) = e1 in C[−]

| C[−]@S(e1, . . . , en) | e@S(. . . , C[−], . . .)

The equational rules follow the usual form for a typed λ-calculus with a tensor
product, extended to the n-place case. We also include two extra rules η-× and
η-0 to ensure that the two place product [](A,B) acts as a normal product type
and []0() as a unit type. To ensure the well-definedness of these rules we must
prove that the definition always gives rise to well-typed terms in context.

S(Γ,−→x :
−→
A) ` e : B ∆1 ` a1 : A1 . . . ∆n ` an : An

S(Γ,
−→
∆) ` (λS(−→x).e)@S(−→a) = e[−→a /−→x] : B

(β-λ)

Γ ` e : A1, . . . , An
S−→ B −→x 6∈ Γ

Γ ` (λS(−→x).e@S(−→x)) = e : A1, . . . , An
S−→ B

(η-λ)

Γ ` (−→e) : S(
−→
A) S′(

−→
∆,S(−→x :

−→
A)) ` e′ : B

S′(
−→
∆,Γ) ` (let S(−→x) = (−→e) in e′) = e′[−→e /−→x] : B

(β-S)

Γ ` e : S(
−→
A)

Γ ` (let S(−→x) = e in S(−→x)) = e : S(
−→
A)

(η-S)

c : [](A,B) ` (let [](a, b) = c in a, let [](a, b) = c in b) = c : [](A,B)
(η-×)

Γ ` e : []0()

Γ ` e = []0() : []0()
(η-0)

Γ ` let S(−→x) = e1 in C[e2] : A C does not bind or contain −→x
Γ ` (let S(−→x) = e1 in C[e2]) = (C[let S(−→x) = e1 in e2]) : A

(CC)

Fig. 3. Connective Equational Rules

Lemma 2. If Γ ` e = e′ : A is derivable, then Γ ` e : A and Γ ` e′ : A.

2.1 Relation to Other Calculi

We define translations (−)∗ from other systems of typed λ-calculus into λsep:

Simply-Typed On contexts: (x1 : A1, . . . , xn : An)∗ = [](x1 : A∗1, . . . , xn : A∗n).

On types (−)∗ replaces × with [](−,−) and → with
[]−→.

Affine !-free linear On contexts: (x1 : A1, . . . , xn : An)∗ = S(x1 : A∗1, . . . , xn :
A∗n), where S has all possible separation. On types (−)∗ replaces ⊗ with

[1#2](−,−) and (with
[1#2]−→ .

Affine αλ-calculus On contexts: (x : A)∗ = x : A; (Γ,∆)∗ = [1#2](Γ ∗, ∆∗)
and (Γ ;∆)∗ = [](Γ ∗, ∆∗). On types (−)∗ replaces ∗ with [1#2](−,−);× with

[](−,−); —∗ with
[1#2]−→ ; and → with

[]−→.

Lemma 3. For the above three translations (−)∗ (with the evident actions on
terms) from typed λ-calculi, it is the case that if Γ ` e1 = e2 : A in the source
system then Γ ∗ ` e∗1 = e∗2 : A∗ in λsep.

3 Categorical Semantics

In this section we describe the categorical structure required to model the syn-
tax of λsep. We require a generalisation of symmetric monoidal operations to
model the contexts and tuple types. As with monoidal categories, we prove a
coherence result for these categories. The rest of the section then deals with the
interpretation of λsep in categories with the required structure.

Definition 3 (Separation Category). A separation category is a category C
with a family of separation functors S : Cn → C, for each separation relation S
of size n, such that []1 is the identity functor and there exists a family of natural
isomorphisms:

αS(A,S′(B),C) : S(
−→
A,S′(

−→
B),
−→
C)→ S[S′](

−→
A,
−→
B,
−→
C)

These natural isomorphisms must satisfy the following commutative diagrams.
First, it does not matter in which order we flatten sibling applications:

S(
−→
A,S′(

−→
B),
−→
C , S′′(

−→
D),
−→
E) S[S′](

−→
A,
−→
B,
−→
C , S′′(

−→
D),
−→
E)

S[S′′](
−→
A,S′(

−→
B),
−→
C ,
−→
D,
−→
E) S[S′, S′′](

−→
A,
−→
B,
−→
C ,
−→
D,
−→
E)

//α

���
� �
� �
� �

α

���
� �
� �
� �

α

//α

Second, it does not matter in which order we flatten nested applications:

S(
−→
A,S′(

−→
B,S′′(

−→
C),
−→
D),
−→
E) S[S′](

−→
A,
−→
B,S′′(

−→
C),
−→
D,
−→
E)

S(
−→
A,S′[S′′](

−→
B,
−→
C ,
−→
D),
−→
E) S[S′[S′′]](

−→
A,
−→
B,
−→
C ,
−→
D,
−→
E)

//α

���
� �
� �
� �

S(id|A|,α,id|E|)

���
� �
� �
� �

α

//α

A Closed Separation Category is a separation category in which each functor

S(−, A1, . . . , An) : C → C has a specified right adjoint [A1, . . . , An
S−→ −] : C →

C.

Coherence for a Separation Category ensures that all paths with the same start
and end objects constructed from the αs and their combinations are equal. Fol-
lowing Mac Lane [Mac98], this result is stated in terms of words:

Definition 4 (Words). For every separation relation S, there is a set of words
wS, defined by the grammar:

w[]0 ::= []0() w[]1 ::= []1(−)

wS ::= S′(wS1 , ..., wSn), where S = S′[S1, ..., Sn]

For each word u ∈ wS define a functor [u] : C|S| → C, defined by induction on
the structure of w as:

[[]0()] = ? 7→ []0 : 1→ C [[]1(−)] = x 7→ x : C → C

[S(u1, . . . , un)] = S ◦ ([u1]× . . .× [un]) : C|S| → C

with the evident action on arrows.

Note that words are grouped by the overall separation relation they possess; the
internal structure of the word, corresponding to the different ways of forming the
same context in the type system, is irrelevant. Therefore, there is a canonical
fully flattened word, consisting of just a top-level application of a separation
functor with only applications of []1(−) beneath it. This is analogous to regarding
iterated monoidal products abstractly as a natural number, and is the crux of
the proof of coherence. The statement follows that of Mac Lane for monodial
categories:

Theorem 1. If C is a separation category then for any pair of words, u, v ∈ wS,
there is a unique natural isomorphism

can(u, v) : [u]⇒ [v] : C|S| → C

called the canonical map from [u] to [v], such that the identity arrow []0 →
[]0 is canonical, the identity idC : []1 ⇒ []1 is canonical, all α and α−1 are
canonical and the composition and S separation combination of canonical arrows
are canonical.

Proof. Adaptation of the proof of coherence for monoidal categories as presented
by Mac Lane [Mac98].

Given the basic definition of a Separation Category, we now add natural trans-
formations to model the permutation and constraint weakening (S-WEAKEN)
of contexts. Permutation is viewed as a typed group of transitions on separation
relations, and weakening as a typed monoid of such transitions. We will consider
them together.

First, we define the action of a permutation on a separation relation S as
giving a new separation relation such that σS = {(i, j) : σ−1(i)Sσ−1(j)}.

For each separation relation S and each permutation on the set {1, . . . , |S|},
σ, we define a permutation transition, σS , between S and σS. These are com-
posable, invertible and have an identity. Each such transition has an action on
indices, defined as σS(i) = σ(i). Likewise, for each S and S′ such that S′ ⊆ S we
define a weakening transition, labelled [S, S′]. These are composable and have an
identity. Each such transition has an action on indices, defined as [S, S′](i) = i.

We now state the structure required as two collections of natural transforma-
tions; one parameterised by permutation transitions, γ[σS] : S(

−→
Γ) → σS(σ

−→
Γ);

the other by reverse inclusions, ζ[S, S′] : S(
−→
Γ) → S′(

−→
Γ). The original actions

obey some algebraic laws, and we require that they are honoured by the natural
transformations:

γ[σ′σS] ◦ γ[σS] = γ[σ′σS ◦ σS] ζ[S′, S′′] ◦ ζ[S, S′] = ζ[S, S′′]
γ[idS] = id ζ[S, S] = id
γ[σS]−1 = γ[σ−1σS]

In order to coherently model the syntax, we also require that these natural trans-
formations commute with the flattening and unflattening operations above, and
also with each other. This corresponds to the commuting of the syntax-free struc-
tural rules in typing derivations. To state the commutativity with flattening, we
must define the effect of flattening on both permutation and weakening tran-
sitions. This takes the form of: (a) substituting a transition into a separation
relation; and (b) substituting a separation relation into a transition. These deal
with the cases when, prior to flattening, the transition is acting on the inner or
outer separation relation respectively.

Definition 5 (Substitution of transitions). Given a transition 2 : S1 → S2,
with action 2(−), define:

– S[2/i] : S[S1/i]→ S[S2/i], substituting 2 into position i of S. Set:

S[2/i](k) =

{
2(k − base(i)) + base(i) if part(k) = i
k otherwise

– 2[S/i] : S1[S/i]→ S2[S/2(i)], substituting S into position i of 2. Set:

2[S/i](k) = k − base(part(k)) + base(2(part(k)))

The first operation defines a small area of the new separation relations where
the transition has been substituted into and only applies the operation within
that area; the second operation treats the newly flattened part of the separation
relation as a block with respect to the original transition, applying the transi-
tion as if no substitution had taken place. Note that a permutation/weakening
transition that has been through either of these operations is still a permutation
or weakening transition. We can now state the commutativity requirement with
flattening, where τ is γ or ζ, and 2 is a transition of the appropriate type:

S(
−→
Γ , S′(

−→
∆),
−→
Γ ′) S(

−→
Γ ,2S′(2

−→
∆),
−→
Γ ′)

S[S′/i](
−→
Γ ,
−→
∆,
−→
Γ ′) S[2S′/i](

−→
Γ ,2

−→
∆,
−→
Γ ′)

//S(...,τ [2],...)

��
α

��
α

//τ [S[2/i]]

S(
−→
Γ , S′(

−→
∆),
−→
Γ ′) 2S(2(

−→
Γ , S′(

−→
∆),
−→
Γ ′))

S[S′/i](
−→
Γ ,
−→
∆,
−→
Γ ′) 2S[S′/2(i)](2[S′/i](

−→
Γ ,
−→
∆,
−→
Γ ′))

��
α

//τ [2]

��
α

//τ [2[S′/i]]

We also require that permutations and weakenings commute with each other:

S(A1, . . . , An) σS(Aσ(1), . . . , Aσ(n))

S′(A1, . . . , An) σS′(Aσ(1), . . . , Aσ(n))

//γ[σS]

��
ζ[S,S′]

��
ζ[σS,σS′]

//γ[σS′]

With these requirements, it is possible to prove an extended coherence result
for separation categories with permutation and weakening. The proof relies on
the fact that we can use the group/monoid and commutativity properties to
rewrite any path containing flattenings, unflattenings, permutations, weakenings
and their combinations into a canonical form. We do not formally state the
coherence property here, but we will state it in an extended form below for the
main coherence result for the interpretation of typing derivations.

The final piece of structure we require is for modelling the WEAKEN and
CONTR typing rules. Rule WEAKEN just requires that the object []0() is the
terminal object with !A denoting the unique arrow from A to []0. Rule CONTR is
more complicated; before introducing the structure required, we define Separa-
tion Category Functors and natural transformations between them, by analogy
with monoidal functors:

Definition 6 (Separation Category Functor). A Separation Category Func-
tor consists of a functor F : C → C′ between separation categories C and C′, and
a family of natural transformations:

fS(A1,...,An) : S(FA1, . . . , FAn)→ F (S(A1, . . . , An))

such that the following diagram commutes:

S(FA1, . . . , S
′(FB1, . . .), . . .) S[S′/i](FA1, . . . , FB1, . . .)

S(FA1, . . . , F (S′(B1, . . .)), . . .)

F (S(A1, . . . , S
′(B1, . . .), . . .)) F (S[S′/i](A1, . . . , B1, . . .))

//α

��
S(...,f,...)

��

f

��
f

//F (α)

If C and C′ support permutation (weakening) transitions, then the permutations
(weakenings) should be preserved by F via f in the evident way.

A Separation Natural Transformation is a natural transformation τ between
two Separation Category Functors (F, f) and (G, g) such that all instances of the
following diagram commute:

S(FA1, . . . , FAn) F (S(A1, . . . , An))

S(GA1, . . . , GAn) G(S(A1, . . . , An))

//f

��
S(τA1

,...,τAn)

��
τS(A1,...,An)

//g

To model CONTR we need a separation natural transformation dupA : A →
[](A,A), where the functor A 7→ [](A,A) is made into a separation category
functor by the following composite giving the required family of transformations:

S([]2(A1, A1), . . . , []2(An, An)) []2(S(A1, . . . , An), S(A1, . . . , An))

S[[]2, . . . , []2](A1, A1, . . . , An) []2[S, S](A1, . . . , An, A1, . . . , An)

σ(S[[]2, . . . , []2])(A1, . . . , An, A1, . . . , An)

��
i

��
γ

OO

i′

33gggggggggggggggggggggg
ζ

where i and i′ are the canonical maps between the applications of separation
functors, consisting of combinations of flattening arrows. This ensures that we
may coherently model the commuting of CONTR applications with other struc-
tural rules in the syntax.

To coherently and soundly model the syntax we require some further con-
ditions. Firstly, for each object A we require that the triple (A, dupA, !A) is a
commutative comonoid. Secondly, we require an additional equation involving
!A and dupA, to soundly model the η-× rule of the syntax:

[](α ◦ [](idA, !B), α ◦ [](!A, idB)) ◦ dup[](A,B) = id[](A,B)

We now pause to remark that the definition of separation category also gives rise
to two monoidal structures on the category, which are also symmetric monoidal
if the category has permutation. These are constructed from the two possible
2-place separation functors [](−,−) and [1#2](−,−), with identity in both cases
given by the 0-place separation functor []0(). Associativity and identity natural
transformations are given by the evident combination of flattenings and unflat-
tenings; by the coherence theorem above they satisfy the coherence conditions
for a monoidal category. Symmetry is given by the permutation natural trans-
formations, and the coherence diagrams hold again. Given the extra structure
described above for the dup natural transformation it is easy to see that [](−,−)
is the categorical product. Therefore a category with the above structure is also a
Doubly Closed Category (DCC) and hence a model of the αλ-calculus [Pym02].

3.1 Interpretation of the Typing Rules

Given the above definitions and an interpretation for the primitive types and op-
erations of the calculus, we have enough categorical structure to model λsep. The
interpretation of the typing rules, which we elide for space reasons, is straight-
forward. We follow the standard approach for modelling linear λ-calculi in sym-
metric monoidal closed categories, using the separation functors to model the
context and tuple types, and the closed structure to model the function types.
This interpretation defines a map J−K from type derivations to arrows in C.

Due to the syntax-free structural rules in the type system there is the pos-
sibility of having two judgements Γ ` e : A with different derivations, and
hence potentially different meanings in C. However, as a result of the coherence
conditions this is not possible:

Theorem 2 (Coherence). If π1 and π2 are two derivations of the judgement
Γ ` e : A then Jπ1K = Jπ2K.

Proof. Adaptation of coherence of SCIR by O’Hearn et. al. [OPTT99].

Now, given such a category, along with the requirement that for each axiom
Γ ` e = e′ : A the (unique) arrows JeK, Je′K : JΓ K→ JAK are such that JeK = Je′K,
we have a soundness and completeness result:

Theorem 3 (Soundness and Completeness). Γ ` e1 = e2 : A if and only
if in all categorical models JΓ ` e1 : AK = JΓ ` e2 : AK.

Since any cartesian closed category also enjoys the correct structure then we also
have this extension to Lemma 3.

Lemma 4. Using the translation above, we have: Γ ` e1 = e2 : A in the simply-
typed λ-calculus if and only if Γ ∗ ` e∗1 = e2∗ : A in λsep.

4 Functor Category Semantics

We now give an example of a family of categories with the structure described
above, using functor categories. This semantics gives a direct demonstration of
the resource awareness of the typing rules.

We require a small category, R, with finite co-products (r1 + . . .+ rn). The
objects ofR are intended to model resources, and the co-product the combination
of two resources to make a new resource. To model separation constraints we
require a bi-functor # : Rop × Rop → 2, where 2 is the category with objects
t and f and a single non-identity arrow f → t. The functor # must take co-
products in R to products in 2 (i.e. it preserves products on Rop). Also, we
require that the bi-functor is symmetric: r#r′ = r′#r (and also for arrows). The
intention is that r#r′ = t when r and r′ are separate resources.

We now model each type as a functor from R to Set, so that each type is
a collection of sets indexed by the resources available. Using the relation #, we

can give SetR the separation category structure described in the last section.
The separation functors are given by the following definition, for S(A1, . . . , An)
at resource r:

{(a1, . . . , an) ∈ A1r × . . .×Anr :
∃f1 : r1 → r, . . . , fn : rn → r, a′1 ∈ A1r1, . . . , a

′
n ∈ Anrn s.t.

∀i.ai = Aifia
′
i and ∀i, j.iSj ⇒ ri#rj = t}

The resources used by the members of the tuple must be related in such a way
that satisfies the separation relation. The action of these functors on arrows
f : r → r′ and natural transformations hi : Ai ⇒ Bi is defined point-wise.

The function space construction, [A1, . . . , An
S−→ B], is defined at resource

r0 as the family of functions:

Π(r1,...,rn)∈R.A1r1 × . . .×Anrn ⇒ B(r0 + r1 + . . .+ rn)

where R = {(r1, . . . , rn) ∈ Ob(R)n : ∀i, j ∈ {0, . . . , n}.iSj ⇒ ri#rj}. Note the
extra 0th place for the function’s resources.

Theorem 4. The above definitions give a closed Separation Category structure
on SetR with permutation, weakening and a duplication natural transformation.

Proof. The flattening, unflattening, permutation and weakening maps are given
by the evident manipulations on tuples. That they preserve the required sepa-
ration constraints follows from the conditions on the functor #. The fact that
the function space forms the right adjoint to the separation functors is shown by
calculation of the required properties. Duplication is given by the obvious map
duplicating the elements.

An example of the above construction is given by the memory region example
from the introduction. Starting from some set of memory locations L, we take
our category of resources to have objects from the powerset of L and inclusions
as arrows. The relation is then defined as r1#r2 = t⇔ r1 ∩ r2 = ∅. Hence, two
regions of memory are separate if they do not share any memory locations. It is
easy to see that this relation obeys the required properties, and so SetP(L) is a
separation category.

An interesting point about this semantics is the distinction between the com-
bination of resources and the separation of resources, represented by the co-
product and the functors −#− respectively. This is in contrast to the common
models of Bunched Implications and the αλ-calculus, such as those given by
Pym, O’Hearn and Yang [POY03], where no explicit distinction is made. The
partial monoid and Grothendieck possible world semantics do admit a model for
BI based on this distinction, but not explicitly.

The fact that this semantics is based on a binary relation is reminiscent of
possible world semantics of modal logics, and there could possibly be connections
between generalizations of this semantics to non-symmetric relations and modal
logics. In particular the natural deduction presentations with zoned contexts
such as those of Pfenning and Davies [PD01].

5 Conclusions and Further Work

We have presented the λsep system along with a categorical semantics and have
shown how the judgements of the calculus can be interpreted as making state-
ments about resources. The system as it stands, while offering perhaps small
increase in flexibility over the αλ system, does suggest interesting paths for ex-
tension. These include resource insensitive types and more general classes of re-
lations than separation, such as non-symmetric relations. The exact relationship
to the affine αλ-calculus also requires more investigation, in particular whether
λsep is a conservative extension. Also, questions of completeness for the functor
category semantics need to be studied.

There have been many other systems of typed λ-calculus and related logics
for resource constraints. Apart from Bunched Implications and the αλ-calculus
which have already been mentioned [OP99], [O’H03]; we also mention Reynolds’
Syntactic Control of Interference (SCI) [Rey78], which disallows almost all con-
traction, preserving the invariant that distinct identifiers refer to distinct re-
sources. Various spatial logics have been developed which have interpretations
based on resources, such as the Ambient Logic of Cardelli and Gordon [CG03].

References

[BBdPH93] N. Benton, G. Bierman, V. de Paiva, and H. Hyland. A term calculus for
intuitionistic linear logic. In Proceedings of International Conference on
Typed Lambda Calculi and Applications. Springer-Verlag, 1993. LNCS 664.

[CG03] Luca Cardelli and Andrew D. Gordon. Ambient logic. WWW:
http://www.luca.demon.co.uk/, 2003.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Springer-
Verlag, 2nd edition, 1998.

[O’H03] P. W. O’Hearn. On bunched typing. Journal of Functional Programming,
13(4):747–796, 2003.

[OP99] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–243, 1999.

[OPTT99] P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic
control of interference revisited. Theoretical Computer Science, 228:211–
252, 1999.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11:511–540, 2001.
Notes to an invited talk at the Workshop on Intuitionistic Modal Logics
and Applications (IMLA’99), Trento, Italy, July 1999.

[POY03] David J. Pym, Peter W. O’Hearn, and Hongseok Yang. Possible Worlds
and Resources: The Semantics of BI. To appear in Theoretical Computer
Science. WWW: http://www.cs.bath.ac.uk/˜pym/resource.ps, 2003.

[Pym02] D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Im-
plications, volume 26 of Applied Logic Series. Kluwer Academic Publishers,
2002.

[Rey78] John C. Reynolds. Syntactic control of interference. In Proceedings of the
5th ACM SIGACT-SIGPLAN symposium on Principles of Programming
Languages, pages 39–46. ACM Press, 1978.

