
Submitted to:
Linearity & TLLA 2020

© J. Wood & R. Atkey
This work is licensed under the
Creative Commons Attribution License.

A Linear Algebra Approach to Linear Metatheory

James Wood*

University of Strathclyde
Glasgow, United Kingdom

james.wood.100@strath.ac.uk

Robert Atkey
University of Strathclyde

Glasgow, United Kingdom
robert.atkey@strath.ac.uk

Linear typed λ -calculi are more delicate than their simply typed siblings when it comes to metatheo-
retic results like preservation of typing under renaming and substitution. Tracking the usage of vari-
ables in contexts places more constraints on how variables may be renamed or substituted. We present
a methodology based on linear algebra over semirings, extending McBride’s kits and traversals ap-
proach for the metatheory of syntax with binding to linear usage-annotated terms. Our approach is
readily formalisable, and we have done so in Agda.

1 Introduction

The basic metatheoretic results for typed λ -calculi, such as preservation of typing under renaming, weak-
ening, substitution and so on, are crucial but quite boring to prove. In calculi with substructural typing
disciplines and modalities, it can also be quite easy to break these properties [Wad92, BBPH93]. It is
desirable therefore to use a proof assistant to prove these properties. This has the double benefit of both
confidence in the results and in focusing on the essential properties required to obtain them.

Mechanisation of the metatheory of substructural λ -calculi has not received the same level of atten-
tion as intuitionistic typing. “Straightforward” translations from paper presentations to formal presenta-
tions make metatheory difficult, due to incompatibilities between the standard de Bruijn representation
of binding and the splitting of contexts. For formalisations of linear sequent calculi, sticking to the paper
presentation using lists and permutations is common [PW99, XORN17, Lau18], but explicit permuta-
tions make the resulting encodings difficult to use. Multisets for contexts are more convenient [CLR19],
but do not work well for Curry-Howard uses, as noted by Laurent. For natural deduction, Allais [All18]
uses an I/O model to track usage of variables, Rouvoet et al. [RBPKV20] use a co-de Bruijn represen-
tation to distribute variables between subterms, and Crary uses mutually defined typing and linearity
judgements with HOAS [Cra10].

In this paper, we adapt the generic kits and traversals technique for proving admissibility of renaming
and substitution due to McBride [McB05] to a linear typed λ -calculus where variables are annotated
with values from a skew semiring denoting those variables’ usage by terms. Our calculus, λR, is a
prototypical example of a linear “quantitative” or “coeffect” calculus in the style of [RP10, BGMZ14,
GS14, POM14, OLE19]. The key advantages of λR over the formalisations listed above are that the
shape of typing contexts is maintained, so de Bruijn indices behave the same as in non-substructural
calculi, and by selecting different semirings, we obtain from λRwell known systems, including Barber’s
Dual Intuitionistic Linear Logic [Bar96] and Pfenning and Davies’ S4 modal type theory [PD99].

McBride’s kits and traversals technique isolates properties required to form binding-respecting traver-
sals of simply typed λ -terms, so that renaming and substitution arise as specific instantiations. Benton,
Hur, Kennedy, and McBride [BHKM12] implement the technique in Coq and extend it to polymorphic

*James Wood is supported by an EPSRC Studentship.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Linear Algebra Approach to Linear Metatheory

terms. Allais et al. [AAC+20] generalise to a wider class of syntax with binding and show that more
general notions of semantics can be handled. Using methods like these can reduce the effort required to
develop a new calculus and its metatheory.

To adapt kits and traversals to linear usage-annotated terms requires us to not only respect the binding
structure, but to also respect the usage annotations. For instance, the usages associated with a term being
substituted in must be correctly distributed across all the occurrences of that term in the result. To aid us
in tracking usages, we employ the linear algebra of vectors and matrices induced by the skew semiring
we are using. Usage annotations on contexts are vectors, usage-preserving maps of contexts are matrices,
and the linearity properties of the maps induced by matrices are exactly the lemmas we need for showing
that traversals (and hence renaming, subusaging, and substitution) preserve typing and usages.

The paper proceeds as follows:

• In Section 2, we specify our requirements on the set of annotations that will track usage of vari-
ables. A consequence of our formalisation is that we learn that we only need skew semirings, a
weaker structure than the partially ordered semirings usually used.

• In Section 3, we use these annotations to define the system λR in an intrinsically typed style.

• In Section 4, we show some characteristics of λR under certain general conditions on the skew
semiring of usage annotations.

• In Section 5, we show that, via choice of semiring, we can embed Barber’s Dual Intuitionistic
Linear Logic [Bar96] and Pfenning and Davies’ modal calculus [PD99].

• In Section 6, we prove that λR admits renaming, subusaging, and substitution by our extension of
McBride’s kits and traversals technique.

• We conclude in Section 7 with some directions for future work.

Section 4 and Section 5 can be read as extended examples of the λR syntax. Those two sections log-
ically come after Section 6, but we think it helpful for readers unfamiliar with semiring-annotated calculi
to read them before proceeding to Section 6. Conversely, a reader familiar with semiring-annotated cal-
culi who is primarily interested in our metatheoretic methods may skip Section 4 and Section 5 without
issue.

The Agda formalisation of this work can be found at https://github.com/laMudri/generic-lr/
tree/lin/tlla-submission-2021/src/Specific. It contains our formalisation of vectors and ma-
trices (approx. 790 lines) and the definition of λR and proofs of renaming and substitution (approx. 530
lines).

2 Skew Semirings

We shall use skew semirings where other authors have previously used partially ordered semirings (see,
for example, the Granule definition of a resource algebra [OLE19]). Elements of a skew semiring are
used as usage annotations, and describe how values are used in a program. In the syntax for λR, each
assumption will have a usage annotation, describing how that assumption can be used in the derivation.
Addition describes how to combine multiple usages of an assumption, and multiplication describes the
action our graded !-modality can have. The ordering describes the specificness of annotations. If pE q,
p can be the annotation for a variable wherever q can be. We can read this relation as “supplyE demand”
— given a variable annotated p, we can coerce to treat it as if it has the desired annotation q.

https://github.com/laMudri/generic-lr/tree/lin/tlla-submission-2021/src/Specific
https://github.com/laMudri/generic-lr/tree/lin/tlla-submission-2021/src/Specific

J. Wood & R. Atkey 3

Skew semirings are a generalisation of partially ordered semirings, which are in turn a generalisation
of commutative semirings. As such, readers unfamiliar with the more general structures may wish to
think in terms of the more specific structures. Our formalisation was essential for noticing and sticking
to this level of generality.

Definition 2.1. A (left) skew monoid is a structure (R,E,1,∗) such that (R,E) forms a partial order, ∗
is monotonic with respect to E, and the following laws hold (with x∗ y henceforth being written as xy).

1xE x xE x1 (xy)zE x(yz)

Remark 2.2. A commutative skew monoid is just a partially ordered commutative monoid.

Skew-monoidal categories are due to Szlachányi [Szl12], and the notion introduced here of a skew
monoid is a decategorification of the notion of skew-monoidal category.

Definition 2.3. A (left) skew semiring is a structure (R,E,0,+,1,∗) such that (R,E) forms a partial
order, + and ∗ are monotonic with respect to E, (R,0,+) forms a commutative monoid, (R,E,1,∗)
forms a skew monoid, and we have the following distributivity laws.

0zE 0 (x+ y)zE xz+ yz 0E x0 xy+ xzE x(y+ z)

Example 2.4. In light of the above remark, most “skew” semirings are actually just partially ordered
semirings. An example that yields a system equivalent to Barber’s DILL is the 0 .ω / 1 semiring of
“unused”, “unrestricted”, and “linear”, respectively. See [OLE19] for more examples.

We will only speak of left skew semirings, and thus generally omit the word “left”. A mnemonic
for (left) skew semirings is “multiplication respects operators on the left from left to right, and respects
operators on the right from right to left”. One may also describe multiplication as “respecting” and
“corespecting” operators on the left and right, respectively.

From a skew semiring R, we form finite vectors, which we notate as Rn, and matrices, which we
notate as Rm×n. In Agda, we represent vectors in Rn as functions Idxn→ R, where Idxn is the type of
valid indexes in an n-tuple, and matrices in Rm×n as functions Idxm→ Idxn→R. Whereas elements of R
describe how individual variables are used, elements of Rn describe how all of the variables in an n-length
context are used. We call such vectors usage contexts, and take them to be row vectors. Matrices in Rm×n

will be used to describe how usage contexts are transformed by renaming and substitution in Section 6.
We define E, 0 and + on vectors and matrices pointwise. Basis vectors 〈i| (used to represent usage
contexts for individual variables), identity matrices I, matrix multiplication ∗, and matrix reindexing
−−×− are defined as follows:

〈−| : Idxn→ Rn

〈i| j :=

{
1, if i = j
0, otherwise

I : Rm×m

Ii j := 〈i| j
∗ : Rm×n×Rn×o→ Rm×o

(MN)ik := ∑ j Mi jN jk

−−×− : Rm′×n′× (Idxm→ Idxm′)× (Idxn→ Idxn′)→ Rm×n

(M f×g)i, j := M f i,g j

We define vector-matrix multiplication by treating vectors as 1-height matrices. If i : Idxm and
j : Idxn, then inl i and inr j are both of type Idx(m+n). In prose, there will always be canonical choices
for m and n, whereas in the mechanisation, we work with the free pointed magma over the 1-element set
as opposed to the free monoid over the 1-element set (i.e., the natural numbers), so it is unambiguous
where there is a sum of dimensionalities.

4 A Linear Algebra Approach to Linear Metatheory

A,B,C ::= ι | A(B | 1 | A⊗B | 0 | A⊕B | > | A & B | !rA

Figure 1: Types of λR

Γ 3 A type of plain (non-usage-checked) variables
RΓA− A type of usage-checked variables
RΓ ` A type of usage-checked terms

Figure 2: Judgement forms of λR

3 Syntax

We present the syntax of λR as an intrinsically typed syntax, as it is in our Agda formalisation. Intrinsic
typing means that we define well typed terms as inhabitants of an inductive family RΓ ` A indexed by
typing contexts Γ, usage contexts R, and types A. Typing contexts are lists of types. Usage contexts R
are vectors of elements of some fixed skew semiring R, with the same number of elements as the typing
context they are paired with. To highlight how usage annotations are used in the syntax, we write all
elements of R, and vectors and matrices thereof, in green.

The types of λR are given in Figure 1. We have a base type ι , function types A(B, tensor product
types A⊗B with unit 1, sum types A⊕B with unit 0, “with” product types A & B with unit >, and an
exponential !rA indexed by a usage r.

We distinguish between plain variables, values of type Γ 3 A, and usage-checked variables, values
of typeRΓA− A. A plain variable is an index into a context with a specified type, while a usage-checked
variable of type RΓ A− A is a plain variable i : Γ 3 A together with a proof that R E 〈i|. Expanding the
vector notation, the latter condition says that the selected variable i must have a usage annotation E 1 in
R, while all other variables must have a usage annotation E 0. We will sometimes silently cast between
the types Idxm and Γ 3 A, particularly when using the reindexing operation −−×−.

The constructors for our intrinsically typed terms are presented in Figure 3. In keeping with our
intrinsic typing methodology, terms of λR are presented as constructors of the inductive familyRΓ ` A,
hence the notation M : RΓ ` A instead of the more usual RΓ ` M : A. Our Agda formalisation uses
de Bruijn indices to represent variables, but we have annotated the rules with variable names for ease
of reading. Ignoring the usages, the typing rules all look like their simply typed counterparts; the only
difference between the ⊗ and & products being their presentation in terms of pattern matching and
projections, respectively. Thus the addition of usage contexts and constraints on them refines the usual
simple typing to be usage constrained. For instance, in the⊗-I rule, the usage contextR on the conclusion
is constrained to be able to supply the sum P+Q of the usage contexts of the premises. If we instantiate
R to be the 0 .ω / 1 semiring, then we obtain a system that is equivalent to Barber’s DILL [Bar96], as
we will see in Section 5.

For the purposes of our metatheoretical results in Section 6, the precise rules chosen here are not
too important. The salient point is that contexts can only be manipulated in specific ways. Typing
contexts can only be modified by context extensions, i.e., binding new variables. Usage contexts can
correspondingly be extended, but also can be linearly split. A usage context R can be split into zero
pieces via constraintRE 0, into two pieces, P and Q, via constraintRE P+Q, and an r-scaled down
piece P via constraintRE rP .

However, the precise set of rules that we have chosen will be important in Section 5, as they cor-

J. Wood & R. Atkey 5

x :RΓA− A

x :RΓ ` A
VAR

M : PΓ ` A(B N :QΓ ` A RE P+Q
M N :RΓ ` B

(-E

M :RΓ,1A ` B

λM :RΓ ` A(B
(-I

M : PΓ ` 1 N :QΓ `C RE P+Q
let (⊗) = M in N :RΓ `C

1-E

RE 0
(⊗) :RΓ ` 1

1-I
M : PΓ ` A⊗B N :QΓ,1A,1B `C RE P+Q

let (−⊗−) = M in N :RΓ `C
⊗-E

M : PΓ ` A N :QΓ ` B RE P+Q
(M ⊗N) :RΓ ` A⊗B

⊗-I
M : PΓ ` 0 RE P+Q

ex-falsoM :RΓ `C
0-E

M : PΓ ` A⊕B N :QΓ,1A `C O :QΓ,1B `C RE P+Q
case M of injL− 7→ N ; injR− 7→ O :RΓ `C

⊕-E

M :RΓ ` A

injL M :RΓ ` A⊕B
⊕-IL

M :RΓ ` B

injR M :RΓ ` A⊕B
⊕-IR

(&) :RΓ ` >
>-I

M :RΓ ` A & B

projL M :RΓ ` A
&-EL

M :RΓ ` A & B

projR M :RΓ ` B
&-ER

M :RΓ ` A N :RΓ ` B

(M & N) :RΓ ` A & B
&-I

M : PΓ ` !rA N :QΓ,rA `C RE P+Q
let [−] = M in N :RΓ `C

!r-E
M : PΓ ` A RE rP

[M] :RΓ ` !rA
!r-I

Figure 3: Typing rules of λR

6 A Linear Algebra Approach to Linear Metatheory

M : PΓ ` A N :QΓ,rA ` B RE rP+Q
N{M} :RΓ ` B

SINGLESUBST
M :QΓ ` A P EQ

M : PΓ ` A
SUBUSE

PΓ ` A

PΓ,0∆ ` A
WEAK

Figure 4: Admissible rules

respond closely to the rules of Dual Intuitionistic Linear Logic and the modal calculus of Pfenning and
Davies [Bar96, PD99]. In fact, there are several similar calculi in the literature which do not embed
intuitionistic linear logic, and thus do not translate in the same way as λR. For example, the system of
Abel and Bernardy [AB20] essentially replaces ⊗-E with the following stronger rule (in our notation,
modified to include subusaging). This eliminator allows one to derive !r(A⊗B)(!rA⊗ !rB for any r,
A, and B, whereas linear logic has no such tautology.

M : PΓ ` A⊗B N :QΓ,qA,qB `C RE qP+Q
let (−⊗−) = qM in N :RΓ `C

⊗-E′

In Section 6, we will show the admissibility of, amongst others, the rules shown in Figure 4. The
rules in Figure 4 will be required for the proofs in Section 4 and Section 5. Using these rules, we can
also derive the following fact, which demonstrates a linear form of cut.

Lemma 3.1. If we can derive 1A ` B, then we also know that fromRΓ ` A we can deriveRΓ ` B.

Proof. Assuming the two hypotheses, we can make the following derivation.

RΓ ` A

1A ` B

0Γ,1A ` B
WEAK

1R+0ER
RΓ ` B

SINGLESUBST

4 Intuitionistic and Modal Instantiations

As we will show in subsection 5.1, λR can be instantiated with a semiring that makes the system linear
in the sense of DILL. However, with different choices of semiring, λR can become a calculus satisfying
more structural rules.

Lemma 4.1. When instantiated with the 1-element (skew) semiring {•}, λR becomes a variant of intu-
itionistic simply typed λ -calculus.

Proof. With only one possible usage annotation, usage contexts do not contain any information. Because
• E •, all E-constraints are satisfied. By inspection, when usage contexts and constraints are ignored,
the typing rules of Figure 3 become those of an intuitionistic λ -calculus.

J. Wood & R. Atkey 7

An important class of skew semirings is those for which 0 is the top element of the E-order and +
acts as a meet (minimum). While λR instantiated this way admits full weakening and contraction, the
usage annotations can still play a part via the !r modality. We will see an example of such an instantiation
in subsection 5.2 when we embed Pfenning and Davies’ S4 modal λ -calculus.

Lemma 4.2. If λR is instantiated at a skew semiring such that 0 is top and + is meet (with respect to
the subusaging order), then > and 1 are interderivable, and A & B and A⊗B are interderivable.

Proof. By Lemma 3.1, following derivations suffice.

11 ` >
>-I

1E 0
1> ` 1

1-I

(1)E (1)
1(A⊗B) ` A⊗B

VAR

(0,1,1)E (0,1,0)
0(A⊗B),1A,1B ` A

VAR
(0,1,1)E (0,0,1)

0(A⊗B),1A,1B ` B
VAR

0(A⊗B),1A,1B ` A & B
&-I

(1)+(0)E (1)
1(A⊗B) ` A & B

⊗-E

(1)E (1)
1(A & B) ` A & B

VAR

1(A & B) ` A
&-EL

(1)E (1)
1(A & B) ` A & B

VAR

1(A & B) ` B
&-ER

(1)E (1)+(1)
1(A & B) ` A⊗B

⊗-I

5 Translation to and from Existing Systems

A motivating reason to consider the system presented in this paper is that instances of it correspond to
previously studied systems. In this section, we present translations from λR to Dual Intuitionistic Linear
Logic [Bar96] and the modal system of Pfenning and Davies [PD99], and vice versa. We cannot prove
that the translations form an equivalence, because we have not written down an equational theory for
λR, but we expect this to be easy enough to do.

5.1 Dual Intuitionistic Linear Logic

Dual Intuitionistic Linear Logic is a particular formulation of intuitionistic linear logic [Bar96]. Its key
feature, which simplifies the metatheory of linear logic, is the use of separate contexts for linear and
intuitionistic free variables. Here we show that DILL is a fragment of the instantiation of λR at the
linearity semiring {0,1,ω}.
Definition 5.1. Let 01ω denote the following semiring on the partially ordered set {1.0/ω}.

• 0 := 0

•

+ 0 1 ω

0 0 1 ω

1 1 ω ω

ω ω ω ω

• 1 := 1

•

∗ 0 1 ω

0 0 0 0
1 0 1 ω

ω 0 ω ω

8 A Linear Algebra Approach to Linear Metatheory

Γ,A; · ` A
INT-AX

Γ;A ` A
LIN-AX

Γ; · ` I
I-I

Γ;∆1 ` I Γ;∆2 ` A

Γ;∆1,∆2 ` A
I-E

Γ;∆1 ` A Γ,∆2 ` B

Γ;∆1,∆2 ` A⊗B
⊗-I

Γ;∆1 ` A⊗B Γ;∆2,A,B `C

Γ;∆1,∆2 `C
⊗-E

Γ;∆,A ` B

Γ;∆ ` A(B
(-I

Γ;∆1 ` A(B Γ;∆2 ` A

Γ;∆1,∆2 ` B
(-E

Γ; · ` A

Γ; · ` !A
!-I

Γ;∆1 ` !A Γ,A;∆2 ` B

Γ;∆1,∆2 ` B
!-E

Γ;∆ ` >
>-I

Γ;∆ ` A Γ,∆ ` B

Γ;∆ ` A & B
&-I

Γ;∆ ` A0 & A1

Γ;∆ ` Ai
&-Ei

Γ;∆1 ` 0

Γ;∆1,∆2 ` A
0-E

Γ;∆ ` Ai

Γ;∆ ` A0⊕A1
⊕-Ii

Γ;∆1 ` A⊕B Γ;∆2,A `C Γ;∆2,B `C

Γ;∆1,∆2 `C
⊕-E

Figure 5: The rules of DILL, extended with additive connectives

The types of DILL are the same as the types of λR, except for the restriction of !r to just !ω . We
will write the latter simply as ! when it appears in DILL. We add sums and with-products to the calculus
of [Bar96], with the obvious rules (stated fully in Figure 5). These additive type formers present no
additional difficulty to the translation.

Proposition 5.2 (DILL→ λR). Given a DILL derivation of Γ;∆ ` A, we can produce a λR01ω deriva-
tion of ωΓ,1∆ ` A.

Proof. By induction on the derivation. We have ω E 0, which allows us to discard intuitionistic variables
at the var rules, and both 1E 1 and ω E 1, which allow us to use both linear and intuitionistic variables.

Weakening is used when splitting linear variables between two premises. For example, ⊗-I in DILL

DILL ↪→ λR01ω

Y 7→ ιY

I 7→ 1
A⊗B 7→ A⊗B

A(B 7→ A(B
!A 7→ !ωA
0 7→ 0

A⊕B 7→ A⊕B
> 7→ >

A & B 7→ A & B

PD ↪→ λR01�
Y 7→ ιY

> 7→ 1
A∧B 7→ A & B

A⊃ B 7→ A(B
�A 7→ !�A
⊥ 7→ 0

A∨B 7→ A⊕B

Figure 6: Embedding of DILL and PD types into λR

J. Wood & R. Atkey 9

is as follows.
Γ;∆t ` t : A Γ;∆u ` u : B

Γ;∆t ,∆u ` t⊗u : A⊗B
⊗-I

From this, our new derivation is as follows.

iht

ωΓ,1∆t `Mt : A

ωΓ,1∆t ,0∆u `Mt : A
WEAK

ihu

ωΓ,1∆u `Mu : A

ωΓ,0∆t ,1∆u `Mu : A
WEAK

ωΓ,1∆t ,1∆u ` (Mt ⊗Mu) : A⊗B
⊗-I

When translating from λR to DILL, we first coerce the λR derivation to be in a form easily amenable
to translation into DILL. An example of a λR derivation with no direct translation into DILL is the
following. In DILL terms, the intuitionistic variable of the conclusion becomes a linear variable in the
premises. Such a move is admissible in DILL, but does not come naturally.

1A ` A
VAR

1A ` A
VAR

ω E 1+1

ωA ` A⊗A
⊗-I

To avoid such situations, and therefore manipulations on DILL derivations, we show that all λR01ω

derivations can be made in bottom-up style. In bottom-up style, the algebraic facts we make use of are
dictated by making most general choices based on the conclusions of rules. Bottom-up style corresponds
to a (non-deterministic) form of usage checking, and the following lemma can be understood as saying
that that form of usage checking is sufficiently general.

Definition 5.3. A derivation is said to be 01ω-bottom-up if only the following facts about addition and
multiplication are used, and all proofs of inequalities not at leaves are by reflexivity (i.e, not using the
facts that ω E 0 and ω E 1).

+ 0 1 ω

0 0 1 -
1 1 - -
ω - - ω

∗ 0 1 ω

0 - - 0
1 0 1 ω

ω 0 - ω

Bottom-up style enforces that whenever we split a context into two (for example, in the rule ⊗-I) all
unused variables in the conclusion stay unused in the premises, intuitionistic variables stay intuitionistic,
and linear variables go either left or right. Multiplication is only used in the rule !r-I, at which point both
the result and left argument are available. Here, the bottom-up style enforces that linear variables never
appear in the premise of !ω -I.

Lemma 5.4. Every λR01ω derivation can be translated into a bottom-up λR01ω derivation.

Proof. By induction on the shape of the derivation. When we come across a non-bottom-up use of addi-
tion, it must be that the corresponding variable in the conclusion has annotation ω . By subusaging, we
can give this variable annotation ω in the premises too, before translating the subderivations to bottom-
up style. A similar argument applies to uses of multiplication, remembering that both the left argument
and result are fixed.

10 A Linear Algebra Approach to Linear Metatheory

Γ;∆,A true ` A true
HYP

Γ,A valid;∆ ` A true
HYP*

Γ;∆,A true ` B true

Γ;∆ ` A⊃ B true
⊃I

Γ;∆ ` A⊃ B true Γ;∆ ` A true

Γ;∆ ` B true
⊃E

Γ; · ` A true

Γ;∆ `�A true
�I

Γ;∆ `�A true Γ,A valid;∆ ` B true

Γ;∆ ` B true
�-E

Γ;∆ ` > true
>-I

Γ;∆ ` A true Γ,∆ ` B true

Γ;∆ ` A∧B true
∧-I

Γ;∆ ` A0∧A1 true

Γ;∆ ` Ai true
∧-Ei

Γ;∆ ` ⊥ true

Γ;∆ ` A true
⊥-E

Γ;∆ ` Ai true

Γ;∆ ` A0∨A1 true
∨-Ii

Γ;∆ ` A∨B true Γ;∆,A `C true Γ;∆,B `C true

Γ;∆ `C true
∨-E

Figure 7: The rules of PD, extended with several standard connectives

Proposition 5.5 (λR → DILL). Given a λR01ω derivation of ωΓ,1∆,0Θ ` A which does not contain
type formers !0 and !1, we can produce a DILL derivation of Γ;∆ ` A.

Proof. By induction on the derivation having been translated to bottom-up form.
In the case of VAR, all of the unused variables have annotation greater than 0, i.e., 0 or ω . Those

annotated 0 are absent from the DILL derivation, and those annotated ω are in the intuitionistic context.
The used variable is annotated either 1 or ω . In the first case, we use LIN-AX, and in the second case,
INT-AX.

All binding of variables in λR maps directly onto DILL.
Because we translated to bottom-up form, additions, as seen in, for example, the ⊗-I rule, can be

handled straightforwardly. Any intuitionistic variables in the conclusion correspond to intuitionistic
variables in both premises. Any linear variables in the conclusion correspond to a linear variable in
exactly one of the premises, and is absent in the other premise.

The only remaining rule is !r-I, of which we only cover !ω -I (the other two targeting types not found
in DILL). In this case, we know that every variable in the conclusion is annotated either 0 or ω , and every
variable in the premise is annotated the same way. This corresponds exactly to the restrictions of DILL’s
!-I.

5.2 Pfenning Davies

The translation to and from the modal system of Pfenning and Davies [PD99] (henceforth PD) is sim-
ilar to the translation to and from DILL. We present our variant of PD, again adding some common
connectives, in Figure 7. The main difference is the algebra at which λR is instantiated.

Definition 5.6. Let 01� denote the following semiring on the partially ordered set {�/1/0}.

J. Wood & R. Atkey 11

• 0 := 0.

• + is the meet (∧) according to the subusag-
ing order.

• 1 := 1.

•

∗ 0 1 �
0 0 0 0
1 0 1 �
� 0 � �

The 0 annotation plays only a formal role in this example. Meanwhile, 1 and � correspond to the
judgement forms true and valid from PD. Addition being the meet makes it idempotent. Furthermore,
it gives us that 1+� = �— if somewhere we require an assumption to be true, and elsewhere require
it to be valid, then ultimately it must be valid (from which we can deduce that it is true). Multiplication
is designed to make !� act like PD’s �. In particular, � ∗� = � says that the valid assumptions are
available before and after !�-I, whereas �∗1 =� says that valid assumptions in the conclusion can be
weakened to true assumptions in the premise. The latter fact does not appear in PD, and will be excluded
from bottom-up derivations.

To keep our notation consistent with that of DILL, we swap the roles of Γ and ∆ in PD compared to
what they were in the original paper. Thus, our PD judgements are of the form Γ;∆ ` A true, where Γ

contains valid assumptions and ∆ contains true assumptions.

Proposition 5.7 (PD → λR). Given a PD derivation of Γ;∆ ` t : A true, we can produce a λR01�
derivation of �Γ,1∆ ` A.

Proof. By induction on the PD derivation. Most PD rules have direct λR counterparts, noting that
variables of any annotation can be discarded and duplicated because we have both r E 0 and r E r+ r
for all r.

Care must be taken with the �I rule. We have, from the induction hypothesis, a λR derivation of
�Γ ` A. By !�-I, we have �Γ ` !�A. To get the desired conclusion, we must use WEAK to get �Γ,0∆ `
!�A, and then SUBUSE on the variables we just introduced (noting that 1E 0) to get �Γ,1∆ ` !�A.

For translating from λR01� to PD, we introduce a similar notion of bottom-up derivations as we did
for DILL. Every λR01� derivation can be translated into bottom-up style, and then be directly translated
into PD.

Definition 5.8. A derivation is said to be 01�-bottom-up if only the following facts about addition and
multiplication are used, and all proofs of inequalities not at leaves are by reflexivity.

+ 0 1 �
0 0 - -
1 - 1 -
� - - �

∗ 0 1 �
0 - - 0
1 0 1 �
� 0 - �

Lemma 5.9. Every λR01� derivation can be translated into a bottom-up λR01� derivation.

Proof. By induction on the shape of the derivation. Given that addition is a meet, it is clear that any
non-bottom-up uses of addition come from one of the arguments being greater than the result. Therefore,
it is safe to make this argument smaller in the corresponding premise (via subusaging), before translating
that subderivation. For multiplication, again, there is always a lesser value of the right argument that will
take us from a non-bottom-up fact to a bottom-up fact with the same left argument and result.

Proposition 5.10 (λR→ PD). Given a λR01� derivation of�Γ,1∆,0Θ `M : A which does not contain
types using !0 or !1, we can produce a PD derivation of Γ;∆ ` A true.

12 A Linear Algebra Approach to Linear Metatheory

Proof. We translate away tensor products and tensor units using Lemma 4.2, and translate the resulting
derivation to bottom-up form. The proof proceeds by induction on the resulting derivation in the obvious
way.

For similar reasons as explained at the end of Section 3, the system of Abel and Bernardy [AB20]
is unable to embed PD in this way, as it would prove �(A∧B)→ �A∧�B, where PD and λR do
not. In fact, this example shows that, even when weakening and contraction are admissible, with- and
tensor-products are distinct in their system in the presence of modalities.

6 Metatheory

The motivating result of the following section is the admissibility of the single substitution principle.
We derive single substitution (Corollary 6.10) from simultaneous substitution (Corollary 6.9), which we
in turn derive from a generic traversal of syntax (Theorem 6.3). Our statement of single substitution is
somewhat standard, easy to intuit, and exactly what is called for to show preservation of typing by β

rules, whereas our statement of simultaneous substitution is novel and more abstract, but easier to work
with.

M : PΓ ` A N :QΓ,rA ` B RE rP+Q
N{M} :RΓ ` B

SINGLESUBST

ρ : PΓ
`
=⇒Q∆ N :Q∆ ` A

N{ρ} : PΓ ` A
SUBST

The notation PΓ
`
=⇒Q∆, which can be thought of as the type of linear assignments from variables

in Q∆ to terms in PΓ, will be defined in the following section, and this definition can be seen as a key
contribution of this paper. The overloaded notations N{M} and N{ρ} are hereby defined as operations
on intrinsically typed and usage-checked syntax. Specifically, N{M} denotes the term N but with M
substituted in for the most recently bound variable, whereas N{ρ} denotes the result of a generic traversal
of N in which its free variables have been replaced according to the environment ρ .

McBride defines kits [McB05, BHKM12], which provide a general method for giving admissible
rules that are usually proven by induction on the derivation. To produce a kit, we give an indexed family
� : Ctx×Ty→ Set and explain how to inject variables, extract terms, and weaken by new variables
coming from binders. In return, given a type-preserving map from variables in one context to �-stuff
in another (an environment), we get a type-preserving function between terms in these contexts. Such a
function is the intrinsic typing equivalent of an admissible rule.

To make the kit-based approach work in our usage-constrained setting, we make modifications to
both kits and environments. Kits need not support arbitrary weakening, but only weakening by the
introduction of 0-use variables. The family � must also respect E of usage contexts. Environments are
equipped with a matrix mapping input usages to output usages.

We prove simultaneous substitution using renaming. We take both renaming and substitution as
corollaries of the traversal principle (Theorem 6.3) yielded from kits and environments.

Throughout this section, we give definitions, lemmas, and proofs corresponding directly to parts of
the Agda mechanisation. Agda type formers are highlighted blue, with other constructions highlighted

J. Wood & R. Atkey 13

green. In the PDF version of this paper, all Agda names are hyperlinked to a line of the source code
hosted on GitHub.

6.1 Kits, Environments, and Traversal

Agda definitions of kits, environments, and traversal are in the module Specific.Syntax.Traversal and are
explained in this subsection.

Kits A kit is a structure on `-like relations �, intuitively giving a way in which � lives between
the usage-checked variable judgement A− and the typing judgement `. The components vr and tm are
basically unchanged from McBride’s original kits. The component wk only differs in that new variables
are given annotation 0, which intuitively marks them as weakenable. The requirement psh is new, and
allows us to fix up usage contexts via skew algebraic reasoning.

Definition 6.1 (Kit). For any � : Ctx×Ty→ Set, let Kit(�) denote the type of kits. A kit comprises the
following functions for all P , Q, Γ, ∆, and A.

psh : P EQ→QΓ�A→PΓ�A vr : PΓA− A→PΓ�A

tm : PΓ�A→PΓ ` A wk : PΓ�A→PΓ,0∆�A

An inhabitant ofPΓ�A is described as stuff inPΓ of type A. In a traversal (for example, simultaneous
renaming and simultaneous substitution), we use tm in VAR cases to convert stuff that has come from the
environment into terms that replace variables. We use vr and wk when binding new variables: vr tells
us what to add to the environment when it is being extended by a bound variable, and wk allows us to
weaken all the other stuff in the environment by such newly bound variables.

Environments In simple intuitionistic type theory, an environment is a type-preserving function from
variables in the old context ∆ to stuff in the new context Γ: an inhabitant of ∆ 3 A→ Γ�A. The traversal
function turns such an environment into a map between terms, ∆ ` A→ Γ ` A.

For λR, we want maps of usaged terms Q∆ ` A→ PΓ ` A. We can see that an environment of
type Q∆ A− A→PΓ�A would be insufficient — Q∆ A− A can only be inhabited when Q is compatible
with a basis vector, so our environment would be trivial in more general cases. Instead, we care about
non-usage-checked variables ∆ 3 A.

Our understanding of an environment is that it should simultaneously map all of the usage-checked
variables in Q∆ to stuff in PΓ in a way that preserves usage. As such, we want to map each variable
j : ∆ 3 A not to A-stuff in PΓ, but rather A-stuff in P jΓ, where P j is some fragment of P . Precisely,
when weighted by Q| j〉, we want these P j to sum to P , so as to provide “enough” usage to cover all of
the variables j. When we collect all of the P j into a matrix Ψ, we notice that the condition just described
is stated succinctly via a vector-matrix multiplication QΨ. This culminates to give us the following:

Definition 6.2 (Env). For any �, P , Q, Γ, and ∆, where Γ and ∆ have lengths m and n respectively, let
PΓ

�
=⇒Q∆ denote the type of environments. An environment comprises a pair of a matrix Ψ : Rn×m and

a mapping of variables act : (j : (∆ 3 A))→ (〈 j|Ψ)Γ�A, such that P EQΨ.

Our main result is the following, which we will instantiate to prove admissibility of renaming (Corol-
lary 6.6), subusaging (Corollary 6.7), and substitution (Corollary 6.9). The proof is in subsection 6.5.

Theorem 6.3 (traversal, trav). Given a kit on � and an environment PΓ
�
=⇒ Q∆, we get a function

Q∆ ` A→PΓ ` A.

https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Traversal.agda#L9
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Traversal.agda#L60
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Traversal.agda#L43
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Traversal.agda#L83

14 A Linear Algebra Approach to Linear Metatheory

6.2 Renaming

We now show how to use traversals to prove that renaming (including weakening) and subusaging are
admissible. This subsection corresponds to the Agda modules Specific.Syntax.Renaming and Spe-
cific.Syntax.Subuse.
Definition 6.4 (LVar-kit). Let A− -kit : Kit(A−) be defined with the following fields.
psh (PQ : P EQ) :QΓA− A→PΓA− A: The only occurrence of the usage contextQ in the definition of

A− is to the left of a E. Applying transitivity in this place gets us the required term.

vr : PΓA− A→PΓA− A := id .

tm : PΓA− A→PΓ ` A := VAR .

wk : PΓA− A→PΓ,0∆A− A: A basis vector extended by 0s is still a basis vector: if that we have P E 〈i|
for some i, we also have P,0E 〈inl i|.

Environments for renamings are special in that the matrix Ψ can be calculated from the action of the
renaming on non-usage-checked variables.
Lemma 6.5 (ren-env). Given a type-preserving mapping of plain variables f : ∆ 3 A→ Γ 3 A such that
P EQI f×id, we can produce a A−-environment of type PΓ

A−
=⇒Q∆.

Proof. The environment has Ψ := I f×id, so the usage condition holds by assumption. Now, act is required
to have type (j : ∆ 3 A)→ (〈 j|Ψ)ΓA− A. Take arbitrary j : ∆ 3 A. Then, we have f j : Γ 3 A, so all that
is left is to show that f j forms a usage-checked variable of type (〈 j|Ψ)ΓA− A. This amounts to proving
〈 j|ΨE 〈 f j|. Let i : Γ 3 A, then we have (〈 j|Ψ)i EΨ j,i = I f j,i = 〈 f j|i.

Corollary 6.6 (renaming, ren). Given a type-preserving mapping of plain variables f : ∆ 3 A→ Γ 3 A
such that P EQI f×id, we can produce a function of type Q∆ ` A→PΓ ` A.
Corollary 6.7 (subusaging, subuse). Given P EQ, then we have a function QΓ ` A→PΓ ` A.

6.3 Substitution

Now that we have renaming, we can use it with traversals to prove that simultaneous well usaged substi-
tution is admissible. This subsection corresponds to the Agda module Specific.Syntax.Substitution.
Definition 6.8 (Tm-kit). Let ` -kit : Kit(`) be defined with the following fields.
psh (PQ : P EQ) :QΓ ` A→PΓ ` A: This is Corollary 6.7 (subusaging).

vr : PΓA− A→PΓ ` A := VAR .

tm : PΓ ` A→PΓ ` A := id .

wk : PΓ ` A→PΓ,0∆ ` A: We use Corollary 6.6 (renaming), with f : Γ 3 A→ Γ,∆ 3 A being the em-
bedding inl. It remains to check that (P,0) E PIinl× id. We prove this pointwise. Let i : Γ,∆ 3 A,
and take cases on whether i is from Γ or from ∆. If i = inl i′ for an i′ : Γ 3 A, we must show that
P i′ E (PIinl× id)inl i′ . But we have the following.

P i′ E (PI)i′ = ∑
j:Γ3A
P jI j,i′ = ∑

j:Γ3A
P jIinl j,inl i′ = (PIinl× id)inl i′ .

If i = inr i′ for an i′ : ∆ 3 A, we must show that 0E (PIinl× id)inr i′ . But we have the following.

0E (P0)i′ = ∑
j:Γ3A
P j0 j,i′ = ∑

j:Γ3A
P jIinl j,inr i′ = (PIinl× id)inr i′ .

https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Renaming.agda#L9
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Subuse.agda#L9
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Subuse.agda#L9
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Renaming.agda#L54
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Renaming.agda#L62
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Renaming.agda#L67
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Subuse.agda#L50
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Substitution.agda#L9
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Substitution.agda#L63

J. Wood & R. Atkey 15

We define a simultaneous substitution as an environment of terms. Expanding definitions, this means
that a simultaneous substitution from PΓ to Q∆ is a matrix Ψ such that P EQΨ, and for each variable
j of type A in ∆, a term (〈 j|Ψ)Γ ` A.

Corollary 6.9 (substitution, sub). Given an environment of type PΓ
`
=⇒Q∆ (i.e., a well usaged simulta-

neous substitution), we get a function of type Q∆ ` A→PΓ ` A.

6.4 Single Substitution

Corollary 6.10 (single substitution). GivenRE rP+Q and terms M : PΓ ` A and N :QΓ,rA ` B, we
can produce a term derivingRΓ ` B.

Proof. By traversal (specifically, simultaneous substitution, Corollary 6.9) on N. We must produce an

environment of typeRΓ
`
=⇒QΓ,rA. Let Ψ :=

(
I
P

)
and notice that (Q,r)Ψ=Q+rP , so our inequality

assumption is enough to prove the inequality requirement of environments. For the terms to substitute
in, we choose the first |Γ| terms to be their respective variables, and the last term to be M.

6.5 Proof of Traversal

The proof of the traversal theorem follows the same structure as in McBride’s article, extended with
proof obligations to show that we are correctly respecting the usage annotations. We must first prove a
lemma that shows that environments can be pushed under binders.

Lemma 6.11 (bind, bindEnv). Given a kit on �, we can extend an environment of type PΓ
�
=⇒Q∆, to an

environment of type PΓ,RΘ
�
=⇒Q∆,RΘ.

Proof. Let the environment we are given be (Ψ : Rn×m,act : (j : ∆ 3 A)→ (〈 j|Ψ)Γ� A), with P E
QΨ. We are trying to construct (Ψ′ : R(n+o)×(m+o),act′ : (j : ∆,Θ 3 A) → (〈 j|Ψ′)(Γ,Θ)� A), with

P,R E (Q,R)Ψ′. Let Ψ′ :=
(

Ψ 0
0 I

)
. With this definition, our required condition splits into the

easily checked conditions P E QΨ+R0 and R E Q0+RI. For act′, we take cases on whether j is
from ∆ or from Θ. In the ∆ case, act gets us an inhabitant of (〈 j|Ψ)Γ�A. Notice that 〈 j|Ψ′ = 〈 j|Ψ,0,
so we want to get from (〈 j|Ψ)Γ�A to (〈 j|Ψ)Γ,0Θ�A. We can get this using wk from our kit. In the Θ

case, notice that 〈 j|Ψ′ = 0,〈 j|. In other words, 〈 j|Ψ′ is a basis vector, so we actually have usage-checked
(〈 j|Ψ′)(Γ,Θ)A− A. Thus, we can use vr from our kit to get (〈 j|Ψ′)(Γ,Θ)�A, as required.

Theorem 6.3 (traversal, trav). Given a kit on � and an environment PΓ
�
=⇒ Q∆, we get a function

Q∆ ` A→PΓ ` A.

Proof. By induction on the syntax of M. In the VAR x case, where x : Q∆ A− A: By definition of A−,
we have that Q E 〈 j| for some j. Applying the action of the environment, we have (〈 j|Ψ)Γ�A. We
then have P EQΨE 〈 j|Ψ, so using the fact that stuff appropriately respects subusaging (psh), we have
PΓ�A. Finally, using tm, we get a term PΓ ` A, as required.

Non-VAR cases are generally handled in the following way. If the input usage context Q is split up
into a linear combination of zero or more usage contexts Qi, obtain a similar splitting of P by setting
P i :=QiΨ. This works out because of the linearity of matrix multiplication (in particular, multiplication
respects operations on the left). This yields environments of type P iΓ

�
=⇒Qi∆ for the subterms to use

with the inductive hypothesis. If any subterms bind variables, apply Lemma 6.11 as appropriate.

https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Substitution.agda#L69
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Traversal.agda#L70
https://github.com/laMudri/generic-lr/blob/lin/tlla-submission-2021/src/Specific/Syntax/Traversal.agda#L83

16 A Linear Algebra Approach to Linear Metatheory

7 Conclusion

We have extended McBride’s method of kits and traversals to proving admissibility of renaming, sub-
usaging, and substitution for the usage-annotated calculus λR. In doing so, we have discovered that only
skew semirings are required, and the importance of linear algebra for stating and proving these results.
We have shown that λR is capable of representing several well known linear and modal type theories by
instantiation to different semirings.

As we mentioned in the introduction, there have been several prior works focused on formalising
substructural calculi in proof assistants. Many of these [PW99, XORN17, Lau18] concentrate on sequent
calculus presentations of Linear Logic, using lists to represent contexts and using explicit splitting along
permutations to account for the splitting of contexts in multiplicative rules. In comparison to λR, the
use of permutations means that variables in the context do not have a “stable name”, which complicates
the use of terms for other purposes, such as assigning a plain semantics that ignores the linearity. The use
of permutations also complicates the matter of constructing terms within the proof assistant – explicit
permutations have to be provided at every rule application, making it difficult to see that a particular term
matches an informal named presentation of a term.

In terms of attaining some level of generality, our work is similar in spirit to the work of Licata,
Shulman, and Riley [LSR17]. They give a proof of cut elimination for a large class of substructural
single-conclusion sequent calculi. The class of natural deduction systems we consider here is less gen-
eral, but is not directly comparable. In particular, we assume contexts form a commutative monoid up to
admissible derivations, whereas Licata, Shulman, and Riley allow contexts to be composed of arbitrary
finitary operators. This allows them to consider, for example, non-commutative systems, which are out
of our reach. It would be interesting to see whether the approach of λR, and the technique of kits, can
be extended beyond unary semiring annotations and to arbitrary n-ary operators as in their work. Our
results are also different — our simultaneous substitution as opposed to their cut elimination. We leave
a complete comparison to future work. They have not mechanised their work.

Abel and Bernardy [AB20] have also presented a system similar to λR, along with a relational
semantics that allows the proof of free theorems derived from the usage restrictions imposed by the
chosen semiring. As we mentioned in Section 5, their system makes some choices that mean it cannot
faithfully represent DILL or PD. Nevertheless, they use our framing of the metatheory of “co-effect”
systems in terms of linear algebra, and the kit technique we have presented here adapts easily to their
setting.

We are currently building on this work to generalise the framework of Allais et al. [AAC+20] to
include usage annotations, allowing generic metatheory and semantics for an even wider class of sub-
structural calculi.

Acknowledgements We are thankful for comments from Guillaume Allais and Michael Arntzenius.

References

[AAC+20] Guillaume Allais, Robert Atkey, James Chapman, Conor McBride & James McKinna (2020): A Type
and Scope Safe Universe of Syntaxes with Binding: Their Semantics and Proofs. Accepted for JFP.

[AB20] Andreas Abel & Jean-Philippe Bernardy (2020): A Unified View of Modalities in Type Systems. Proc.
ACM Program. Lang. 4(ICFP), doi:10.1145/3408972. Available at https://doi.org/10.1145/
3408972.

http://dx.doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972

J. Wood & R. Atkey 17

[All18] Guillaume Allais (2018): Typing with Leftovers - A mechanization of Intuitionistic Multiplicative-
Additive Linear Logic. In: TYPES 2017, pp. 1:1–1:22, doi:10.4230/LIPIcs.TYPES.2017.1.

[Bar96] Andrew Barber (1996): Dual Intuitionistic Linear Logic. Technical Report, University of Edinburgh.
[BBPH93] P. N. Benton, Gavin M. Bierman, Valeria de Paiva & Martin Hyland (1993): A Term Calculus for

Intuitionistic Linear Logic. In: Typed Lambda Calculi and Applications, LNCS 664, Springer, pp.
75–90, doi:10.1007/BFb0037099.

[BGMZ14] A. Brunel, M. Gaboardi, D. Mazza & S. Zdancewic (2014): A Core Quantitative Coeffect Calculus.
In: ESOP 2014, pp. 351–370.

[BHKM12] Nick Benton, Chung-Kil Hur, Andrew Kennedy & Conor McBride (2012): Strongly typed term
representations in Coq. J. of Autom Reasoning 49(2), doi:10.1007/s10817-011-9219-0.

[CLR19] Kaustuv Chaudhuri, Leonardo Lima & Giselle Reis (2019): Formalized meta-theory of sequent cal-
culi for linear logics. Theor. Comput. Sci. 781, pp. 24–38, doi:10.1016/j.tcs.2019.02.023.

[Cra10] Karl Crary (2010): Higher-Order Representation of Substructural Logics. SIGPLAN Not. 45(9), p.
131–142, doi:10.1145/1932681.1863565.

[GS14] Dan R. Ghica & Alex I. Smith (2014): Bounded Linear Types in a Resource Semiring. In: ESOP
2014, pp. 331–350.

[Lau18] Olivier Laurent (2018): Preliminary Report on the Yalla Library. Available at https://perso.
ens-lyon.fr/olivier.laurent/yalla/. Coq Workshop.

[LSR17] Daniel R. Licata, Michael Shulman & Mitchell Riley (2017): A Fibrational Framework for Substruc-
tural and Modal Logics. In: FSCD 2017, pp. 25:1–25:22, doi:10.4230/LIPIcs.FSCD.2017.25.

[McB05] Conor McBride (2005): Type-preserving renaming and substitution. Available at http://www.
strictlypositive.org/ren-sub.pdf.

[OLE19] Dominic A. Orchard, Vilem Liepelt & Harley Eades (2019): Quantitative program reasoning with
graded modal types. Proceedings of the ACM on Programming Languages 3.

[PD99] Frank Pfenning & Rowan Davies (1999): A Judgmental Reconstruction of Modal Logic. In: Mathe-
matical Structures in Computer Science, p. 2001.

[POM14] Tomas Petricek, Dominic A. Orchard & Alan Mycroft (2014): Coeffects: a calculus of context-
dependent computation. In: ICFP 2014, pp. 123–135.

[PW99] James Power & Caroline Webster (1999): Working with Linear Logic in Coq. 12th International
Conference on Theorem Proving in Higher Order Logics (Work-in-progress paper).

[RBPKV20] Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers & Eelco Visser (2020): Intrinsically-
Typed Definitional Interpreters for Linear, Session-Typed Languages. In: CPP 2020, pp. 284–298,
doi:10.1145/3372885.3373818.

[RP10] J. Reed & B. C. Pierce (2010): Distance Makes the Types Grow Stronger. In P. Hudak & S. Weirich,
editors: ICFP 2010, pp. 157–168.

[Szl12] Kornél Szlachányi (2012): Skew-monoidal categories and bialgebroids. Advances in Mathematics
231(3-4), pp. 1694–1730, doi:10.1016/j.aim.2012.06.027.

[Wad92] Philip Wadler (1992): There’s no substitute for linear logic. In: 8th International Workshop on the
Mathematical Foundations of Programming Semantics.

[XORN17] Bruno Xavier, Carlos Olarte, Giselle Reis & Vivek Nigam (2017): Mechanizing Focused Linear
Logic in Coq. In: 12th Workshop on Logical and Semantic Frameworks, with Applications, ENTCS
338, Elsevier, pp. 219–236, doi:10.1016/j.entcs.2018.10.014.

http://dx.doi.org/10.4230/LIPIcs.TYPES.2017.1
http://dx.doi.org/10.1007/BFb0037099
http://dx.doi.org/10.1007/s10817-011-9219-0
http://dx.doi.org/10.1016/j.tcs.2019.02.023
http://dx.doi.org/10.1145/1932681.1863565
https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://perso.ens-lyon.fr/olivier.laurent/yalla/
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.25
http://www.strictlypositive.org/ren-sub.pdf
http://www.strictlypositive.org/ren-sub.pdf
http://dx.doi.org/10.1145/3372885.3373818
http://dx.doi.org/10.1016/j.aim.2012.06.027
http://dx.doi.org/10.1016/j.entcs.2018.10.014

	Introduction
	Skew Semirings
	Syntax
	Intuitionistic and Modal Instantiations
	Translation to and from Existing Systems
	Dual Intuitionistic Linear Logic
	Pfenning Davies

	Metatheory
	Kits, Environments, and Traversal
	Renaming
	Substitution
	Single Substitution
	Proof of Traversal

	Conclusion

