
Parameterised Notions of Computation
Robert Atkey

LFCS, School of Informatics
University of Edinburgh, Mayfield Road

Edinburgh EH9 3JZ, UK
bob.atkey@ed.ac.uk

Abstract

Moggi’s Computational Monads and Power et al ’s equivalent notion of Freyd category
have captured a large range of computational effects present in programming
languages such as exceptions, side-effects, input/output and continuations. We
present generalisations of both constructs, which we call parameterised monads
and parameterised Freyd categories, that also capture computational effects with
parameters. Examples of such are composable continuations, side-effects where the
type of the state varies and input/output where the range of inputs and outputs varies.
By also considering monoidal parameterisation, we extend the range of effects to
cover separated side-effects and multiple independent streams of I/O. We also present
two typed λ-calculi that soundly and completely model our categorical definitions —
with and without monoidal parameterisation — and act as prototypical languages with
parameterised effects.

Keywords: Freyd Categories, Computational Monads, Computational Effects

1. INTRODUCTION

Moggi’s framework of Computational Monads [9, 8], and Power et al ’s equivalent notion
of Freyd Categories [12, 13, 5], have been successfully used to capture a wide range
of computational effects used in programming language designs, such as non-termination,
exceptions, continuations, side-effects and input/output. In this paper, we generalise both notions
to parameterised monads and parameterised Freyd categories. The parameterisation will take
the form of a parameterising category that will annotate computations with information on their
start and end states.

Our main motivating example is that of side-effects. The standard side-effects monad selects an
object S of the base category to represent the type of the computer’s store and sets the functor
part of the monad to be TA = (S × A)S . Computations go from old stores to new stores and
values. This monad successfully models global side-effects.

The problem with this solution is that it uses a single object to represent the store at all points
during the program. Thus, there is a single “type” that covers all the possible stores that a program
can generate. For the purposes of modelling features such as strong update [10], where the type
of storage cells may change over time, or type systems inspired by Hoare Logic such as Alias
Types [15], this is inadequate. Such type systems type the current store explicitly and restrict the
range of possible operations according to the current type. We will present two type systems with
explicitly typed stores below in Sections 3 and 5. An example judgement has the form:

Γ; z : S1 ` c : A;S2

The context Γ and type A are the traditional value context and result type respectively. The context
z : S1 and type S2 use the types S1 and S2 to type the initial and final states required and produced
by the computation c.

We propose to model this by considering an additional parameterising category S to interpret the
types S1 and S2. The arrows of S are intended to be used to represent effect-free manipulations of

Workshop on Mathematically Structured Functional Programming 1

Parameterised Notions of Computation

store descriptions, analogous to implications between assertions in Hoare Logic. We extend the
definition of monad to be composed of functors T : Sop ×S ×C → C, with additional conditions on
the unit and multiplication that we set out in Section 2.1. In the case of state we assume a functor
·̂ : S → C and set T (S1, S2, A) = (Ŝ2 ×A)cS1 .

This situation suffices for modelling explicitly typed global state. Below, we present two other
examples, typed input/output, where the range of inputs and outputs depends on the current type
of the state, and Danvy and Filinski’s composable continuations [2].

In many cases, however, the assumption of globalness is too strong. We can regard the store
of a computer as being built from multiple independent regions, right down to the individually
addressable storage cells. Similarly, the computer may have multiple I/O devices attached and be
able to send output and receive input from them independently.

In order to model this situation, we assume that the parameterising category S is symmetric
monoidal. That is, there is a bifunctor ⊗ : S × S → S that we can use to build composite
state descriptions from smaller ones. Hence, if the state types [Int] and [Bool] represent
stores containing an integer and a boolean respectively, the composite state type [Int]⊗ [Bool]
represents a store containing both an integer and a boolean, in separate memory cells.

The problem now is how to sequence two programs operating on separate parts of the heap. If
we have arrows c1 : A → T (S1, S2, B) and c2 : B → T (S′1, S

′
2, C) representing computations, how

do we get a single arrow A → T (S1 ⊗ S′1, S2 ⊗ S′2, C)? The solution we present here is to require
natural transformations (− ⊗ S)† : T (S1, S2, A) → T (S1 ⊗ S, S2 ⊗ S, A), and symmetrically, to lift
computations up to larger state contexts. This lifting is similar to the service provided by monad
strength for lifting to larger value contexts, as seen by the definition of double parameterised
Freyd categories in Section 4, where the two types of computation in context are represented by
two premonoidal structures.

In Section 2, we present our definitions of parameterised monad and parameterised Freyd
category, prove them equivalent and give our main examples: typed side-effects, typed
input/output and composable continuations. We follow this in Section 3 with a typed λ-calculus,
the Typed Command Calculus, which is sound and complete for our categorical constructions. In
Section 4, we extend our categorical definitions to allow symmetric monoidal parameterisation,
extending the range of examples to allow separated side-effects and multiple streams of
input/output. We extend the Typed Command Calculus to this situation in Section 5. Finally, in
Sections 6 and 7, we describe related work and present some concluding remarks and future
work.

2. SIMPLE PARAMETERISATION

Simple parameterisation allows us to model situations where the current state is global; e.g. a
store that cannot be subdivided, or a single I/O port, or a single continuation context. We first
give the definition for parameterised strong monads, and then some examples demonstrating the
use of the parameterisation. We then define parameterised Freyd categories and show that the
two are equivalent. In the next section we will describe a typed λ-calculus is sound and complete
for parameterised Freyd categories (and parameterised strong monads). All of our definitions are
over a base category C, which we assume to have finite products, and a parameterising category
S. We refer to these as the value and state categories respectively.

2.1. Parameterised Strong Monads

Recall that a monad consists of a functor T : C → C and two natural transformations, the unit
ηA : A → TA and the multiplication µA : T (TA) → TA. For modelling effects, arrows A → TB
are regarded as computations that take a value of type A, do some computation and produce a
value of type B. The unit is used to represent the identity computation and the multiplication is

Workshop on Mathematically Structured Functional Programming 2

Parameterised Notions of Computation

used to interpret the sequencing of computations; i.e. a computation that produces a computation
that produces a value is sequenced to give a computation that produces a value.

As described in the introduction, for parameterised monads we extend the functor part to be a
functor T : Sop ×S × C → C. On objects, the first and second arguments represent the assertions
about the pre-state and post-state respectively. On arrows, they represent the strengthening
of pre-conditions and the weakening of post-conditions, hence the contravariance in the first
argument and covariance in the second.

We extend the unit of the monad to be a family of arrows ηS,A : A → T (S, S,A), used for
representing the identity computation at any state. This family of arrows is required to be natural
in A, as for non-parameterised monads. It is also required to be dinatural ([7] §IX.4) in S, so
the equation ηS1,A;T (S1, f, A) = ηS2,A;T (f, S2, A) must hold for any f : S1 → S2. The intuitive
reading of dinaturality in this case is that strengthening of the precondition and weakening of the
post-condition are equivalent for the identity computation.

Multiplication of parameterised monads consists of a family of arrows µS1,S2,S3,A :
T (S1, S2, T (S2, S3, A)) → T (S1, S3, A). Only pairs of computations where the former’s post-
condition matches the latter’s pre-condition may be sequenced. Multiplication is required to be
natural in S1, S3 and A and dinatural in S2. Dinaturality in this case amounts to the following
diagram commuting for all f : S2 → S′2:

T (S1, S
′
2, T (S′2, S3, A))

T (S1, S2, T (S′2, S3, A)) T (S1, S3, A)

T (S1, S2, T (S2, S3, A))

**VVVVVVVVVVVV
µ

44hhhhhhhhhhhh
T (S1,f,T (S′

2,S3,A))

**VVVVVVVVVVVV

T (S1,S2,T (f,S3,A))

44hhhhhhhhhhhh µ

This states that if we have two commands with a mismatch in the intermediate state, then it does
not matter if we weaken the former’s post-condition, or the latter’s pre-condition in order to make
them match.

Definition 1 An S-parameterised monad (T, η, µ) on C consists of a functor T : Sop×S ×C → C;
a transformation ηS,A : A → T (S, S,A), natural in A and dinatural in S; and a transformation
µS1,S2,S3,A : T (S1, S2, T (S2, S3, A)) → T (S1, S3, A), natural in S1, S3 and A and dinatural in S2.
These must obey the monad laws: η;µ = T (S1, S2, η);µ = id and T (S1, S2, µ);µ = µ;µ.

An alternative partial definition is given by observing that a non-parameterised monad is
equivalent to a one object CC-enriched category. A multiple object CC enriched category is
equivalent to part of our definition1, where the objects are the objects of the parameterising
category S. Therefore, if we restrict S to be the one object, one arrow category then our definition
is equivalent to the standard definition of a non-parameterised monad.

Crucial to Moggi’s use of monads to model effectful computation is the notion of strength. A
strength for a monad is a natural transformation τA,B : A × TB → T (A × B), obeying some
axioms. Strength is used to interpret computations in context: given a computation represented
as an arrow c : A → TA′ and a context B, we can lift c up to the larger context by composition
with the strength: B × A

B×c−→ B × TA′ τ−→ T (B × A′). The idea of computation in context forms
the main focus of the definition of premonoidal structure, which is a major part of the definition of
Freyd category (see below). We also extend the computation in context idea in Section 4 below
to cover computation in state context.

The definition of strength generalises easily to parameterised monads:
1This observation is due to Chung-chieh Shan: http://haskell.org/pipermail/haskell-cafe/2004-July/006448.html

Workshop on Mathematically Structured Functional Programming 3

Parameterised Notions of Computation

Definition 2 A strength for a parameterised monad (T, η, µ) is a natural transformation
τA,S1,S2,B : A×T (S1, S2, B) → T (S1, S2, A⊗B) that obeys the obvious adaptations of the axioms
for non-parameterised strength.

2.2. Examples

We now give some examples of parameterised monads modelling computational effects that
require the additional parameterising category S. In addition to these examples, note that any
strong monad gives a strong parameterised monad with any parameterising category.

2.2.1. Typed State

As stated in the introduction, we can use parameterised monads to model typed global state.
Select a collection of storable objects of C, called C0. Set the category S to have objects [A] for
each object A of C0, plus an additional object ♦. The only non-identity arrows are clearA : [A]→ ♦
for each A ∈ C0. Hence ♦ is the terminal object of S.

The functor ·̂ : S → C maps each [A] to A and ♦ to the terminal object. Hence the objects [A]
are used to represent storage cells containing values of type A and ♦ represents a memory cell
containing a value of indeterminate type.

The monad is defined as T (S1, S2, A) = (Ŝ2 × A)cS1 . The definitions of the unit, multiplication and
strength are almost identical to those for the standard side-effects monad. There are two basic
operations for this monad, read and store, which we define as follows:

read : T ([A], [A], A) store : A → T (♦, [A], 1)
read = λs.(s, s) store = a 7→ λs.(a, ?)

2.2.2. Typed I/O

For simplicity, we restrict to C = Set, the category of sets and functions, and S being a small
discrete category. Assume a collection of input sets {I(S)}S∈S and a collection of output sets
{O(S1, S2)}S1,S2∈S . The objects of S represent the states that an I/O device may be in; the sets
I(S) represent the possible inputs in a state; and O(S1, S2) represent the possible outputs in a
given state, and the states they cause the device to go into. On objects, the monad functor is built
inductively from the following rules:

a ∈ A

e(a) ∈ T (S, S,A)
f ∈ I (S1) ⇒ T (S1, S2, A)

i(f) ∈ T (S1, S2, A)
m ∈ O(S1, S2) c ∈ T (S2, S3, A)

o(m, c) ∈ T (S1, S3, A)

Computations are therefore trees of output transitions and branching input transitions, terminated
by result values. The monad unit just maps a to e(a) and multiplication concatenates trees.

The monad has two primitive operations that perform input and output:

input : T (S, S, I(S)) output : O(S1, S2) → T (S1, S2, 1)
input = i(λx.e(x)) output = λm.o(m, e(∗))

2.2.3. Composable Continuations

Parameterised monads provide a way to interpret Danvy and Filinski’s composable continuations
[2]. Composable continuations provide access to evaluation contexts smaller than the whole
program, delimited at runtime by the reset operator. The current context is made available to the
program by the shift operator. In contrast, the call with current continuation operator only allows
the entire program to be treated as the current context. The following is inspired by Wadler’s
attempt to express composable continuations in terms of monads [18].

We require C to be cartesian closed, and set S to be |C|, the discrete category with the same
objects as C. Define T (R1, R2, A) = (A → R2) → R1, where → is the functor part of the cartesian

Workshop on Mathematically Structured Functional Programming 4

Parameterised Notions of Computation

closed structure. Unit, multiplication and strength are defined as for the standard continuations
monad [9].

In terms of the type system given by Danvy and Filinski in [2], a judgement ρ, α ` E : τ, β is
interpreted as an arrow JρK → T (JβK, JαK, JτK). The reset operator is interpreted as an arrow in C,
using the internal language of C:

reset : T (B,A, A) → T (C,C,B)
reset = c 7→ λk.k(c(λx.x))

Thus reset calls c with the empty context, represented by the identity function, and feeds the output
to the current continuation. The shift operator is defined as:

shift : ((A → T (C,C,B)) → T (E,D,D)) → T (E,B,A)
shift = f 7→ λk.(e(λv.λk′.k′(kv)))(λx.x)

See below and [2] and [18] for examples of the use of shift and reset . This example needs much
more work to establish the precise categorical properties of shift and reset , and to potentially
axiomatise it without reference to an underlying continuation passing interpretation, following the
lead set by Thielecke [17].

2.3. Parameterised Freyd Categories

Freyd categories are comprised of identity on objects functors J : C → K, where K has
premonoidal structure and J strictly preserves it by seeing the finite product structure of C as
premonoidal structure. Premonoidal structure consists of a pair of functors A < − : K → K
and − = A : K → K that agree on objects: A < B = A = B = A ⊗ B, and associativity, left
and right unit and symmetry natural transformations as for symmetric monoidal structure. The
components of these natural transformations must be central : an arrow f of K is central if, for all
arrows g, A < f ; g = B′ = g = B;A′ < f . Arrows of K are used to represent computations, with the
identity arrow representing the identity computation, and composition representing the sequencing
of computations. The premonoidal structure is used to represent computation in context.

Our definition of parameterised Freyd category builds the required structure in a single step, unlike
the two steps of premonoidal structure on the codomain category, and then a strict premonoidal
functor as for Freyd categories. We do it is this way for two reasons. Firstly, we want the objects
of the codomain category to be comprised to pairs of objects of the value and state categories
but with the premonoidal structure only referring to the value category, so we start by requiring
an identity on objects functor J : C × S → K. The premonoidal structure is then built on top of
this, building in the requirement of strict preservation of premonoidal structure. Secondly, there
is no obvious definition of centrality for arrows in a parameterised Freyd category, due to the
composition ordering imposed by the objects of the state category. Therefore we just state that
the symmetric monoidal structure natural transformations of C via J are the ones we need, rather
than requiring them on K and saying that J should preserve them.

Definition 3 A parameterised Freyd category consists of three categories C, S and K, where C
has finite products, and three functors J : C × S → K, <C : C ×K → K and =C : K× C → K, such
that:

1. J is identity on objects;
2. The monoidal structure of C is respected: A<C J(B,X) = J(A,X)=C B = J(A×B,X) and

f <C J(g, s) = J(f, s) =C g = J(f × g, s);
3. For each S ∈ ObS, the transformations J(αABC , S), J(λA, S), J(ρA, S) and J(σA,B , S) must

be natural in all combinations of ⊗,<C and =C that make up their domain and codomain.

This definition can be split into two parts: the functor J : C×S → K, which identifies how pure value
computations and state manipulations are incorporated into commands; and the premonoidal
structure with respect to C, given by the functors <C and =C . Closure for parameterised Freyd
categories is similar to that for Freyd categories. It will be used to interpret function types.

Workshop on Mathematically Structured Functional Programming 5

Parameterised Notions of Computation

Definition 4 A parameterised Freyd category J : C × S → K is closed if, for all A ∈ ObC and
S ∈ ObS, the functor J(−×A,S) : C → K has a specified right adjoint, written (A,S) → − : K → C.

We now show the relationship between parameterised Freyd categories and strong parameterised
monads. To do this we shall go through parameterised adjunctions. The definition of
parameterised adjunction is as follows:

Definition 5 An S-parameterised adjunction from C to D is a 4-tuple 〈F,G, η, ε〉 : C → D where
F and G are functors:

F : S × C → D G : Sop ×D → C

and η and ε are the unit and counit, natural in A and dinatural in S:

ηS,A : A → G(S, F (S, A)) εS,A : F (S, G(S, A)) → A

By Theorem §IV.7.3 in [7], if we have a functor F : S ×C → D such that for every object S, F (S,−)
has a right adjoint GS : D → C, then there is a unique way to make G into a bifunctor Sop×D → C
such that it is a parameterised adjunction in the sense of this definition. Using this result, we
can turn the closed structure of a closed parameterised Freyd category into an S-parameterised
adjunction between C and K with the functors J(−, S) and (1, S) → −.

Now, parameterised monads are to parameterised adjunctions as monads are to adjunctions,
as the following lemma partially demonstrates. It also possible to define a suitable notion of
Eilenberg-Moore category of algebras for a parameterised monad, and this and the Kleisli
category used in this lemma are the final and initial objects in the category of adjunctions defining
and parameterised monad, as for monads. See the appendix of [1] for more details.

Lemma 1 S-parameterised adjunctions 〈F,G, η, ε〉 : C → D give S-parameterised monads on C,
defined as:

T (S1, S2, A) = G(S1, F (S2, A)) ηT
S,A = ηS,A µT

S1,S2,S3,A = G(S1, εS2,F (S3,A))

Conversely, given an S-parameterised monad on C, define a category CT with objects pairs of
C and S objects and CT ((A1, S1), (A2, S2)) = C(A1, T (S1, S2, A2)). The functors F = S, A 7→
(A,S); s, f 7→ η;T (S1, s, f) : S × C → CT and G = S1, (A,S2) 7→ T (S1, S2, A); s, c 7→ T (s, S2, c);µ :
S × CT → C form a parameterised adjoint pair.

Proof Almost identical to the proof of the definition of a monad from an adjunction [7]. The
additional (di)naturality conditions are easy to check. The second part is just the parameterised
generalisation of the construction of the Kleisli category. �

Thus, every closed Freyd category gives a parameterised monad, and we can generate a category
K and an identity on objects functor J : C × S → K via the parameterised version of the Kleisli
construction. We extend Power and Robinson’s Theorem 4.2 of [12], which links the premonoidal
structure of Freyd categories with monad strength, to the parameterised case:

Lemma 2 Given an strength for a parameterised monad (T, η, µ), there is premonoidal structure
on CT with respect to C, and vice versa. These operations are inverse.

Proof Given a strength τ , define f <C c = f ⊗ c; τA,S1,S2,B , =C is similar. Given premonoidal
structure <C , define τA,S1,S2,B = idA <C idT (S1,S2,B) as an arrow of C, where idT (S1,S2,B) is seen
as an arrow T (S1, S2, B) → B in CT . The axioms in each case are easily checked. That these
operations are inverse is seen by writing out the two definitions and calculating, keeping careful
track of the different compositions in C and CT . �

Lemma 3 If a strong parameterised monad has Kleisli exponentials, i.e. there is a functor
(B,S1) → − : CT → C for all objects B, S1, and a natural isomorphism CT ((A×B,S1), (C,S2)) ∼=

Workshop on Mathematically Structured Functional Programming 6

Parameterised Notions of Computation

C(A, (B,S1) → (C,S2)), then the induced parameterised Freyd category is closed. Conversely,
every closed parameterised Freyd category gives a strong monad with Kleisli exponentials. These
operations are inverse.

Proof The closure functors are identical in both cases. �

These lemmas combine to give:

Theorem 1 Strong parameterised monads with Kleisli exponentials and closed parameterised
Freyd categories are equivalent.

3. TYPED COMMAND CALCULUS

In this section we define a typed λ-calculus, the Typed Command Calculus, which is sound and
complete for parameterised Freyd categories. The design of the calculus is based on the fine-grain
call-by-value calculus for Freyd categories given by Levy, Power and Thielecke [5].

3.1. Typing Rules

Levy et al ’s fine-grain call-by-value calculus has two typing judgements Γ `v V : A and
Γ `p M : A. The first is used to type values, i.e. computations with no effect, and is interpreted in C.
The second judgement is used to type producers, i.e. computations with effects, and is interpreted
in K. The two main constructs of the calculus are typed as follows:

Γ `v V : A

Γ `p produce V : A

Γ `p M : A Γ, x : A `p N : B

Γ `p M to x.N : B

The construct produce V incorporates values into producers and is interpreted using the functor
J of a Freyd category. The construct M to x.N denotes the execution of the effectful computation
M in the context Γ, feeding its result to N which is then executed. This is interpreted using the
premonoidal structure of the Freyd category and composition.

The Typed Command Calculus also has a typing judgement for each category present in the
definition of parameterised Freyd category. For the three categories, there are three judgements:

Γ `v e : A ∆ `s s : S Γ;∆ `c c : A;S

The first is used to type values, and is interpreted in the value category C. Value terms are
comprised of variables, units, pairs, projections, primitive functions and function abstractions
(but not applications). The second is used to type state manipulations, and is interpreted in the
state category S. State manipulation terms consist of variables and primitive functions. The third
judgement form is used to type computations, and is interpreted in the category K. Computation
terms are comprised of pure value and state terms, sequencing, primitive computations and
function application. Contexts for computation judgements are a pair of a value context and a
state context, and result types are a pair of a value typed and a state type. The typing rules for
these judgements are given in Figure 1.

Let TV and TS be sets of primitive value types and primitive state types. The state types are exactly
the set of primitive state types and are ranged over by S, S1, S2, Value types are generated by
the following grammar:

A ::= X ∈ TV | 1 | A1 ×A2 | (A1;S1) → (A2;S2)

The unit and product types are standard. The value function type (A1;S1) → (A2;S2), where S1

and S2 are state types, will be interpreted using the closure.

Assume a pair of countably infinite sets of value variables x, x1, x2, ... and state variables
z, z1, z2, Value contexts Γ are defined as a list of variable/type pairs where no variable may
appear more than once. State contexts ∆ are single variable/type pairs of the form z : S.

Workshop on Mathematically Structured Functional Programming 7

Parameterised Notions of Computation

State Calculus:

z : S `s z : S
(S-VAR)

∆ `s s : S1 (m : S1 −→ S2) ∈ ΦS

∆ `s ms : S2
(S-PRIM)

Value Calculus:

x : A ∈ Γ

Γ `v x : A
(V-VAR)

Γ `v e : A1 (f : A1 −→ A2) ∈ ΦV

Γ `v fe : A2
(V-PRIM)

Γ `v ?1 : 1
(V-1I)

Γ `v e1 : A1 Γ `v e2 : A2

Γ `v (e1, e2) : A1 ×A2
(V-×I)

Γ `v e : A1 ×A2

Γ `v πie : Ai
(V-×E-i)

Γ, x : A1; z : S1 `c c : A2; S2

Γ `v λ→(xA1 ; zS1).c : (A1; S1) → (A2; S2)
(V-→I)

Command Calculus:

Γ `v e : A ∆ `s s : S

Γ;∆ `c (e; s) : A; S
(C-V-S)

Γ;∆ `c c : A1; S1 (p : (A1; S1) −→ (A2; S2)) ∈ ΦC

Γ;∆ `c pc : A2; S2
(C-PRIM)

Γ;∆ `c c1 : A1; S1 Γ, x : A1; z : S1 `c c2 : A2; S2

Γ;∆ `c let (x; z) ⇐ c1 in c2 : A2; S2
(C-LET)

Γ `v e : (A1; S1) → (A2; S2) Γ;∆ `c c : A1; S1

Γ;∆ `c e@→c : A2; S2
(C-→E)

FIGURE 1: Typing rules for the Typed Command Calculus

The state calculus is a monadic calculus, in the sense that it only has single-argument functions.
The rule S-VAR types variables and S-PRIM types primitive function application. We assume a set
ΦS of primitive state manipulations of the form m : S1 −→ S2.

The value and command calculi are mutually defined via the rules for function abstraction
and application. The value calculus includes the standard rules for product introduction and
elimination. We also assume a set ΦV of primitive value functions of the form f : A1 −→ A2.
The rule V-→I introduces functions. Since a function represents a suspended computation, they
are treated as pure values and so this rule takes a judgement in the command calculus and
produces one in the value calculus. The rule C-→E eliminates such functions, producing an
effectful computation in the command calculus. Functions are to be interpreted using the closed
structure of a closed parameterised Freyd category.

The rule C-V-S incorporates the terms of the value and state calculi into the command calculus.
This rule will be interpreted by the action of the functor J . The C-PRIM rule types primitive
commands taken from a set ΦC of primitive commands of the form p : (A;S1) −→ (B;S2). The
rule C-LET sequences two computations similar to the M to x.N construct of the fine-grain call-
by-value calculus.

3.2. Example

We present a short example of composable continuations expressed in our calculus, adapted
from Wadler’s paper [18]. In this case the set of primitive state types is equal to the set of all value
types. The operators reset and shift can be represented as new constructs in the calculus like
so2:

Γ; z : A `c c : B;B
Γ; z : C `c reset c : A;C

Γ, f : (T,D) → (A,D); z : B `c c : O;O
Γ; z : B `c shift f.c : T ;A

2It is also possible to represent these as primitive commands operating on values of function type, but this method gives
a clearer presentation of the example.

Workshop on Mathematically Structured Functional Programming 8

Parameterised Notions of Computation

Value calculus:

πi(e1, e2) = ei

e = (π1e, π2e)

e = ?

f = (λ→(xA1 , zS1).f@→(x; z))

Command calculus rules:

e1 = e2 s1 = s2

(e1; s1) = (e2; s2)

let (x; z) ⇐ (e; s) in c = c[e/x, s/z]

let (x; z) ⇐ c in (x; z) = c

(λ→(x, z).c)@→a = let (x; z) ⇐ a in c

C[let (x; z) ⇐ c1 in c2] = let (x; z) ⇐ c1 in C[c2]

C[−] ::= − | p C[−] | let (x; z) ⇐ C[−] in c | e@→C[−]

FIGURE 2: Equational Rules for the Typed Command Calculus

An example term is (assuming primitive value functions for numerals and addition):

let (x; z) ⇐ reset
(let (y; z) ⇐ shift f.(let (a; z) ⇐ f@→(100; z) in let (b; z) ⇐ f@→(1000; z) in (a + b; z))
in (y + 10; z))

in (1 + x; z)

Given the interpretation of composable continuations above, this term evaluates to 1121. The
context let (y′; z) ⇐ − in (y′+10; z) is invoked twice by the application of the delimited continuation
exposed by the shift operator. Note that, since the composable continuations example uses a
discrete category as the parameterising category, the terms of the state calculus are extremely
uninteresting and the variable z representing the continuation context type information is just
robotically passed throughout the program. For this application it would make sense to suppress
the state calculus, but for more complex examples, such as separated state, it is essential.

3.3. Equational Theory

Equations are generated by three sets of typed axioms of the form Γ `v e1
ax= e2 : A,

∆ `s s1
ax= s2 : S and Γ;∆ `c c1

ax= c2 : A;S where both sides of each axiom are typable
with the given context and type, and the rules in Figure 2, plus reflexivity, transitivity, symmetry
and congruence. The state calculus has no additional rules.

The value calculus has the standard βη rules for product and unit types, plus an η expansion rule
for functions. The command calculus incorporates value and state equations via the (·; ·) term
construct. It also has βη rules for sequencing, a β rule for functions and a collection of commuting
conversions for the sequencing construct.

The rules generate three equational judgements of the form Γ `v e1 = e2 : A, ∆ `s s1 = s2 : S
and Γ;∆ `c c1 = c2 : A;S. Note that the equations only apply when both sides are well-typed
with the same context and result type. By proving the appropriate substitution rules admissible
[1], it is easy to see that all the rules apart from the commuting conversions generate well-typed
equations. The commuting conversions can be seen to generate well-typed equations by induction
on the structure of the contexts C[−].

3.4. Soundness and Completeness

The interpretation of the Typed Command Calculus in a parameterised Freyd category has already
been alluded to, but we spell it out in a bit more detail here. Assume a closed parameterised Freyd
category J : C × S → K, with maps specifying the interpretation of primitive value and state types

Workshop on Mathematically Structured Functional Programming 9

Parameterised Notions of Computation

as C and S objects respectively, and the interpretation of primitive value, state manipulation and
command operations as arrows in C, S and K respectively.

The state calculus is interpreted in S, using the identity for the S-VAR rule and the interpretation
of primitive functions, plus composition, for the interpretation of S-PRIM. The rules V-VAR, V-PRIM,
V-1I, V-×I and V-×E-i are given the standard interpretation in a category with finite products.
The function abstraction rule is interpreted using the isomorphism of homsets derived from the
adjunction forming the closure: Λ : K((Γ×A,S1), (B,S2)) → C(Γ, (A,S1) → (B,S2)).

The C-V-S rule is interpreted using the functor J in the evident way, and C-PRIM is interpreted just
using composition. For sequencing, C-LET is interpreted using the premonoidal structure of the
parameterised Freyd category. Assuming the first premise is interpreted by an arrow c1 and the
second by an arrow c2, the conclusion is interpreted by J(〈id , id〉, id); Γ< c1; c2. Thus, the context
is duplicated using the finite product structure of C, the computation c1 is executed in context Γ
and the result and the remaining copy of Γ are fed into c2. The conditions on the state types in the
rule ensure that the composition is valid. The C-→E rule is interpreted by using the counit of the
adjunction forming the closed structure: ev : ((A,S1) → (B,S2)×A,S1) → (B,S2).

Theorem 2 (Soundness and Completeness) The Typed Command Calculus is sound and
complete for closed parameterised Freyd categories.

Proof Soundness is by induction on the derivations of equational judgements. Completeness is
proven by the construction of a closed parameterised Freyd category from the three calculi and
the construction of a model within it. See [1] for the more general case of the monoidal Typed
Command Calculus (Section 5 below). �

4. MONOIDAL PARAMETERISATION

As we stated in the introduction, the simple parameterisation case is only suitable for modelling
situations where the state is global, but in the case of side-effects and typed I/O, we can regard
the state as being composed of multiple independent parts. We use symmetric monoidal structure
on the state category to represent the composition of state types from smaller state types. The
main problem now is to represent the lifting of computations up to larger state contexts in order
to compose them. We present two solutions to this problem, one for parameterised monads and
one for parameterised Freyd categories, and prove that they are equivalent. For this section, we
assume that the parameterising category S is symmetric monoidal.

4.1. Parameterised Monads with Monoidal Lifting

As mentioned in the introduction, we require two families of arrows (− ⊗ S)† and (S ⊗ −)† to lift
computations up to larger state contexts. If the object T (S1, S2, A) is interpreted as commands that
go from state S1 to state S2 and returns a value of type A, then the effect of the monoidal lifting is
to lift such commands to larger state contexts: e.g. applying (−⊗S)† gives T (S1⊗S, S2⊗S, A). In
this respect, the monoidal lifting performs the same service as the strength in lifting computations
to larger contexts.

Before we can define the structure we require, we need a way of describing actions on
parameterised monads that agree on objects with functors on the parameterising category.

Definition 6 Given an S-parameterised monad (T, η, µ), and a functor F : S → S, a lifting of F

to T is a natural transformation F †
S1,S2,A : T (S1, S2, A) → T (FS1, FS2, A) that commutes with the

unit and multiplication of the monad:

F †;T (FS1, FS2, F
†);µ = µ;F † η;F † = ηF

A natural transformation ζ : F ⇒ G in S is natural for liftings F † and G† if the equation
F †;T (FS1, ζ, A) = G†;T (ζ, GS2, A) holds.

Workshop on Mathematically Structured Functional Programming 10

Parameterised Notions of Computation

Extending the alternative definition of a parameterised monad as a CC-enriched category noted
above, the definition of a lifting of a functor is the same as a CC-functor on this category.

Using the given definition, we can state the structure we require on parameterised monads to
interpret computation in state context.

Definition 7 An S-parameterised monad (T, η, µ) has monoidal lifting if, for every S ∈ ObS,
there are liftings for the functors − ⊗ S and S ⊗ −, written (− ⊗ S)† and (S ⊗ −)†, such that
all the symmetric monoidal structure transformations are natural for them and so are the natural
transformations given by −⊗ s and s⊗− for every arrow s.

4.2. Examples

Two of the examples given above extend to the monoidal case.

4.2.1. Typed Side-effects

For the state category, we take the free symmetric monoidal category on the category S defined
for the typed side-effects example above, which we label S ′. We extend the functor ·̂ to be S ′ → C
by mapping objects S1 ⊗ S2 to Ŝ1 × Ŝ2, hence ·̂ becomes a strict symmetric monoidal functor.
Monoidal lifting is defined as: (S ⊗ −)† = c 7→ λ(s, s1).let (s2, a) = c(s1) in ((s, s2), a) and similar
for (−⊗ S)†.

4.2.2. Typed I/O

Again, we restrict to C = Set, the category of sets and functions. Choose a small discrete
category So to represent the states of individual I/O devices and assume a collection of input sets
{I(S)}S∈S0 and a collection of output sets {O(S1, S2)}S1,S2∈S0 . Set the parameterising category
S to be the free symmetric monoidal category over S0. That is, objects of S are words of objects
of S0 formed by unit, singleton and concatenation and arrows are permutations. This category is
strict with respect to associativity and units. We use the notation S(S1) to represent a word (object
of S) with a distinguished location in it holding an S0 object S1.

The object part of the functor of the monad is built using the following inductive definition:

a ∈ A

e(a) ∈ T (S, S,A)
f ∈ I(S1) ⇒ T (S(S1), S2, A)

i(f) ∈ T (S(S1), S2, A)
m ∈ O(S1, S2) c ∈ T (S(S2), S,A)

o(m, c) ∈ T (S(S1), S,A)

c ∈ T (S1, S2, A) σ a permutation on S1

s(σ, c) ∈ T (σS1, S2, A)

This construction is subject to the following equations:

s(σ, i(f)) = i(λx.s(σ, fx)) s(σ, o(m, c)) = o(m, s(σ, c)) s(σ1, s(σ2, c)) = s(σ1;σ2, c)

By these equations, it is easy to see that every member of T (S1, S2, A) is equal to s(σ, c) for
some c not containing a sub-term of the form s(σ′, c′). Therefore, computations are trees of output
transitions-in-context and branching input transitions-in-context, with values at the leaves. The
action of the functor on permutations is given by either applying a permutation to the root of the
tree, or to all leaves. Monad unit and multiplication are defined as above. Monoidal lifting is defined
by appending additional context to the left or right of each node of the tree.

4.3. Double Parameterised Freyd Categories

A double parameterised Freyd category is just a parameterised Freyd category with premonoidal
structure with respect to both of the domain categories. This grants us the capability of lifting a
computation to a larger state context as well as a larger value context.

Workshop on Mathematically Structured Functional Programming 11

Parameterised Notions of Computation

State Calculus: rules S-VAR and S-PRIM as for the Typed Command Calculus:

∆1 `s s1 : S1 ∆2 `s s2 : S2

∆1 on ∆2 `s (s1, s2) : S1 ⊗ S2
(S-⊗I)

∆1 `s s1 : S1 ⊗ S2 ∆2, z1 : S1, z2 : S2 `s s2 : S3

∆1 on ∆2 `s let (z1, z2) = s1 in s2 : S3
(S-⊗E)

I `s ?I : I
(S-I I)

∆1 `s s1 : I ∆2 `s s2 : S

∆1 on ∆2 `s let ?I = s1 in s2 : S
(S-IE)

Value Calculus: as for Typed Command Calculus.

Command Calculus: rules C-V-S, C-PRIM, C-→E as for the Typed Command Calculus.

Γ;∆1 `c c1 : A1; S1 Γ, x : A1;∆2, z : S1 `c c2 : A2; S2

Γ;∆1 ./ ∆2 `c let (x; z) ⇐ c1 in c2 : A2; S2
(C-LET)

Γ;∆1 `c c1 : A1; S1 ⊗ S2 Γ, x : A1;∆2, z1 : S1, z2 : S2 `c c2 : A2; S3

Γ;∆1 ./ ∆2 `c let (x; z1, z2) ⇐ c1 in c2 : A2; S3
(C-LET-⊗)

Γ;∆1 `c c1 : A1; I Γ, x : A1;∆2 `c c2 : A2; S3

Γ;∆1 ./ ∆2 `c let (x; ?I) ⇐ c1 in c2 : A2; S3
(C-LET-I)

FIGURE 3: Typing rules for the Monoidal Typed Command Calculus

Definition 8 A double parameterised Freyd category consists of three categories C, S and K,
where C and S are symmetric monoidal, and five functors: J : C × S → K, <C : C × K → K,
=C : K × C → K, <S : S × K → K and =S : K × S → K, such that J is identity-on-objects and
(J,<C ,=C) and (J,<S ,=S) obey the obvious adaptations of the conditions of Definition 3.

This definition is somewhat more symmetric than that for parameterised monads. This is to be
expected, given that the focus of the definition of (parameterised) Freyd category is directly upon
computation in context, so it easier to extend the definition to multiple premonoidal structures, and
so multiple kinds of computation in context.

Theorem 3 For an S-parameterised monad (T, η, µ), given a monoidal lifting we can get a
premonoidal structure with respect to S on CT and vice versa. These operations are inverse.

Proof Given a monoidal lifting (S ⊗−)†, define s <S c as c; (S1 ⊗−)†;T (S1 ⊗ S′1, s⊗ S′2, B); the
symmetric case is similar. Given premonoidal structure <S , define (S ⊗ −)† = S <S idT (S1,S2,B),
the symmetric case is again similar. These obey the required axioms by routine checking. In
particular, the two sets of naturality constraints are in one-to-one correspondence. That they are
mutually inverse definitions can be seen by writing out the definitions and calculating, keeping in
mind the differences in composition in C and CT . �

5. MONOIDAL TYPED COMMAND CALCULUS

We now extend the calculus of Section 3 so that it is sound and complete for closed double
parameterised Freyd categories. We call the extended calculus the Monoidal Typed Command
Calculus. The changes to the typing rules are shown in Figure 3. The terms, types and rules for
the value calculus are unchanged, except by the larger range of state type constructors:

S ::= X ∈ TS | I | S1 ⊗ S2

State contexts are now lists of state manipulation variables and state type pairs, ranged over by
∆ and with the condition that no variable appear more than once. We define the joining relation
− ./ − = − on triples of contexts by the following clauses:

I ./ I = I (∆1, x : A) ./ ∆2 = (∆1 ./ ∆2), x : A ∆1 ./ (∆2, x : A) = (∆1 ./ ∆2), x : A

Given contexts ∆1, ∆2, we write ∆1 ./ ∆2 to stand for any context ∆3 such that ∆1 ./ ∆2 = ∆3.

Workshop on Mathematically Structured Functional Programming 12

Parameterised Notions of Computation

The state calculus has additional rules for introducing and eliminating pair and unit types, following
the standard term constructs for substructural calculi. The command calculus retains the rules
C-V-S, C-PRIM and C-→E.

There are now three sequencing constructs in the command calculus, typed by the rules C-LET,
C-LET-⊗ and C-LET-I. All the rules type the execution of a command c1, lifted up to the context of
(Γ;∆2), followed by the execution of a second command c2. The rule C-LET differs in this calculus
from the one in the Typed Command Calculus by allowing computation in a state context, as well
as in a value context.

The three sequencing rules differ in the de-structuring of the state output of the first term. The
C-LET rule does no de-structuring and passes the state output of c1 directly into c2. Rule C-LET-⊗
takes a state pair from c1 and splits it into two separate variables in c2’s context. Rule C-LET-I
takes a unit state and discards it. To see why these constructs are needed, consider the following
example. Assume we have a primitive command p : (1, I) → (1, S⊗S). We can use this command
in a sequencing construct:

let (x; z) ⇐ p(∗1, ∗I) in . . .

However, without C-LET-⊗ there would be no way to decompose the variable z bound in the body
of this expression in a way that would allow us to use the components in two different commands.
Assuming two commands c1 and c2 with free variables z1 and z2 respectively, the use of C-LET-⊗
allows us to use the output of p in both:

let (x; z1, z2) ⇐ p(∗1; ∗I) in let (x; z′1) ⇐ c1 in let (x; z′2) ⇐ c2 in . . .

The C-LET-I rule fulfils a similar role in eliminating variables of type I.

5.1. Example

The operations read and store and the state manipulation function clear from the typed side-effects
example above can be typed in the calculus as primitive operations like so:

read : (1, [A]) → (A, [A]) store : (A,♦) → (1, [A]) clear : [A]→ ♦

Using these, we can write the following function which takes three storage cells, two containing
integers and the third of indeterminate type and adds the contents of the first two, placing the
result in the third and forgetting the types of the contents of the first two cells.

λ(x; z).let (?; i, o) ⇐ (?; z) in let (?; i1, i2) ⇐ (?; i) in
let (a; i1) = read (?; i1) in let (b; i2) = read (?; i2) in
let (?; o) = store (a + b; o) in (?; ((clear i1, clear i2), o))

: (1, ([Int]⊗ [Int])⊗ ♦) → (1; (♦⊗ ♦)⊗ [Int])

5.2. Equational Theory and Soundness and Completeness

The equational rules for the Monoidal Typed Command Calculus are presented in Figure 4,
supplemented by axioms, reflexivity, symmetry, transitivity and congruence as usual. The rules
for the value calculus are unchanged. The state calculus now has additional βη rules for both
of the type constructors. We use Ghani’s generalised η rule [3], which eliminates the need for
commuting conversions.

The command calculus retains the inclusion of value and state equalities, the βη rules for the
unary sequencing construct and the β rule for functions from before. There are also βη rules for the
pair and unit sequencing constructs. There are also two β rules for the pair and unit sequencing
constructs that cross the divide between eliminations of product and unit types performed in
the command calculus and those performed in the state calculus. This is required to establish
completeness. Finally, there are three sets of commuting conversion rules.

As before the equational rules generate three equational judgements of the form Γ `v e1 = e2 : A,
∆ `s s1 = s2 : S and Γ;∆ `c c1 = c2 : A;S. By extending the interpretation sketched above,

Workshop on Mathematically Structured Functional Programming 13

Parameterised Notions of Computation

State Calculus:

let (z1, z2) = (s1, s2) in s3 = s2[s1/z1, s2/z2]

let (z1, z2) = s1 in s2[z1 ⊗ z2/z] = s2[s1/z]

let ?I = ?I in s2 = s2

let ?I = s1 in s2[?I/z] = s2[s1/z]

Value Calculus: as for the Typed Command Calculus.

Command Calculus:

e1 = e2 s1 = s2

(e1; s1) = (e2; s2)

let (x; z) ⇐ (e; s) in c = c[e/x, s/z]

let (x; z) ⇐ c in (x; z) = c

let (x; z1, z2) ⇐ (e; (s1, s2)) in c = c[e/x, s1/z1, s2/z2]

let (x; z1, z2) ⇐ c in (x; (z1, z2)) = c

let (x; ?I) ⇐ (e; ?I) in c = c[e/x]

let (x; ?I) ⇐ c in (x; ?I) = c

(λ→(x, z).c)@→a = let (x; z) ⇐ a in c

let (x; z1, z2) ⇐ (e1; s1) in (e2; s2) = (e2[e1/x]; let (z1, z2) ⇐ s1 in s2)

let (x; ?I) ⇐ (e1; s1) in (e2; s2) = (e2[e1/x]; let ?I = s1 in s2)

C[let (x; z) ⇐ c1 in c2] = let (x; z) ⇐ c1 in C[c2]

C[let (x; z1, z2) ⇐ c1 in c2] = let (x; z1, z2) ⇐ c1 in C[c2]

C[let (x; ?I) ⇐ c1 in c2] = let (x; ?I) ⇐ c1 in C[c2]

C[−] = − | p C[−] | let (x; z) ⇐ C[−] in c | let (x; z1, z2) ⇐ C[−] in c | let (x; ?I) ⇐ C[−] in c | e@→C[−]

FIGURE 4: Equational Rules for the Monoidal Typed Command Calculus

the equational theory so generated is sound and complete for closed double parameterised Freyd
categories. See [1] for the proof.

Theorem 4 The Monoidal Typed Command Calculus is sound and complete for closed double
parameterised Freyd categories.

6. RELATED WORK

Computational monads [8, 9] have been extremely successful in providing a framework for
modelling a large range of computational phenomena, such as dynamic name generation [16].
They have also be used to do effectful programming in pure functional languages [4]. Power and
Robinson introduced Freyd Categories [12] as an alternative presentation of strong monads.

Effect Systems [6] augment traditional type systems with information about the side-effects
caused by a program’s execution. Wadler [19] has presented a connection between effect systems
and monads indexed by effect types. The difference between the indexed monads presented by
Wadler and our parameterised monads is that the indexed monads are indexed by one variable
representing the effects encapsulated by that monad, whereas our parameterisation represents
the start and finish states of the effectful computation.

7. CONCLUSIONS

We have presented generalisations of Moggi’s computational monads and Power et al ’s Freyd
categories to cover parameterised effects, our main examples being typed side-effects and typed
I/O. By also considering monoidal parameterisation, our definitions also cover separated side-
effects and multiple streams of I/O. We have also presented two typed λ-calculi which are sound
and complete for the simple parameterisation and monoidal parameterisation cases.

Workshop on Mathematically Structured Functional Programming 14

Parameterised Notions of Computation

For future work, we intend to consider the effect of indexed types so that the objects of the
parameterising category can be refined with “names” of the regions of memory being referred
to. This should enhance the categorical structures to be able to interpret type systems such as
the Linear Language with Locations [10] and Alias Types [15]. The connection with Hoare logic
needs to be further investigated, and there is an obvious analogy between the computation in
state context we have considered here and the frame rule of Separation Logic [14].

Finally, Plotkin and Power’s approach of deriving computational monads from algebras of
operations and equations [11] should be adaptable to parameterised monads. We have already
done a small amount of work in this direction by deriving the global typed state monad above from
a plausible algebra of lookup and update operations (see the appendix of [1]).

Acknowledgement This work was funded by the ReQueST grant (EP/C537068) from the
Engineering and Physical Sciences Research Council.

REFERENCES

[1] Robert Atkey. Substructural Simple Type Theories for Separation and In-place Update. PhD
thesis, University of Edinburgh, 2006.

[2] Olivier Danvy and Andrzej Filinski. A functional abstract of typed contexts. Technical report,
DIKU – Computer Science Department, University of Copenhagen, August 1989.

[3] Neil Ghani. Adjoint Rewriting. PhD thesis, University of Edinburgh, 1995.
[4] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In POPL,

pages 71–84, 1993.
[5] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value

programming languages. Information and Computation, 185:182–210, 2003.
[6] J.M. Lucassen and D.K. Gifford. Polymorphic effect systems. In Proceedings of 15th ACM

Symposium on Principles of Programming Languages, pages 47–57, 1988.
[7] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate

Texts in Mathematics. Springer-Verlag, 2nd edition, 1998.
[8] E. Moggi. Computational lambda-calculus and monads. In Rohit Parikh, editor, Proceedings

of the Fourth Annual IEEE Symp. on Logic in Computer Science, LICS 1989, pages 14–23.
IEEE Computer Society Press, June 1989.

[9] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[10] Greg Morrisett, Amal J. Ahmed, and Matthew Fluet. L3: A linear language with locations. In
TLCA, pages 293–307, 2005.

[11] Gordon D. Plotkin and John Power. Notions of computation determine monads. In
M. Nielsen and U. Engberg, editors, Foundations of Software Science and Computation
Structures : 5th International Conference, FOSSACS 2002, number 2303 in Lecture Notes
in Computer Science. Springer-Verlag, April 2002.

[12] John Power and Edmund Robinson. Premonoidal categories and notions of computation.
Math. Struct. in Comp. Science, 7:453–468, 1997.

[13] John Power and Hayo Thielecke. Closed freyd- and kappa-categories. In ICALP, volume
1644 of Lecture Notes in Computer Science. Springer, 1999.

[14] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, 2002.

[15] Frederick Smith, David Walker, and J. Gregory Morrisett. Alias types. In ESOP, pages 366–
381, 2000.

[16] Ian Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge,
December 1994.

[17] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis, University
of Edinburgh, 1997.

[18] Philip Wadler. Monads and composable continuations. Lisp and Symbolic Computation,
7(1):39–56, January 1994.

[19] Philip Wadler. The marriage of effects and monads. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP ’98), pages 63–74, 1998.

Workshop on Mathematically Structured Functional Programming 15

