
Syntax and Semantics of Quantitative Type Theory
Robert Atkey

University of Strathclyde

robert.atkey@strath.ac.uk

Abstract
We present Quantitative Type Theory, a Type Theory that records

usage information for each variable in a judgement, based on a

previous system by McBride. The usage information is used to give

a realizability semantics using a variant of Linear Combinatory

Algebras, refining the usual realizability semantics of Type Theory

by accurately tracking resource behaviour. We define the semantics

in terms of Quantitative Categories with Families, a novel extension

of Categories with Families for modelling resource sensitive type

theories.

CCSConcepts •Theory of computation→Linear logic;Type
theory;

Keywords Type Theory, Linear Logic

ACM Reference Format:
Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In

LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,

July 9–12, 2018, Oxford, United Kingdom.ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3209108.3209189

1 Introduction
Dependent Type Theory promises to combine “programming” and

“verification” by combining both in a single system. The implementa-

tions Agda [34] and Idris [7] advertise themselves as a “dependently

typed functional programming language” and a “general purpose

pure functional programming language with dependent types”, re-

spectively. Coq [24] is primarily intended as a proof assistant, but

also provides a program extraction facility.

However, when trying to actually use Type Theory as a general

purpose programming language, type dependency appears to ac-

tively encourage inefficient code. This is caused by Type Theory’s

use of variables for two purposes: as information to be used in

the formation of types, for example, the type Fin(n) of naturals
bounded by n depends on the natural number n when type check-

ing, but not a runtime; and as computational information that is

manipulated by programs at runtime. An example is illustrated by

the type of the cons operation for length indexed vectors of Ss:

cons : (n : nat) → S → vec n S → vec (succ n) S

A naive implementation of length indexed vectors will store, for

every element: a value s ; a tail v; and a natural number n recording

the length ofv . If a unary representation of natural numbers is used,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209189

then this can easily lead to a runtime representation of vectors that

consumes memory space quadratic in the length of the list!

Related to the problem of distinguishing between type formation

and computational use of data is distinguishing between different

kinds of computational use of data. Such information can be used

to generate more efficient code, or to ensure that programs only use

computational resources in restricted ways (allowing, for example,

in place update of memory). Linear Logic [14] initiated a body of

research into such systems. Initially, this recorded zero, single, or

multiple uses (made explicit by Mogensen [28]), but recent work

in coeffects and quantitative types by Petricek et al. [29], Brunel

et al.[8], and Ghica and Smith [13] refined this to track usage via

semirings. However, extending these systems to dependent Type

Theory is not straightforward due to the conflict between type

formation and computational uses.

McBride [25] has recently proposed a resolution to this conflict

by combining the work on erasability and quantitative types. His

insight is to use the 0 of the semiring to represent information

that is erased at runtime, but is still available for use in types (i.e.,

extensionally). McBride presented a syntax and typing rules for the

system, as well as an erasure property that exploits the difference

between “not used” and “used”, but does not do anything with the

finer usage information available. In this paper, we fix and extend

McBride’s system, and present semantic interpretations that fully

exploit the usage information.

Contributions

1. Section 2 reformulates McBride’s system as Quantitative

Type Theory (QTT) to add dependent tensor products and

booleans, and to fix a bug in the original system that caused

substitution to be inadmissible.

2. Section 3 presents Quantitative Categories with Families, a

novel class of categorical models for interpreting QTT.

3. Section 4 presents several concrete realisability models of

QTT as instances of QCwFs. These demonstrate that QTT

allows resource sensitive interpretation of terms. Read con-

structively, these interpretations yield an efficient extraction

mechanism with precise control over resource usage.

2 Quantitative Type Theory
Combining dependency with linearity is not straightforward. We

motivate McBride’s solution and our formulation of it.

2.1 Dependency and Accountancy
In Martin-Löf Type Theory, the term judgement has the form:

x1 : S1,x2 : S2, . . . ,xn : Sn ⊢ M : T

From Type Theory’s mixed computational/logical point of view,

the context x1 : S1,x2 : S2, . . . ,xn : Sn has two uses. It describes

the names used for resources which may be used byM to construct

a resource of type T . It also describes the names used to refer to

the extensional meanings represented by those resources used to

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Robert Atkey

form the types S2, . . . , Sn and T . This dual usage is illustrated in

the judgement:

n : Nat,x : Fin(n) ⊢ x : Fin(n) (1)

where Nat is the type of natural numbers, and Fin(n) is the type
of numbers less than n. The variables n and x play two different

roles: x is used as a reference to a resource that is transferred from

the input to the output; and n is used to define the type of x . The
fact that n is not used in the computation being described is not

explicitly recorded.

Linear Logic [14] uses presence or absence in a context to explic-

itly record used resources. A linear typing judgement,

x1 : X1, . . . ,xn : Xn ⊢ M : Z

indicates that the termM uses the resources named by the xi each
precisely once.

Linear Logic’s resource accounting via presence conflicts with

type dependency. If a variable’s referenced resources are not used

computationally, it must not appear in the context and so is not

available for use in type formation. Judgement 1 is thus not linear:

both because n is not used in the term, and because it is used twice

in types.

To resolve this conflict, several authors have used formulations of

Linear Logic that distinguish between unrestricted (“intuitionistic”)

variables and restricted (“linear”) variables. For simple types, this

originates in Barber’ work [5], where judgements have two contexts

separated by a vertical bar:

x1 : S1, . . . ,xm : Sm | y1 : X1, . . . ,yn : Xn ⊢ M : Y

The variables xi may be used without restriction, zero, one, or

many times. The variables yi must be used exactly once. Thus,

the judgement tracks information about the two different kinds of

usage. Cervesato and Pfenning [9], and later Krishnaswami et al.

[18] and Vákár [35] adapted this to dependent types. Exploiting

the fact that variables in the unrestricted context act as they do

in normal Type Theory, there is no problem in allowing types to

depend on the variables xi . If we wish to treat elements of Fin(n)
as non-duplicable resources, Judgement 1 can be reformulated as:

n : Nat | x : Fin(n) ⊢ x : Fin(n)

The variables in the unrestricted context now inherit the ambigu-

ous status of variables from standard Type Theory. They can be

used purely contemplatively in types and they can be used for com-

putation. The difference is not recorded in the typing judgement. A

further restriction is that types cannot depend on linear variables.

There is no way that we can contemplate the extensional content

of a linear resource for the purposes of typing, for example:

n : Nat | x : Fin(n) ⊢ (x , refl(x)) : (y : Fin(n)) × (x ≡ y)

where we are trying to state that the value we return has the same

extensional content as the input by pairing the computational rep-

resentation of the value with proof of equality.

Systems that rely on split contexts still adhere to Linear Logic’s

discipline of using presence or absence in a context to track how a

variable is used. This restricts what kinds of “use” we can express:

either a variable is used or it is not. To lift this latter restriction,

systems that annotate variables of the context with information

about how they are used have been proposed by Brunel et al. [8],

Ghica and Smith [13], and Petricek et al. [29] (the general idea of

marking variable bindings rather than their types was originally

called “discharged assumptions” by Terui [33]). In all these systems,

information about how variables are used is recorded using a semir-

ing. Semirings are a natural structure to use: addition is used to

sum up multiple uses of a variable, and multiplication is used to

account for nested use. In the notation we will use in this paper, a

judgement in these systems looks like:

x1
ρ1
: S1, . . . ,xn

ρn
: Sn ⊢ M : T (2)

where the ρ1, . . . , ρn are elements of the semiring indicating how

the corresponding variable is used. In these systems, the zero of

the semiring is used to indicate that a variable is not used at all:

x
0

: S is a complicated way of stating that x may as well be absent.

However, when we move to dependent types, 0 usage variables

have a useful meaning. McBride [25] reads the usage annotations

ρi as indications of computational usage, so a variable with usage

0 indicates that it has no “run-time” presence, but may still be used

in the formation of types. The properties of semirings means that 0

usage is ideal for tracking use in types: we always have 0 + ρ = ρ,
so combining a computational use with a use in a type retains the

original usage; and 0ρ = 0, so nesting an apparently computational

use within a type treats the whole usage as noncomputational. Thus

McBride’s system incorporates both erasure (see also Miquel [26]

and Mishra-Linger and Sheard [27]) with linearity.

Term typing judgements now have the form:

x1
ρ1
: S1, . . . ,xn

ρn
: Sn ⊢ M

σ
: T (3)

where the difference from Judgement 2 is that the output is anno-

tated with a usage σ , where σ is restricted to either be the 0 or the 1

of the semiring. This annotation means that we can construct terms

that are only to be used in the formation of types. McBride allowed

arbitrary usages ρ on the final colon. However, this yields a system

that does not admit substitution as we show in Section 2.3.

We now introduce our formulation of McBride’s system, extend-

ing it with a data type of booleans, and dependent tensor product

types. McBride presented a bidirectional system suited for imple-

mentation, and did not distinguish between proper types and terms

representing types. We are interested in a semantical investigation

of the theory and so switch to a system with an explicit separa-

tion of types and representations of types, and with a “declarative”

presentation of the rules.

2.1.1 Semirings for Usage Accounting
A semiring R is a structure consisting of a carrier set R, binary
operations (+) : R × R → R, (·) : R × R → R and constants 1, 0 ∈ R,
such that (R,+, 0) is a commutative monoid, (R, ·, 1) is a monoid,

(+) and (·) distribute, and 0ρ = ρ0 = 0, for all ρ ∈ R. We also

require that the semiring R is positive, meaning that ρ + π = 0

implies ρ = 0 and π = 0, and has the zero-product property: ρπ = 0

implies ρ = 0 or π = 0. These latter two properties are required for

the admissibility of substitution.

Suitable semirings include the zero-one-many semiring {0, 1,ω},
where ρ +ω = ω and ω ·ω = ω; the natural numbers with addition

and multiplication; and the boolean semiring {0, 1}, which we can

read as “erased” and “present”.

2.1.2 Presyntax
Quantitative Type Theory (QTT) is defined over the syntactic cate-

gories of usages, ρ,π , precontexts Γ, pretypes S,T ,R, and preterms

Syntax and Semantics of Quantitative Type Theory LICS ’18, July 9–12, 2018, Oxford, United Kingdom

M,N ,O :

ρ,π ∈ R

Γ ::= ⋄ | Γ,x
ρ
: S

S,T ,U ::= (x
π
: S) → T | (x

π
: S) ⊗ T | I | Bool | El(M) | Set

M,N ,O ::= x | λx
π
: S .MT | App

(x
π
: S)T

(M,N)

| (M,N)
x
π
: S .T

| ∗ | fst
x
π
: S .T

(M) | snd
x
π
: S .T

(M)

| let
x
π
: S .T

(x ,y) = M in N | letI ∗ = M in N

| true | false | ElimBool(z)T (Mt ,Mf ,N)

| Bool | (x
π
: M) → N

The rules that identify the contexts, types, and terms from the pre-

contexts, pretypes, and preterms are described below. The symbol

⋄ denotes the empty precontext, which we omit when writing pre-

contexts with more than zero elements. Preterms contain more

type information than is usually necessary (e.g., the result type T
in a λ-abstraction). This will be used when we interpret the syntax

in our categorical models in Section 3.

Precontexts contain usage annotations, ρ, on each of the con-

stituent variables. Scaling, πΓ, is defined by:

π (⋄) = ⋄ π (Γ,x
ρ
: S) = πΓ,x

π ρ
: S

Scaling is shallow in the sense that usage annotations in pretypes

S , if any, are not affected. By the semiring laws, context zero-ing,

0Γ, sets all the annotations to 0.

Precontext addition Γ1 + Γ2 is only defined when 0Γ1 = 0Γ2:

⋄ + ⋄ = ⋄ (Γ1,x
ρ1
: S) + (Γ2,x

ρ2
: S) = (Γ1 + Γ2),x

ρ1+ρ2
: S

These cases are exhaustive by the requirement that 0Γ1 = 0Γ2.

2.1.3 Contexts, Types, Terms
Contexts are identified within the precontexts by the judgement

Γ ⊢, defined by the following rules:

⋄ ⊢
Emp

Γ ⊢ 0Γ ⊢ S

Γ,x
ρ
: S ⊢

Ext

where the judgement 0Γ ⊢ S indicates that S is well formed as a

type in the context 0Γ. We will see the type formation rules for

each type former below. The rule Emp builds the empty context.

The rule Ext extends a context Γ with a extra variable x of type S ,
with usage annotation ρ. The annotation ρ indicates building of a

context representing environments that provide for ρ-many uses

of x .
As we shall see below, all type formation rules yield judgements

where all the usage annotations in Γ are equal to 0. Thus type

formation requires no computational resources.

Term judgements in QTT have the form:

Γ ⊢ M
σ
: S

where σ ∈ {0, 1}. The binary choice of σ effectively splits the

theory into two halves. When σ = 0, we are indicating that we are

constructing a term with no need for computational content. By

Lemma 2.3 (below) when σ = 0 we will necessarily have that all

the usage annotations in the context are 0 too. When σ = 1, we

are indicating we are constructing computationally relevant data.

The two halves are similar to Pfenning’s “:” and “÷” judgements

for terms and irrelevant proofs respectively [30].

The rules for variables and type conversion are:

⊢ 0Γ,x
σ
: S, 0Γ′

0Γ,x
σ
: S, 0Γ′ ⊢ x

σ
: S

Var

Γ ⊢ M
σ
: S 0Γ ⊢ S ≡ T

Γ ⊢ M
σ
: T

Conv

The variable rule, Var, selects an individual variable from the con-

text. In keeping with our intuition for usage annotations, all vari-

ables that are not selected are marked with 0 usage, and the selected

variable is marked with the result usage σ . The conversion rule,

Conv, is almost identical to that in standard MLTT, except that the

type equality judgement 0Γ ⊢ S ≡ T explicitly stipulates that types

are always judged equal in a context with no resources.

Dependent Function Types Function types (x
π
: S) → T record

how the function will use its argument via the π annotation. The

formation rule is:

0Γ ⊢ S 0Γ,x
0

: S ⊢ T

0Γ ⊢ (x
π
: S) → T

Pi

The usage annotation π is not used when judging that T is a type.

As for all type well formedness judgements in QTT, it is judged

in a context of 0 usage. The usage annotation π is used in the

introduction and elimination rules of this type to track how the

abstracted variable x is used, and how to multiply the resources

required for the argument, respectively.

Γ,x
σπ
: S ⊢ M

σ
: T

Γ ⊢ λx
π
: S .MT σ

: (x
π
: S) → T

Lam

Γ1 ⊢ M
σ
: (x

π
: S) → T

Γ2 ⊢ N
σ ′
: S 0Γ1 = 0Γ2 σ ′ = 0⇔ (π = 0 ∨ σ = 0)

Γ1 + πΓ2 ⊢ App(xπ: S)T (M,N)
σ
: T [N /x]

App

Forgetting the resource annotations, these are the standard intro-

duction and elimination rules for dependent function types (re-

membering that the side condition 0Γ1 = 0Γ2 means that Γ1 and
Γ2 have the same variables with the same types). In the introduc-

tion rule, we require that the abstracted variable x has usage σπ
– multiplication by σ is used to enforce the zero-needs-nothing

property of the system. In the elimination rule, we sum up the

usage requirements of the function and its argument, scaling the

argument’s requirements by the amount required by the function

itself. By the last premise, the function argument N may be judged

in the 0-use fragment of the system in the case when either we are

already in that fragement, or the function will not use the argument

(π = 0). It is this condition on usages that requires us to stipulate

that the usage accounting semiring we use is positive and has the

zero-product property.

Dependent Tensor Product Types We extend McBride’s system

with a dependent tensor product type (x
π
: S) ⊗ T , where the π

annotation records how many times the first argument may be

used, and a unit type I :

0Γ ⊢ A 0Γ,x
0

: S ⊢ T

0Γ ⊢ (x
π
: S) ⊗ T

⊗
0Γ ⊢

0Γ ⊢ I
I

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Robert Atkey

As for the dependent function type, type formation does not require

any intensional resources. The introduction rules:

Γ1 ⊢ M
σ ′
: S 0Γ1 = 0Γ2

Γ2 ⊢ N
σ
: T [M/x] σ ′ = 0⇔ (π = 0 ∨ σ = 0)

πΓ1 + Γ2 ⊢ (M,N)
x
π
: S .T

σ
: (x

π
: S) ⊗ T

0Γ ⊢

0Γ ⊢ ∗
σ
: I

Resource-wise, building a pair is similar to the App rule above. To

build an element of the unit type requires no resources. When

we are in the extensional portion of the theory (σ = 0), there are

effectively no restrictions, and these are the normal introduction

rules for dependent product and unit types.

The elimination rules are interesting because there are two sets,

depending on whether we are in the erased (σ = 0) or present

(σ = 1) part of the theory. Under erasure, we are free to use the

normal first and second projection operators:

Γ ⊢ M
0

: (x
π
: S) ⊗ T

Γ ⊢ fst
x
π
: S .T

(M)
0

: A

Γ ⊢ M
0

: (x
π
: S) ⊗ T

Γ ⊢ snd
x
π
: S .T

(M)
0

: T [fst(M)/x]

We also assume the usual βη equality rules in the erased fragment.

There is no erased eliminator for the I type; in the absence of

intensional information, the I type acts like the “unit” type in a

normal type theory, and so has no eliminator. We have an η-rule
for I in the σ = 0 fragment stating that ∗ is the only inhabitant.

When we take into account the resource content of objects,

we are more restricted in how we can eliminate objects of tensor

product and unit type. Just as for elimination of ⊗ in intuitionistic

linear types theories, we must use a pattern matching construct to

ensure that both parts of the product are used. Likewise, we must

explicitly eliminate elements of the unit type:

0Γ1, z
0

: (x
π
: S) ⊗ T ⊢ U Γ1 ⊢ M

σ
: (x

π
: S) ⊗ T

Γ2,x
σπ
: S,y

σ
: T ⊢ N

σ
: U [(x ,y)/z] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ letxπ: S .T (x ,y) = M in N
σ
: U [M/z]

0Γ1,x
0

: I ⊢ U Γ1 ⊢ M
σ
: I Γ2 ⊢ N

σ
: U [∗/x] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ letI ∗ = M in N
σ
: U [M/x]

These constructs are subject to the usual βη and commuting con-

version rules [5]. These constructs are permitted in the σ = 0 and

σ = 1 fragments, but in the σ = 0 fragment they are shorthand for

fst and snd:

0Γ, z
0

: (x
π
: S) ⊗ T ⊢ U

0Γ ⊢ M
0

: (x
π
: S) ⊗ T 0Γ, x

0

: S, y
0

: T ⊢ N
0

: U [(x, y)/z]

0Γ ⊢ let
x
π
: S .T

(x, y) = M in N ≡ N [fst(M)/x, snd(M)/y]
0

: U [M/z]

By combining ⊗ and I , we can derive an exponential type !ρA for

QTT as !ρA = (x
ρ
: A) ⊗ I .

Boolean Type The type Bool is an example of a type of data that

can be available at runtime.

0Γ ⊢

0Γ ⊢ Bool
Bool

0Γ ⊢

0Γ ⊢ true, false
σ
: Bool

B-T,F

The introduction rules indicate two pieces of information. First, the

0 usage on the context Γ indicates that no resources are required

to construct the constants true and false. Second, the result usage

annotation σ is unrestricted, indicating that we are free to choose

whether this is a boolean value that is erased or present.

The elimination rule for booleans is:

0Γ1, z
0

: Bool ⊢ T Γ1 ⊢ Mt
σ
: T [true/z]

Γ1 ⊢ Mf
σ
: T [false/z] Γ2 ⊢ N

σ
: Bool 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ ElimBool(z)T (Mt , Mf , N)
σ
: T [N /z]

B-Elim

We ensure that the result type T is wellformed, with 0 usage. Then

the two branchesMt andMf for the true and false case respectively

must be typed with the same usage annotations Γ1. This follows
the same style as for the “additive” connectives in Linear Logic.

The actual boolean to be eliminated must be constructed from

other resources Γ2, but this must have the same typing content

(0Γ1 = 0Γ2).

Universe: The Type of Small Types The type of small types, Set,
is an example of a type whose elements occupy no resource, but

do have a role in forming types. The type formation rule for Set is
similar to the one for Bool:

0Γ ⊢

0Γ ⊢ Set
Set

The introduction rules for Set are only available in the σ = 0

fragment; we can never construct a Set value with runtime presence.

For instance, the terms representing dependent function types:

0Γ ⊢ M
0

: Set 0Γ,x
0

: El(M) ⊢ N
0

: Set

0Γ ⊢ (x
π
: M) → N

0

: Set
Set-Pi

The other introduction rules are similar, but are omitted for space.

Elements of Set become proper types via the “decoder” El(−):

0Γ ⊢ M
0

: Set

0Γ ⊢ El(M)
El

This rules indicates that the use of a code for a type in a type does

not require any computational information.

Using Set with our other type formers, we can construct addi-

tive product and sum types. For example, S × T = (b
1

: Bool) →
ElimBool(_)Set (S,T ,b).

This concludes our presentation of the context, type and term

formation rules of QTT. The remaining rules of QTT concern the

type and term equality judgements Γ ⊢ S ≡ T and Γ ⊢ M ≡ N
σ
: S ,

but are omitted for space.

2.2 Syntactic Properties of QTT
Usage annotation manipulation The following shows how us-

age annotations and the judgements of QTT interact.

Lemma2.1. Usage annotations do not affect context well formedness:

Γ1 ⊢ and 0Γ1 = 0Γ2 implies Γ2 ⊢.

Lemma 2.2. The following 0-ing rules are admissible:

Γ ⊢ M
σ
: S

0Γ ⊢ M
0

: S
Tm-Zero

Γ ⊢ M ≡ N
ρ
: S

0Γ ⊢ M ≡ N
0

: S
Tm-Eq-Zero

These rules state that we can take any term and produce its

“resource free” counterpart in the σ = 0 fragment. Semantically,

this will be modelled by theU functor/functions in our QCwFs in

Definition 3.2. Note that it is not possible to go the other way: there

Syntax and Semantics of Quantitative Type Theory LICS ’18, July 9–12, 2018, Oxford, United Kingdom

is no way to reconstruct the resource usage, and some constructs

such as fst and snd only live in the σ = 0 fragment.

Lemma 2.3 (Zero needs nothing). If Γ ⊢ M 0

: S , then 0Γ = Γ.

Note that the “other direction” of this lemma does not hold. If we

have 0Γ ⊢ M
σ
: S , then it is not necessarily the case that σ = 0. For

example, the Tm-Bool-True rule produces judgements of arbitrary

usage from no resources.

Weakening Weakening allows the insertion of variables into con-

texts, provided they are 0 usage.

Lemma 2.4. Weakening is admissible:

Γ, Γ′ ⊢ J 0Γ ⊢ U

Γ,x
0

: U , Γ′ ⊢ J
Weaken

where J is “is context”, S , S ≡ T ,M
σ
: S , orM ≡ N

σ
: S .

Substitution Substitution (Lemma 2.5) allows for a variable x
ρ
: S

to be replaced by a term of type S , as long as, in the case of the

term judgements, we add the resources it requires multiplied by ρ
to the resources already present.

Lemma 2.5. The following substitution rules are admissible:

Γ,x
ρ
: S, Γ′ ⊢ 0Γ ⊢ N

0

: S

Γ, Γ′[N /x] ⊢

0Γ1,x
0

: S, 0Γ′ ⊢ T Γ2 ⊢ N
0

: S 0Γ1 = 0Γ2

0Γ1, 0Γ
′
[N /x] ⊢ T [N /x]

0Γ1,x
0

: S, 0Γ′ ⊢ T ≡ T ′ Γ2 ⊢ N
0

: S 0Γ1 = 0Γ2

0Γ1, 0Γ
′
[N /x] ⊢ T [N /x] ≡ T ′[N /x]

Γ1,x
ρ
: S, Γ′ ⊢ M

σ
: T

Γ2 ⊢ N
σ ′
: S 0Γ1 = 0Γ2 σ ′ = 0⇔ ρ = 0

(Γ1 + ρΓ2), Γ
′
[N /x] ⊢ M[N /x]

σ
: T [N /x]

Γ1,x
ρ
: S, Γ′ ⊢ M ≡ M ′

σ
: T

Γ2 ⊢ N
σ ′
: S 0Γ1 = 0Γ2 σ ′ = 0⇔ ρ = 0

(Γ1 + ρΓ2), Γ
′
[N /x] ⊢ M[N /x] ≡ M ′[N /x]

σ
: T [N /x]

2.3 Inadmissibility of Substitution in McBride’s system
McBride’s original system allowed for term judgements of the form

Γ ⊢ M
ρ
: T where ρ is an arbitrary element of the semiring. We now

show that such a formulation with the semiring {0, 1,ω} yields a
system that is not closed under substitution. A proof attempt to

show that substitution is admissible fails on App because we need

to take the term Γ ⊢ O
ρ1+ρ2
: U that is being substituted in, and

split it into some Γ1 ⊢ O
ρ1
: U and Γ2 ⊢ O

ρ2
: U such that Γ1 + Γ2 = Γ.

This is not possible in general. We illustrate the problem with:

f
ω
: (x

1

: A) → A ⊢ λx
ω
:A. f x

ω
: (x

ω
: A) → A (4)

This term coerces some function f from a type that states it uses its

argument once to a type where it uses its argument multiple times.

This is despite McBride’s system not explicitly allowing subusaging.

The following derivation gives a context into which substitution

of Judgement 4 fails. Let D1 and D2 stand for uses of the Var rule

to derive y
0

: A,д
1

: (x
ω
: A) → A ⊢ д

1

: (x
ω
: A) → A and

y
ω
: A,д

0

: (x
ω
: A) → A ⊢ y

ω
: A.

D
1

y
0

: A, д
ω
: (x

ω
: A) → A ⊢ д

ω
: (x

ω
: A) → A D

2

y
ω
: A, д

ω
: (x

ω
: A) → A ⊢ дy

ω
: A

y
ω
: A, д

ω
: (x

ω
: A) → A ⊢ д (дy)

1

: A

If we attempt to substitute λx
ω
:A. f x for д, then to push the term

into the two halves of the top level application, we need to split

Judgement 4 according to the equation ω = 1 +ω. We already have

a version of usage ω, but the following judgement is not derivable:

f
1

: (x
1

: A) → A ⊬ λx
ω
: A. f x

1

: (x
ω
: A) → A

Indeed, it is not possible to derive y
ω
: A, f

ω
: (x

1

: A) → A ⊢

f (f y)
ω
: A due to the mismatch between y’s ω annotation, and

f ’s 1 requirement. The implicit weakening in Judgement 4 is not

accessible without an intervening λ-abstraction. This problem is

fixed by only allowing 0 or 1 usage on terms, which prohibits this

kind of implicit “subusaging”. An alternative solution would be to

allow subusaging. This is something we plan to investigate.

3 Quantitative Categories with Families
Giving a model for dependent Type Theory is a delicate affair due

to the complex mutual definition of contexts, types and terms. We

build on the existing notion of Categories with Families (CwFs)

[11, 15] to define Quantitative Categories with Families (QCwFs)

suitable for modelling QTT. Every QCwF contains a CwF, so we

first recall their definition.

Definition 3.1. A Category with Families (CwF) is a six-tuple

(C,Ty,Tm,⊤,−.−, ⟨−,−⟩), where:

1. C is a category with a chosen terminal object ⊤;

2. For ∆ ∈ ObC, a collection Ty(∆) of semantic types;

3. For ∆ ∈ ObC and S ∈ Ty(∆), a collection Tm(∆, S) of seman-

tic terms;

4. For every f : ∆ → ∆′ in C, a function −{ f } : Ty(∆′) →
Ty(∆), and for S ∈ Ty(∆′) a function −{ f } : Tm(∆′, S) →
Tm(∆, S { f }), such that both assignments preserve identities

and composition.

5. For each object ∆ in C and S ∈ Ty(∆) an object ∆.S (called

the comprehension of S) such that there is a bijection natural

in ∆′:

C (∆′,∆.S) � {(f ,M) | f : ∆′ → ∆,M ∈ Tm(∆′, S { f })}

Given f : ∆′ → ∆ and M ∈ Tm(∆′, S { f }), we write ⟨f ,M⟩
for the associated morphism ∆′ → ∆.S in C. Conversely,

given a morphism f : ∆′ → ∆.S in C, we write f #1 : ∆′ → ∆
and f #2 ∈ Tm(∆′, S { f #1}) for the associated morphism and

semantic term.

The following definitions derive projection and weakening from

Definition 3.1, and also define the semantic counterpart of a sub-

stitution of a term for a variable. We will require usage annotated

counterparts of these below.

1. For ∆ ∈ ObC and S ∈ Ty(∆), the first projection morphism

p∆.S : ∆.S → ∆ is defined as p∆.S = id
#1

∆.S .

2. For ∆ ∈ C and S ∈ Ty(∆), the second projection v∆.S ∈
Tm(∆.S, S {p∆.S }) is defined as v∆.S = id

#2

∆.S .

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Robert Atkey

3. For any ∆,∆′ in C, S ∈ Ty(∆) andmorphism f : ∆′ → ∆, the
weakening of f by S , wk(f , S) : ∆′.S { f } → ∆.S is defined as

wk(f , S) = ⟨f ◦ p∆′ .S {f }, v∆′ .S {f }⟩.
4. For any ∆ in C, S ∈ Ty(∆) andM ∈ Tm(∆, S), we define the

morphismM : ∆→ ∆.S asM = ⟨id∆,M⟩.

The definition of a Quantitative Category with Families incorpo-

rates a CwF, and layers over it facilities for representing contexts,

simultaneous substitutions and terms, all with usage information.

Definition 3.2. For a usage semiringR, anR-Quantitative Category
with Families (R-QCwF) consists of the data:

1. A CwF (Definition 3.1) (C,Ty,Tm, 1,−.−, ⟨−,−⟩);
2. A category L, whose objects will be used to interpret con-

texts with resource annotations and whose morphisms will

interpret simultaneous substitutions, together with a faithful

functorU : L → C;

3. (Addition structure) Let L ×C L be the pullback of L
U
−→

C
U
←− L. We require a functor (+) : L×C L → L such that

U (Γ1 + Γ2) = U Γ1 (= U Γ2). Also, there is an object ⋄ ∈ L

such thatU⋄ = ⊤.
4. (Scaling structure) For ρ ∈ R, there is a functor ρ (−) : L → L

such thatU (ρ (−)) = U (−).
5. (Resourced Terms) For Γ in L and S ∈ Ty(U Γ), there is

a collection of semantic resourced terms RTm(Γ, S), with
injective functions UΓ.S : RTm(Γ, S) → Tm(U Γ, S). For
morphisms f : Γ′ → Γ, and types S ∈ Ty(U Γ), there is

a function −{ f } : RTm(Γ, S) → RTm(Γ′, S { f }) such that

U (M { f }) = (UM){U f }.
6. (Resourced context extension) For Γ in L, ρ ∈ R and S ∈

Ty(U Γ), there is an object Γ.ρS in L such that U (Γ.ρS) =
U Γ.S and there exist natural transformations

empπ : ⋄ → π⋄
emp+ : ⋄ → ⋄ + ⋄

extπ : πΓ.(πρ)S → π (Γ.ρS)
ext+ : (Γ1 + Γ2).(ρ1 + ρ2)S → Γ1.ρ1S + Γ2.ρ2S

such that U (empπ) = U (emp+) = id : ⊤ → ⊤, U (extπ) =
id, andU (ext+) = id.

7. Resourced counterparts of the projection, weakening, and

term substitution of the underlying CwF:

a. For Γ and S ∈ Ty(U Γ), there is a morphism pΓ.S : Γ.0S →
Γ such thatU (pΓ.S) = pU Γ.S ;

b. For Γ and S ∈ Ty(U Γ) there exists an element vΓ.S ∈
RTm(0Γ.1S, S {pU Γ.S }) such thatU (vΓ.S) = vU Γ.S ;

c. For f : Γ → Γ′, ρ ∈ R, and S ∈ Ty(U Γ′) there is

a morphism wk(f , ρS) : Γ.ρS {U f } → Γ′.ρS such that

U (wk(f , ρS)) = wk(U f , S);
d. ForM ∈ RTm(Γ2, S) and Γ1 such thatU Γ1 = U Γ2, there is a

morphism ρM : Γ1+ρΓ2 → Γ1.ρS such thatU (ρM) = UM .

e. For M ∈ Tm(U Γ, S) there is a morphism M : Γ → Γ.0S

such thatU (M) = M .

Note that 7d does not imply 7e in this definition. As noted after

Lemma 2.2, it is not possible to go from unresourced terms to

resourced terms.

The following proposition highlights the fact that the usage

information present in QTT/QCwFs is a refinement of the usual

structure of Type Theory. It is possible to completely ignore this

refinement and interpret the system in any model of Type Theory.

In Section 4 we present non-trivial models that use realisability

information to model the refinements brought about by the usage

annotations.

Proposition 3.3 (Trivial QCwFs). Let R be any usage semiring.

Every Category with Families (C,Ty,Tm, 1,−.−, ⟨−,−⟩) yields an
R-QCwF with L = C and RTm = Tm.

As would be expected, the syntax of QTT also forms a model in

the sense of R-QCwFs:

Proposition 3.4 (Syntactic Model). The syntax of QTT forms a

QCwF, where the underlying CwF is built from (equivalence classes

of) 0-usage annotated contexts, simultaneous substitutions, types, and

terms in the σ = 0 fragment. Objects of L are equivalence classes

of usage annotated contexts, and RTm(Γ, S) consists of equivalence
classes of terms in the σ = 1 fragment.

Type Formers Definition 3.2 only defines enough structure to

interpret the construction of contexts and the Var and Conv rules.

We must stipulate the existence of further structure if we wish

to interpret the function, tensor product, boolean, and universe

types. Each of these follows the same pattern as the definition of

QCwFs. We first require the standard structure on the CwF for the

type former without resource restrictions, and then we define a

corresponding refined structure for resourced semantic terms that

maps back to the unresourced version viaU . To conserve space, we

only do the case for dependent function types in detail.

Definition 3.5. A CwF C supports dependent products with usage

information if for all ∆ ∈ ObC, S ∈ Ty(∆), T ∈ Ty(∆.A), and
π ∈ R, there exists a semantic type ΠπST ∈ Ty(∆) with a bijection

Λ : Tm(∆.S,T) � Tm(∆,ΠπST), all natural in ∆.

For ∆, S and T as in Definition 3.5, and M ∈ Tm(∆,ΠπST)
and N ∈ Tm(∆, S), we define App00∆,S,T (M,N) ∈ Tm(∆,T {N }) as

App
00

∆,S,T = (Λ−1 (M)){N }. This is used to interpret application in

the σ = 0 fragment of QTT, the superscript indicating that both the

function and argument are in this fragment. To interpret abstraction

and application when σ = 1, we need a further definition:

Definition 3.6. A QCwF (L,C, . . .) supports dependent products
with usage information if the CwF C supports dependent products

with usage information (Definition 3.5), and there is an bijection

ΛL : RTm(Γ.πS,T) � RTm(Γ,ΠπST), natural in Γ such that U ◦
ΛL = Λ ◦U andU ◦ Λ−1

L
= Λ−1 ◦U .

To interpret application in the σ = 1 fragment, we need two

derived operations. When both premises are in the σ = 1 fragment,

we will have M ∈ RTm(Γ1,ΠπST) and N ∈ RTm(Γ2, S), such that

U Γ1 = U Γ2, and we define

App
11

Γ1,Γ2,π ,S,T
(M,N) =

Λ−1Γ1,π ,S,T
(M){πN } ∈ RTm(Γ1 + πΓ2,T {UN })

When the argument is erased we have π = 0,M ∈ RTm(Γ1,Π0ST)
and N ∈ Tm(U Γ, S), and we define

App
10

Γ,S,T (M,N) = Λ−1Γ,0,S,T (M){N } ∈ RTm(Γ,T {UN })

We have U (App1x (M,N)) = App
00 (UM,UN), for x ∈ {0, 1}, part

of the semantic counterpart of Lemma 2.2.

The required structure for the remaining type formers is sim-

ilar, albeit for the Set type, where we do not require any usage

annotation refined counterpart.

Syntax and Semantics of Quantitative Type Theory LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Interpretation of QTT in a QCwF We follow Hofmann [15]’s

presentation of the interpretation of Type Theory in CwF by first

defining a partial interpretation of the presyntax, and then showing

that this interpretation is well defined on well typed presyntax.

For contexts with all annotations 0, types, and terms in the σ = 0

fragment, the interpretation is as it is for unannotated Type Theory.

This fragment is self contained by Lemma 2.3.

To interpret contexts with resource annotations, and terms in

the σ = 1 fragment, we use the additional structure. We interpret

precontexts with resource annotations, Γ as objects JΓK of L and

simultaneously partially define two families of morphisms for split-

ting and distributing resource annotations, using the emp and ext
morphisms of the QCwF.

sΓ1,Γ2 : JΓ1 + Γ2K→ JΓ1K + JΓ2K
dπ ,Γ : JπΓK→ πJΓK

These morphisms “rearrange” the interpretations of contexts to

allow the use of the categorical combinators that interpret terms.

In the realisability semantics in Section 4, they will be directly

interpreted as rearrangement of resources.

Preterms in the σ = 1 fragment are partially assigned interpre-

tations with respect to some type assignment ∆ (i.e. a precontext

without usage annotations). The interpretation J∆;MK yields a pair
(Γ, t) of a precontext with usage annotations matching the vari-

ables and types in ∆, and a resourced semantic term t . We write

J⌊Γ⌋;MK for the partial assignment of resourced semantic terms

to preterms such that the usage annotations returned by the in-

terpretation match the precontext Γ. The actual interpretation of

preterms is defined by induction over their structure, using vΓ.S
and wk(f , ρS) to interpret variables and the appropriate structure

for each type’s introduction and elimination rules.

Soundness of the interpretation is stated as the following the-

orem, similar to [15]. The challenge in proving this theorem is in

showing that weakening and substitution are soundly interpreted

in the σ = 1 fragment. This is accomplished by showing that their

interpretations are tracked by the interpretations of weakening and

substitution in the underlying CwF.

Theorem 3.7. 1. If Γ ⊢, then JΓK is an object of L;

2. If Γ ⊢ S , then JΓ; SK is an element of Ty(U JΓK);
3. If Γ ⊢ S ≡ T , then JΓ; SK = JΓ;T K;
4. If Γ ⊢ M

0

: S , then JΓ;MK is an element of Tm(U JΓK, JΓ; SK);
5. If Γ ⊢ M ≡ N

0

: S , then JΓ;MK = JΓ;N K.
6. If Γ ⊢ M

1

: S , then J⌊Γ⌋;MK is an element of RTm(JΓK, JΓ; SK);
7. If Γ ⊢ M ≡ N

1

: S , then J⌊Γ⌋;MK = J⌊Γ⌋;N K.

Comparing R-QCwFs to other models Vákár [35] gives a cat-

egorical semantics for linear dependent Type Theory with split

contexts as we described in Section 2.1. His models consist of in-

dexed symmetric monoidal closed categories H : Cop → SMCCat

with a comprehension structure. In contrast to QCwFs, Vákár’s

models permit more freedom in choosing how to interpret linear

types and linearity; there is no requirement that every construct in

the linear portion erases to a non-linear representative, as QCwFs

require via theU functor. QCwFs are intended to model a situation

like QTT where we wish to remain with normal Type Theory for

the purposes of reasoning at the type level, and allow unrestricted

appearance of terms in types, but we also wish to be able to give

resource-aware realisations of programs. We substantiate this claim

in the next section with realisability models of QTT. We suspect

that QCwFs are more specific in that every QCwF (augmented with

a ⊗-product type former) forms one of Vákár’s indexed symmetric

monoidal categories.

4 Realisability Models of QTT
In our informal descriptions of QTT and QCwFs, we have distin-

guished between the erased and present, or resourced and unre-

sourced fragments of the system. We make this distinction formal

by constructing realisability models of QTT. Resource sensitive

computational content will be represented in the model by realisers

from a R-Linear Combinatory Algebras, a refinement of Abramsky,

Haghverdi and Scott’s Linear Combinatory Algebras [3].

4.1 R-Linear Combinatory Algebras
R-Linear Combinatory Algebras (R-LCAs) are extensions of BCI -
algebras:

Definition 4.1. A BCI-algebra (A, (·),B,C, I) comprises a set A,

a binary operation (·) (called “application”, and written left asso-

ciatively), and B,C, I ∈ A, such that B · x · y · z = x · (y · z),
C · x · y · z = x · z · y, and I · x = x .

BCI -algebras are the untyped counterpart of a Hilbert style ax-

iomatisation of the⊸ fragment of Linear Logic, analogous to the S
and K combinators for minimal implicational logic. We think of the

elements of A as “computational widgets” that can be connected

to one another via application. The B,C, I combinators are a basis

for linear implication, ⊸, allowing composition (B), exchange (C),
and identity (I).

BCI -algebras are combinatorily complete: given an expression

M with variables and the combinators that contains a variable x
exactly once, there is an expression λ∗x .M that does not contain

x , such that (λ∗x .M) · N = M[N /x]. Using this fact, we define an
n-ary tupling operation:

Definition 4.2. Let p1, . . . ,pn be elements of a BCI -algebra. De-
fine their tupling [p1, . . . ,pn] = λ∗q. q p1 . . . pn . We use the no-

tation let [x1, . . . ,xn] = p in q for p (λ∗x1. . . . λ
∗xn .q) to represent

pattern matching decomposition of tuples.

Example 4.3 (Graph Models). Let D be a set isomorphic to N +
D ×D (for example, finite binary trees with natural numbers at the

leaves). We elide the injections into D and just write n for a natural

number in D and ⟨a,b⟩ for an element of D made from a pair of

elements of D. The powerset of D, P (D), can be endowed with the

structure of a BCI -algebra with booleans. Define application to be:

α · β = {b | ∃a. ⟨a,b⟩ ∈ α ,a ∈ β }

Application interprets α as a set of pairs describing the graph of a

function. Each pair in the graph can make a single observation of

β to produce a single output observation. This is linear application;

compare to Scott’s P (ω) model that allows a finite but arbitrary

number of observations of the input [31]. The B, C , and I combina-

tors are defined by the appropriate graphs:

B = {⟨⟨b, c⟩, ⟨⟨a,b⟩, ⟨a, c⟩⟩⟩ | a,b, c ∈ D}
C = {⟨⟨b, ⟨a, c⟩⟩, ⟨a, ⟨b, c⟩⟩⟩ | a,b, c ∈ D}
I = {⟨a,a⟩ | a ∈ D}

Example 4.4 (Geometry of Interaction). Abramsky et al.’s Geom-

etry of Interaction (GoI) situations supply a large range of BCI -
algebras. For concreteness, we explain the partial functions GoI

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Robert Atkey

situation in detail. LetD be as in Example 4.3. The set of partial func-

tions D ⇀ D can be endowed with the structure of a BCI -algebra.
We think of elements of this algebra as memoryless computational

devices that input and (possibly) output messages represented as

elements of D. Define application to be:

p · q = p00 ∪ (p01;q; (p11;q)
∗
;p10)

where we treat partial functions as subsets of D × D, pi j = {(a,b) |
(⟨i,a⟩, ⟨j,b⟩) ∈ p}, and we use the standard combinators for re-

lations. Conceptually, we are thinking of p as having two ports,

0 and 1, that are connected to the environment and to q, respec-
tively. Messages come in the 0 port and are either responded to

(p00) or are forwarded to q via p01, which may result in a dia-

logue, (p11;q)
∗
, before being forwarded back to the environment

by p10. We exploit the fact that we can tag messages in D with 0

or 1 to encode the multiplexing of p’s messages. The combinator

I = {(⟨0,x⟩, ⟨1,x⟩) | x ∈ D} ∪ {(⟨1,x⟩, ⟨0,x⟩) | x ∈ D} – it forwards

messages from the environment to its argument, and from its ar-

gument to the environment. The B and C combinators do similar,

if more involved, routing. Abramsky notes [2] that the relations

involved for the BCI combinators are always symmetric, yielding

a model of reversible computation. However, we will see below in

Example 4.12 that the structure required for the boolean type will

break this reversibility.

Another GoI situation that is suitable for modelling QTT is the

resumptions model presented by Abramsky et al. [3]. In this model,

the combinators are no longer necessarily memoryless, and can

update their behaviour based on previous inputs. Abramsky has

drawn attention to the relationship between this model and con-

currency models [1]. Hoshino et al. [17] have used the “memoryful”

aspect of this situation to further allow for effectful computations.

An exciting avenue of future research will be to examine the impli-

cations of this model for an effectful QTT.

Definition 4.5 (R-Linear Combinatory Algebra). Let R be a us-

age semiring. An R-Linear Combinatory Algebra (R-LCA) is a BCI-
algebra (A, (·),B,C, I) with a function !ρ : A → A, for all ρ ∈ R
and elements K ,Wπ ρ ,D,δπ ρ , Fρ ∈ A, such that:

K · x · !0y = x
Wπ ρ · x · !π+ρy = x · !πy · !ρy
D · !1x = x

δπ ρ · !π ρx = !π !ρx
Fρ · !ρx · !ρy = !ρ (x · y)

We also require that, for all x ,y ∈ A, !0x = !0y.

The condition that !0x = !0y ensures that we have a canonical

representation of erased data in our models. Abramsky et al.’s

original LCAs correspond to R-LCAs for the trivial one-element

semiring, without this condition. Given an LCA, we can build an

R-LCA for the R = {0, 1,ω} semiring:

Proposition 4.6. Let (A, (·),B,C, I , !,K ,W ,D,δ , F) be an LCA.We

can construct a {0, 1,ω}-LCA over (A, (·),B,C, I) with !0x = I , !1x =
x and !ωx = !x .

Example 4.7. In the graph model of Example 4.3, let us write

[a1, · · · ,an] to stand for a representation of lists as right-nested

tuples: ⟨a1, · · · ⟨an , 0⟩ · · · ⟩. We (partially) define the appending of

two elements of D as:

⟨a,a′⟩ ++ a′′ = ⟨a,a′ ++a′′⟩
0 ++ a′′ = a′′

where n ++a is undefined for n , 0. We similarly define a list

membership predicate a ∈ b. Now we define

!p = {[a1, · · · ,an] | a1, . . . ,an ∈ p}

and

K = {⟨a, ⟨[],a⟩⟩ | a ∈ A}
W = {⟨⟨a1, ⟨a2,b⟩⟩, ⟨a1 ++a2,b⟩⟩ | a1,a2,b ∈ A}
D = {⟨[a],a⟩ | a ∈ A}
δ = {⟨a1 ++ · · ·++an , [a1, . . . ,an]⟩ | a1, . . . ,an ∈ A}
F = {⟨f , ⟨a, [b1, . . . ,bn]⟩⟩ | ∀bi .∃c . c ∈ a ∧ ⟨c,bi ⟩ ∈ f }

Example 4.8. Following Abramsky et al., exponentials in the par-

tial functions GoI model are given by !p = {(⟨n,x⟩, ⟨n,y⟩ | (x ,y) ∈
p}. Thinking of partial functions D ⇀ D as having I/O ports, ex-

ponentiation multiplexes N-many ports through a single port by

tagging messages with a port number. The K ,W ,D,δ , F combina-

tors are all defined by manipulating the port numbers to perform

the required routing. See Abramsky et al. for details [3].

Another source of R-LCAs for the natural number semiring

is given by taking a BCI -algebra and representing duplicated re-

sources by tupling:

Proposition 4.9. Every BCI -algebra (A, (·),B,C, I) can be given

the structure of an (N,+,×, 0, 1)-LCA, where !n is defined by dupli-

cation: !nx = [x , . . . ,x︸ ︷︷ ︸
n

], using tupling (Definition 4.2).

We also require structure to model the datatype of booleans:

Definition 4.10. An BCI -algebra A0 ⊆ A has booleans if there

are elements T , F ∈ A and a function E : A × A → A such that

E (p,q) ·T = p and E (p,q) · F = q.

Example 4.11. In the Graph Model of Example 4.3, booleans are

represented by T = {1} and F = {0} and

E (α , β) = {⟨1,x⟩ | x ∈ α } ∪ {⟨0,x⟩ | x ∈ β }

Example 4.12. Booleans are represented in the partial functions

GoI situation algebra (Example 4.4) by T (x) = ⟨1,x⟩, F (x) = ⟨0,x⟩,
and:

E (p,q)⟨0,x⟩ = ⟨1,x⟩
E (p,q)⟨1, ⟨1,x⟩⟩ = ⟨0,p (x)⟩
E (p,q)⟨1, ⟨0,x⟩⟩ = ⟨0,q(x)⟩

That is, E (p,q) forwards its input to its argument, which tags it

with 1 or 0 depending on whether it is true or false. On its return to

E (p,q), the appropriate one of p or q is applied before forwarding

to the environment. Note that the relations described by E (p,q)
are not symmetric, indicating the irreversible nature of following a

conditional—there is no general way of working out whether the

conditional was true or false given the final output. An interesting

avenue for future work is to formulate a version of QTT with a type

of reversible booleans, yielding a calculus of dependently typed

reversible computation.

4.2 R-QCwFs from R-LCAs
We now fix an R-LCA with booleans and describe how to use it to

give a realisability model of QTT that makes use of the resource

information from the types. Hoshino [16] has already investigated

assemblies over BCI -algebras and LCAs in the simply typed setting.

Here, we extend this analysis to dependent types.

Syntax and Semantics of Quantitative Type Theory LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Interpreting Contexts as Assemblies For the category L for

interpreting contexts and simultaneous substitutions between them,

we use the standard notion of the category of Assemblies (see, e.g.,

Longley and Normann [22], §3.3.6). An assembly Γ is a pair
1
of a

set |Γ | of extensional meanings, and a binary relation |=Γ ⊆ A× |Γ |
such that for all γ ∈ Γ, there is at least one a ∈ A such that

a |=Γ γ . The idea is that the relation a |=Γ γ indicates that a is an

implementation of the extensional meaningγ . Amorphism between

assemblies (|Γ |, |=Γ) and (|Γ′ |, |=Γ′) is a function f : |Γ | → |Γ′ | that
is realisable: there exists an af ∈ A such that for all γ ∈ |Γ | and
aγ , if aγ |=Γ γ , then af · aγ |=Γ′ f (γ). These definitions yield

a category, using the combinator I to realise identities, and B to

realise composition. We use the usual category of sets and functions

for our CwF C. The functorU : L → C projects out the underlying

sets and functions.

Scaling of an assembly Γ = (|Γ |, |=Γ) yields an assembly with

|πΓ | = |Γ | , and the realisability relation is defined by: x |=π Γ γ
iff ∃y.x = !πy ∧ y |=Γ γ . Addition of assemblies Γ1 = (|Γ |, |=Γ1)
and Γ2 = (|Γ |, |=Γ2) (note that they have the same underlying set)

is defined as Γ1 + Γ2 = (|Γ |, |=Γ1+Γ2), where x |=Γ1+Γ2 γ iff there

exist y, z such that x = [y, z] and y |=Γ1 γ and z |=Γ2 γ . Scaling
and addition of intensional interpretations of contexts does not

affect the underlying meaning but does affect the computational

resources available. The empty context ⋄ is interpreted using the

assembly ⋄ = ({∗}, |=⋄), where x |=⋄ ∗ iff x = I . The morphisms

emp+ : ⋄ → ⋄+ ⋄ and empπ : ⋄ → π⋄ are the identity as functions,

and are realised by elimination of the I combinator by treating it

as a zero-element tuple.

Intepreting Types as Families of Assemblies The formation

of types has no computational content, hence no realisers, but

types do describe how their own extensional inhabitants are re-

alised. Thus we interpret types as families of assemblies indexed

over a set, not an assembly. Given a set ∆, the collection Ty(∆)
of semantic types consists of ∆-indexed collections of assemblies:

{(|S (δ) |, |=S (δ))}δ ∈∆.

Unresourced Semantic Terms For a set ∆ and a family of assem-

blies S ∈ Ty(∆), the semantic terms Tm(∆, S) comprise functions

of type ∀δ ∈ ∆. |S (δ) |, ignoring the realisability information in S .
The rest of the CwF structure on C is now standard [15].

Resourced Context Extension Given an assembly (|Γ |, |=Γ), a
family of assemblies S ∈ Ty(|Γ |) and a usage ρ ∈ R, the set-theoretic
part of context extension is defined as |Γ.ρS | = {(γ , s) | γ ∈ |Γ |, s ∈
|S (γ) |}. The realisability relation |=Γ.ρS is:

x |=Γ.ρS (γ , s) iff ∃y, z. x = [y, !ρz] ∧ y |=Γ γ ∧ z |=S (γ) s

Note the use of !ρ to ensure that there are enough computational

resources provided to satisfy the promise made. The natural trans-

formations ext+ : (Γ1 + Γ2).(ρ1 + ρ2)S → Γ1.ρ1S + Γ2.ρ2S and

extπ : πΓ.πρS → π (Γ.ρS) are both the identity as functions, and

are realised by rearrangement of tupling.

Resourced Semantic Terms For an assembly Γ and a family of

assemblies S ∈ Ty(U Γ), the resource semantic terms from Γ to S

1
We use capital Greek letters to stand for assemblies as well as the precontexts they

interpret.

consist of functions that are tracked by some realiser in A:

RTm(Γ, S) = { f : ∀γ ∈ |Γ |. |S (γ) | |
∃x .∀γ ∈ |Γ |,y ∈ A. y |=Γ γ ⇒ x · y |=S (γ) f (γ)}

Part (7) of Definition 3.2 is now fulfilled by giving R-LCA “pro-

grams” that realise the necessary resource rearrangement for each

combinator. For example, variables vΓ.S ∈ RTm(0Γ.1S, S {pU Γ.S })
are realised by using K to discard the context, and D to “derelict”

away the !1 application.

Dependent Function Types Finally, we must give realisability in-

terpretations for the type formers. For space, we only treat the case

of function types. For a set ∆, the underlying sets of the function
space family of assemblies consists of the realisable functions:

|ΠπST (δ) | = { f : ∀s ∈ |S (δ) |. |T (δ , s) | |
∃x .∀s,y. y |=S (δ) s ⇒ x · !πy |=T (δ,s) f (s)}

Note the use of !π to model the fact that the function’s realiser is

given π -many copies of the input. The bijection Λ is realised using

currying and uncurrying in the BCI -algebra. See Hoshino [16].

For the remaining type formers: booleans are realised using

the structure we stipulated in Definition 4.10. Dependent tensor

product types are realised using tuples and !π . The universe of small

types is interpreted as the (large) set of families of small assemblies.

5 Related Work
In our introductory section we have already described the main

predecessors of this work. In the split context tradition, where

intuitionistic and linear types are kept separate, the original work

is Cervesato and Pfenning’s [9] Linear Logical Framework, which

Vákár [35] provided a categorical semantics for; Krishnaswami et

al. [18] also investigated a variant of the split context system, also

based on Benton’s Linear Non-Linear Logic [6].

Another approach to linear dependent type theory has recently

been proposed by Luo [23], where linear and intuitionistic variables

are mixed within the same context, and specialised context merg-

ing operations are used to distinguish between extensional and

intensional uses. We have not yet closely examined the relationship

between their system and QTT.

QTT is a kind of modal dependent type theory, particularly with

the graded exponential modality we derived from our tensor prod-

uct type. Syntax and semantics for modal dependent type theories

have been studied by de Paiva and Ritter [10]. Licata, Shulman and

Riley [21] have studied a general form of substructual and modal

simple type theories with an eye towards extending them to de-

pendent types. Modal type theories are particularly interesting in

the context of Homotopy Type Theory, where they can be used to

represent the presence or absence of topological structure on types,

as shown by Shulman [32].

McBride’s system [25], of which Quantitative Type Theory is

a variant, crucially uses usage annotations on types. Such annota-

tions have already appeared in the work of Petricek et al. [29] and

Brunel et al. [8] on coeffects, where they are used to track informa-

tion about the context in which a computation occurs. It would be

interesting to compare the concrete models they give (in particular,

Brunel et al. use a realisability model) to ours. Ghica and Smith [13]

particularly emphasises the quantitative nature of the annotations,

and presents an application to timing information.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Robert Atkey

Wehave used Abramsky et al.’s [3] notion of Linear Combinatory

Algebra as our notion of intensional computational information

to be associated with terms. Their Geometry of Interaction situa-

tions provide a large supply of LCAs, however not all of them have

the necessary structure to interpret the kind of boolean type that

we have included in our calculus, as we saw in Example 4.4. This

appears to be related to the problem of interpretating the additive

connectives of Linear Logic in their axiomatic approach. Neverthe-

less, the connection with Geometry of Interaction style models is

intriguing, and may help develop the theory of QTT into areas such

as reversible computation, as described by Abramsky [2], hardware

synthesis, as described by Ghica [12], and effectful computation, as

described by Hoshino et al [17].

6 Conclusions and Future Work
Quantitative Type Theory (QTT) reformulates McBride’s combi-

nation of linear and dependent types to fix the inadmissibility of

substitution. We defined a class of categorical models, Quantita-

tive Categories with Families, and given instances that interpret the

precise intensional usage information non trivially, using R-Linear
Combinatory Algebras. In addition to reversible and effectful vari-

ants arising from the GoI models, we plan future on applying QTT

to implicit computational complexity in the style of Dal Lago and

Hofmann [19, 20] and to low-level imperative computation in the

style of Ahmed et al. [4].

Acknowledgments
Thanks to Conor McBride, Edwin Brady and James Wood for dis-

cussions relating to this paper. This work is dedicated to Orwell the

dog. Orwell was a good dog and knew well the difference between

zero, one, and many.

References
[1] Samson Abramsky. 1996. Retracing Some Paths in Process Algebra. In CONCUR

’96, Concurrency Theory, 7th International Conference, Pisa, Italy, August 26-29,

1996, Proceedings. 1–17. https://doi.org/10.1007/3-540-61604-7_44
[2] Samson Abramsky. 2005. A structural approach to reversible computation. Theor.

Comput. Sci. 347, 3 (2005), 441–464. https://doi.org/10.1016/j.tcs.2005.07.002
[3] Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. 2002. Geometry of In-

teraction and Linear Combinatory Algebras. Mathematical Structures in Computer

Science 12, 5 (2002), 625–665. https://doi.org/10.1017/S0960129502003730
[4] Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L

3
: A Linear Language

with Locations. Fundam. Inform. 77, 4 (2007), 397–449. http://content.iospress.
com/articles/fundamenta-informaticae/fi77-4-06

[5] Andrew Barber. 1996. Dual Intuitionistic Linear Logic. Technical Report ECS-

LFCS-96-347. LFCS, University of Edinburgh.

[6] P. N. Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and

Models (Extended Abstract). In Computer Science Logic, 8th International Work-

shop, CSL ’94, Kazimierz, Poland, September 25-30, 1994, Selected Papers (Lecture

Notes in Computer Science), Leszek Pacholski and Jerzy Tiuryn (Eds.), Vol. 933.

Springer, 121–135. https://doi.org/10.1007/BFb0022251
[7] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming

language: Design and implementation. J. Funct. Program. 23, 5 (2013), 552–593.

https://doi.org/10.1017/S095679681300018X
[8] Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. 2014. A

Core Quantitative Coeffect Calculus. In Programming Languages and Systems -

23rd European Symposium on Programming, ESOP 2014. 351–370. https://doi.org/
10.1007/978-3-642-54833-8_19

[9] Iliano Cervesato and Frank Pfenning. 2002. A Linear Logical Framework. Inf.

Comput. 179, 1 (2002), 19–75. https://doi.org/10.1006/inco.2001.2951
[10] Valeria de Paiva and Eike Ritter. 2016. FibrationalModal Type Theory. Electr. Notes

Theor. Comput. Sci. 323 (2016), 143–161. https://doi.org/10.1016/j.entcs.2016.06.010
[11] Peter Dybjer. 1996. Internal Type Theory. In Types for Proofs and Programs,

International Workshop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers

(Lecture Notes in Computer Science), Stefano Berardi and Mario Coppo (Eds.),

Vol. 1158. Springer, 120–134.

[12] Dan R. Ghica. 2007. Geometry of synthesis: a structured approach to VLSI design.

In POPL. ACM, 363–375.

[13] Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a Resource

Semiring. In Programming Languages and Systems - 23rd European Symposium on

Programming, ESOP 2014. 331–350. https://doi.org/10.1007/978-3-642-54833-8_18
[14] Jean-Yves Girard. 1987. Linear Logic. Theor. Comp. Sci. 50 (1987), 1–101.

[15] Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. In Semantics

and Logics of Computation. Cambridge University Press, 79–130.

[16] Naohiko Hoshino. 2007. Linear Realizability. In Computer Science Logic, 21st

International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne,

Switzerland, September 11-15, 2007, Proceedings. 420–434. https://doi.org/10.1007/
978-3-540-74915-8_32

[17] Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. 2014. Memoryful geometry

of interaction: from coalgebraic components to algebraic effects. In Joint Meeting

of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)

and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, Thomas A. Henzinger and

Dale Miller (Eds.). ACM, 52:1–52:10. https://doi.org/10.1145/2603088.2603124
[18] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. 2015. Integrating

Linear and Dependent Types. In Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai,

India, January 15-17, 2015. 17–30. https://doi.org/10.1145/2676726.2676969
[19] Ugo Dal Lago. 2011. A Short Introduction to Implicit Computational Complexity.

In Lectures on Logic and Computation - ESSLLI 2010 Copenhagen, Denmark, August

2010, ESSLLI 2011, Ljubljana, Slovenia, August 2011, Selected Lecture Notes (Lecture

Notes in Computer Science), Nick Bezhanishvili and Valentin Goranko (Eds.),

Vol. 7388. Springer, 89–109. https://doi.org/10.1007/978-3-642-31485-8_3
[20] Ugo Dal Lago and Martin Hofmann. 2011. Realizability models and implicit

complexity. Theor. Comput. Sci. 412, 20 (2011), 2029–2047. https://doi.org/10.1016/
j.tcs.2010.12.025

[21] Daniel R. Licata, Michael Shulman, and Mitchell Riley. 2017. A Fibrational

Framework for Substructural and Modal Logics. In 2nd International Conference

on Formal Structures for Computation and Deduction, FSCD 2017, September 3-9,

2017, Oxford, UK. 25:1–25:22. https://doi.org/10.4230/LIPIcs.FSCD.2017.25
[22] John Longley and Dag Normann. 2015. Higher-Order Computability. Springer.

https://doi.org/10.1007/978-3-662-47992-6
[23] Z. Luo and Y. Zhang. 2016. A Linear Dependent Type Theory. In TYPES 2016.

[24] The Coq development team. 2017. The Coq proof assistant reference manual. Log-

iCal Project. http://coq.inria.fr Version 8.6.

[25] Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That Can

Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th

Birthday. 207–233. https://doi.org/10.1007/978-3-319-30936-1_12
[26] Alexandre Miquel. 2001. The Implicit Calculus of Constructions. In TLCA. 344–

359. https://doi.org/10.1007/3-540-45413-6_27
[27] Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure

Type Systems. In Foundations of Software Science and Computational Structures,

11th International Conference, FOSSACS 2008 (Lecture Notes in Computer Science),

Roberto M. Amadio (Ed.), Vol. 4962. Springer, 350–364. https://doi.org/10.1007/
978-3-540-78499-9_25

[28] Torben Æ. Mogensen. 1997. Types for 0, 1 or Many Uses. In Implementation of

Functional Languages, 9th International Workshop, IFL’97, St. Andrews, Scotland,

UK, September 10-12, 1997, Selected Papers (Lecture Notes in Computer Science),

Chris Clack, Kevin Hammond, and Antony J. T. Davie (Eds.), Vol. 1467. Springer,

112–122. https://doi.org/10.1007/BFb0055427
[29] Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. 2014. Coeffects: a calcu-

lus of context-dependent computation. In Proceedings of the 19th ACM SIGPLAN

International Conference on Functional Programming, Gothenburg, Sweden, Septem-

ber 1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 123–135.

https://doi.org/10.1145/2628136.2628160
[30] Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in

Modal Type Theory. In 16th Annual IEEE Symposium on Logic in Computer Science,

Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. IEEE Computer Society,

221–230. https://doi.org/10.1109/LICS.2001.932499
[31] Dana S. Scott. 1976. Data Types as Lattices. SIAM J. Comput. 5, 3 (1976), 522–587.

https://doi.org/10.1137/0205037
[32] Michael Shulman. 2017. Brouwer’s fixed-point theorem in real-cohesive ho-

motopy type theory. CoRR abs:1509.07584v3 (2017). https://arxiv.org/abs/1509.
07584v3

[33] Kazushige Terui. 2001. Light Affine Calculus and Polytime Strong Normal-

ization. In 16th Annual IEEE Symposium on Logic in Computer Science, Boston,

Massachusetts, USA, June 16-19, 2001, Proceedings. 209–220. https://doi.org/10.
1109/LICS.2001.932498

[34] The Agda Team. 2018. (2018). http://wiki.portal.chalmers.se/agda.
[35] Matthijs Vákár. 2015. A Categorical Semantics for Linear Logical Frameworks. In

Foundations of Software Science and Computation Structures - 18th International

Conference, FoSSaCS 2015 (Lecture Notes in Computer Science), Andrew M. Pitts

(Ed.), Vol. 9034. Springer, 102–116. https://doi.org/10.1007/978-3-662-46678-0_7

https://doi.org/10.1007/3-540-61604-7_44
https://doi.org/10.1016/j.tcs.2005.07.002
https://doi.org/10.1017/S0960129502003730
http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-06
http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-06
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1006/inco.2001.2951
https://doi.org/10.1016/j.entcs.2016.06.010
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1145/2603088.2603124
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1016/j.tcs.2010.12.025
https://doi.org/10.1016/j.tcs.2010.12.025
https://doi.org/10.4230/LIPIcs.FSCD.2017.25
https://doi.org/10.1007/978-3-662-47992-6
http://coq.inria.fr
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1007/BFb0055427
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1137/0205037
https://arxiv.org/abs/1509.07584v3
https://arxiv.org/abs/1509.07584v3
https://doi.org/10.1109/LICS.2001.932498
https://doi.org/10.1109/LICS.2001.932498
http://wiki.portal.chalmers.se/agda
https://doi.org/10.1007/978-3-662-46678-0_7

	Abstract
	1 Introduction
	2 Quantitative Type Theory
	2.1 Dependency and Accountancy
	2.2 Syntactic Properties of QTT
	2.3 Inadmissibility of Substitution in McBride's system

	3 Quantitative Categories with Families
	4 Realisability Models of QTT
	4.1 R-Linear Combinatory Algebras
	4.2 R-QCwFs from R-LCAs

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

