
The Semantics of Parsing with Semantic Actions
Robert Atkey

Department of Computer and Information Sciences
University of Strathclyde

Glasgow, UK
Robert.Atkey@cis.strath.ac.uk

Abstract—The recovery of structure from flat sequences of
input data is a problem that almost all programs need to solve.
Computer Science has developed a wide array of declarative
languages for describing the structure of languages, usually based
on the context-free grammar formalism, and there exist parser
generators that produce efficient parsers for these descriptions.
However, when faced with a problem involving parsing, most
programmers opt for ad-hoc hand-coded solutions, or use parser
combinator libraries to construct parsing functions.

This paper develops a hybrid approach, treating grammars
as collections of active right-hand sides, indexed by a set of non-
terminals. Active right-hand sides are built using the standard
monadic parser combinators and allow the consumed input to
affect the language being parsed, thus allowing for the precise
description of the realistic languages that arise in programming.

We carefully investigate the semantics of grammars with
active right-hand sides, not just from the point of view of
language acceptance but also in terms of the generation of parse
results. Ambiguous grammars may generate exponentially, or
even infinitely, many parse results and these must be efficiently
represented using Shared Packed Parse Forests (SPPFs). A
particular feature of our approach is the use of Reynolds-style
parametricity to ensure that the language that grammars describe
cannot be affected by the representation of parse results.

Index Terms—Parsing, parser combinators, monads, ambigu-
ity, parametricity, context sensitivity.

I. INTRODUCTION

Some form of parsing is employed by nearly every program.
Parsing turns external input into a useful internal representa-
tion. Clear, concise and implementation independent formal
descriptions of the languages recognised by parsers are an
essential component of useful documentation of a program’s
interaction with its environment.

Computer Science, building on work from formal linguis-
tics, has developed a dazzling array of formalisms for describ-
ing languages. Accompanying these formalisms are links to
automata and computational complexity, yielding a deep and
rich body of theory. This work has given rise to software tools
such as regular expression engines and parser generators that
may be used as building blocks for developing parsers.

Unfortunately, the use of theoretically-based formalisms for
parsing is uncommon. Programmers often resort to hand-coded
ad-hoc solutions to interpret external input. In the situations
when theoretically-based tools are used, for example the YACC
tool and its descendants, they are augmented with additional
programming to handle extra-grammatical constructs. An ex-
ample is the so-called “lexer hack” to parse C programs with
typedefs. Thus the specification of the language recognised

by a parser is nothing more than the implementation of the
parser, leaving future programmers to disentangle implementa-
tion artifacts from essential details of parser implementations.

The goal of this paper is to develop a grammar formalism
and associated declarative parsing semantics that can handle
the features required for practical parsing. A key requirement
for practical parsing problems is the ability for the language
being parsed to depend on prior input. We have already
mentioned the need for context-sensitivity in the parsing of C.
Other examples include the balancing of XML tags, the length-
prefixed fields common in binary formats and languages with
user-defined syntax, as is common in many proof assistants.

Noting that most parsers are constructed by hand in general-
purpose programming languages, our formalism extends the
existing formalism of context-free grammars (CFGs) by in-
corporating some of the power of general-purpose program-
ming languages. We then use techniques from programming
language theory, namely parametricity and Kripke logical
relations, to ensure that our grammars are well-behaved.

We retain the organisational principle of CFGs as collections
of right-hand sides (RHSs) indexed by non-terminals, but we
enhance the RHSs to be active in the following two senses:
• RHSs may change their behaviour based on prior input.

We accomplish this by organising RHSs as a monad, tak-
ing the approach of monadic parser combinator libraries
[4]. We build RHSs using the basic monadic operators:

return : A→ RHS(A)

>>= : RHS(A)→ (A→ RHS(B))→ RHS(B)

and combinators specific to parsing. For parsing tokens
we have tok : P(T) → RHS(T), where T is the set of
tokens and an element of P(T) is a set of tokens. Note
that tok S is a monadic action that returns the actual
token that was read; and via the >>= operator this is used
to alter the language being parsed. Further combinators
offer choice and failure:

� : RHS(A)

: : RHS(A)→ RHS(A)→ RHS(A),

and reference to other non-terminals: nt : NT →
RHS(1), where NT is the (not necessarily finite) set
of non-terminals and 1 = {∗} is a chosen set with
one element. To keep our presentation clear, we do not
treat the case when non-terminals may also return values

that may affect future parsing. Nevertheless, this is a
straightforward extension of the present framework.

• A feature common in treatments of parsing in the liter-
ature [1], [15], [7], [3] is the imposition of a fixed type
for representing parse results. A feature common in most
practical parsers is the definition of a custom abstract-
syntax tree (AST) type to represent parse results. When
parser generators are used, custom ASTs are built using
semantic actions attached to the grammar. In Section V,
we present a formalism that allows principled use of
semantic actions to construct ASTs. The combinator for
non-terminals now has a dependent type:

nt : ΠX∈NT . RHS(V (cat(X)))

where the function cat computes a syntactic category in a
set C from a non-terminal, and the type is parameterised
by a type V : C → Set for representing sub-parse results.
We make use of Reynolds-style parametricity [13] to
ensure that the RHS cannot be affected by the choice of
V . We instantiate V to be full parse trees for the simple
declarative semantics of parsing, and references to trees
for efficient representation of ambiguity. In an implemen-
tation, other instantiations of V may be considered for
different disambiguation and representation strategies.

Our formalism inherits from CFGs the possibility of am-
biguity: multiple parses of a single input. The traditional
approach, taken by most LL- and LR-based parser generators,
as well as other formalisms such as Parsing Expression Gram-
mars (PEGs) [2], is to regard ambiguity as erroneous. This
negatively impacts on the compositionality of grammars, and
also forces programmers to put all the logic for disambiguation
into the parser. McPeak discusses ambiguity in the C++
grammar [12], and how it must be disambiguated using type
information. To enable more flexible disambiguation, we must
use an efficient representation of ambiguous parses. We give
an introduction to efficient representation of ambiguity using
Shared Packed Parse Forests (SPPFs) in Section II.

A. The Contribution of this Paper

The central contribution of this paper, building on the
grammar formalism we define, is the definition of a semantics
of grammars that takes into account the features we identified
above: dependency on input, semantic actions for generating
parse results and efficient representation of ambiguity.

This paper is in two halves. We first define grammars that
do not have semantic actions (but do have input-dependence
and ambiguity) in Section III. In Section IV, we present two
semantics of grammars: a simple declarative semantics that
relates input strings to parse results, and a more complex
trace semantics that can represent all the (potentially infinitely
many) ambiguous parses of a single input string in a finite
derivation. We prove that the two semantics are sound and
complete with respect to each other. The second half of
the paper, Section V and Section VI, treats grammars with
semantic actions, making use of Reynolds-style parametricity
[13] to ensure that semantic actions do not interfere with

parsing. We show how grammars with semantic actions can
be factorised into grammars without semantic actions and a
transformation of parse results. We state soundness and com-
pleteness theorems linking the two grammar formalisms. A
key condition of affineness is required to link our formalisms.

B. Related Work

Jim, Mandelbaum and Walker [7] present a convincing case
that current parser generator technology fails to accommodate
the needs of the majority of programmers that have parsing
problems to solve. Jim et al. advocate a solution that allows
for regular right-hand sides, parameterised non-terminals, the
binding of parsed strings to variables and the imposition of
constraints on parse results. Their ideas are incorporated in
the YAKKER tool. We characterise their approach as refining
context-free grammars: each YAKKER grammar has an under-
lying context-free grammar with regular right-hand sides, and
the constraints allow for sophisticated data-dependent filtering
of parses. In contrast, we consider active right-hand sides that
generate the grammar as the input is read. Jim and Man-
delbaum’s subsequent work [5] emphasises their refinement
approach, showing that the YAKKER input language can be
supported by multiple backends, including parser generators
for context-free grammars that allow for threaded state. Jim
and Mandelbaum [6] have also considered the factorisation of
grammars into parsing and semantic action phases, in a similar
fashion to our factorisation construction in Section V-C.

Hutton and Meijer [4] present the canonical example of
monadic parser combinators in the functional programming
language Haskell. We mention the UU-parsing combinators of
Swierstra [17] and the Parsec library of Leijen and Meijer [9]
as exemplars of parser combinator libraries. These libraries
cannot deal with left recursive grammars and perform best
when restricted to an LL(1) fragment. Frost et al.[3] present
a system of parser combinators that can efficiently handle left
recursion and ambiguity, but are limited to applicative parser
combinators [11], where the grammar cannot depend on input.

Earley presented an algorithm for context-free grammars
[1], and this provides the basis for our trace derivation seman-
tics. Scott [14] and Scott and Johnstone [15] describe how
to correctly alter Earley’s algorithm to produce the efficient
shared packed representation we use in this paper. Tomita’s
Generalised LR [18] is the source of the SPPF representation.

C. Mathematical Background

We assume that the reader is familiar with the basic concepts
of category, functor, natural transformation and monads (in
Kleisli triple form) [10]. We make use of the category Set
where objects are sets and morphisms are functions. We write
1 for a chosen set with one element ∗. We also use the
categories SetX , for some set X , where objects are X-indexed
families of sets, and morphisms between A,B ∈ X → Set are
families of functions {fx : A(x)→ B(x)}x∈X .

To represent trees of parse results we make use of the notion
of initial F -algebra for a functor F . Recall that an F -algebra
is a pair of an object A and a morphism h : FA → A. A

homomorphism of F -algebras (A, h1), (B, h2) is a morphism
f : A→ B such that h2 ◦Ff = f ◦h1. An initial F -algebra is
an initial object in the category of F -algebras and F -algebra
homomorphisms. The (up to isomorphism) initial F -algebra is
usually denoted (µF, in). By Lambek’s Lemma, in : F (µF)→
µF is an isomorphism.

II. REPRESENTING PARSE RESULTS

Ambiguous grammars may yield multiple derivation trees
for the same input string. An obvious way to represent
ambiguity is to return a list of parse results for a given
input text. However, there are grammars that can produce
exponentially many results in the size of the input. The
grammar E 7→ E+E | x on the input x+x+x+x yields
5 results, corresponding to the associations of each + symbol:

x+(x+(x+x)) x+((x+x)+x) (x+x)+(x+x)

(x+(x+x))+x ((x+x)+x)+x

We have used non-typewriter parentheses to represent the
possible ways of grouping the input symbols.

On an input string with 5 xs, there are 14 ways to group
the sub-expressions, and with 6 xs there are 42 ways. In fact,
for an input with n xs, the number of parse trees is equal
to the nth Catalan number, a well-known sequence that com-
monly arises in combinatorial situations. This sequence has the
closed form solution C(n) = 1

n+1

(
2n
n

)
. Evidently, returning

each individual parse tree for this grammar will result in an
exponential runtime. This is disappointing when recognition
of strings against any CFG can be done in polynomial time.

Since ambiguity is unavoidable when dealing with gener-
alisations of context-free grammars, we must efficiently deal
with the explosion of parse trees. In the rest of this section, we
describe Shared Packed Parse Forests (SPPFs) [18], [15], [14],
and how it relates to our grammar formalism. For conciseness,
we present most of the examples in this section as CFGs rather
than the formalism we introduce in Section III.

A. Shared Packed Parse Forests

In the example above, we can observe that there are trees
yielded by parsing that share prefixes. We can represent these
as trees with “packed” nodes containing all the possibilities:

x+[x+(x+x), (x+x)+x] (x+x)+(x+x)

[x+(x+x), (x+x)+x]+x

We have used square brackets to represent the possibility of
multiple choices at that point in the tree.

Examination of the forest of packed trees yielded by parsing
x+x+x+x reveals that there are multiple parses of the non-
terminal E for the same input range that have separate repre-
sentations. For example, the parse (x+x) of the middle two
occurrences of x appears twice in the packed representation,
once when the entire input is parsed as E+x and once when
the entire input is parsed as x+E. The result that the first x
can be derived from the non-terminal E is represented 4 times,
and likewise for each of the other occurrences of x.

The packed representation removes the redundancy of re-
peated prefixes of parse trees. We can compress trees further
by sharing duplicated parse trees. Sharing all the parse results
for a given non-terminal between two points in the input results
in Shared Packed Parse Forests (SPPFs). The SPPF for the
input x+x+x+x is:

0 (0..1) x

2 (2..3) x

4 (0..3) 0 + 2

6 (4..5) x

8 (2..5) 2 + 6

10 (0..5) 4 + 6

0 + 8

13 (6..7) x

15 (4..7) 6 + 13

17 (2..7)

8 + 13

2 + 15

24 (0..7)

10 + 13

4 + 15

0 + 17

The total number of nodes has been reduced from 33
in the packed representation to 10 in the shared packed
representation. In this SPPF, for the entire input, there are
three possibilities, corresponding to the three items in the
packed parse forest presented above. At the next level down,
when we are representing parses of three xs, there are two
possibilities, corresponding to left or right association. In
contrast to the packed representation we have now shared the
parses of occurrences of two xs between the other nodes.

In general, the sharing achieved in the SPPF representation
described above is not maximal. As pointed out by Scott,
Johnstone and Economopolous [16], citing Johnson [8], gram-
mars matching the schema S 7→ x | Sk require SPPFs of
size O(nk+1) to represent their results, where the input is of
length n. Scott et al. [16], [14], [15] show that this unbounded
polynomial complexity can be avoided by the use of binarised
SPPFs, where results for intermediate parse results (i.e., part
way through a right-hand side) are packed, rather than just
at the level of non-terminals. In this case, Scott et al. show
that the SPPFs have size at most O(n3) for any context-free
grammar. Unfortunately, due to the way that our active right-
hand sides are permitted to generate their own parse results,
we cannot use this representation in our formalism.

B. Infinitely Many Parse Results and Cyclic SPPFs

It is not the case that SPPFs are necessarily acyclic. There
are grammars that admit infinitely many parses due to loops
between non-terminals that do not require progress through the
input. A grammar that allows such behaviour is the following:

E 7→ Fx F 7→ FF | ε

where ε represents the empty string. The language of this
grammar has a single element “x”, but there are infinitely
many ways of parsing the empty string before the x. This is
represented by an SPPF with loops in the graph:

0 (0..0)

n

0 03 (0..0) 0 x

In this graph, the node 0 represents all the parses of the non-
terminal F between the positions 0 and 0. Written out in full,

some of the possible parses of the empty string against this
grammar are: ε, εε, (εε)ε, ε(εε), The SPPF representation
compresses all these to a single node.

In order to deal with cyclic SPPFs, and the infinite sets
of parse results that they represent, we make use of a co-
inductive definition of the relationship between SPPF graphs
and individual parse results in Section IV-D.

C. Representation of the Results of Semantic Actions

Our discussion in this section has been limited to the case
of parsing context-free grammars, with a carrier type of parse
results induced by the grammar. We wish to give a semantics
to grammars that generate their own parse results. However,
this causes problems when attempting to prove a soundness
property of an SPPF representation. Consider the following
grammar with active right-hand sides and semantic actions1:

X 7→ do x← nt E; return (C x x)

E 7→ return C1 : return C2

The non-terminal X references the non-terminal E, obtains
a result and then duplicates this result. The language of
this grammar contains only the empty string, but parses it
ambiguously: the empty string yields the parse trees C C1 C1

and C C2 C2. A problem arises when considering the SPPF
representation of the results of parsing against this grammar:

[0, X, 0] 7→ {C [0, E, 0] [0, E, 0]}
[0, E, 0] 7→ {C1,C2}

We have represented an SPPF by listing the assignment of sets
of parse results to [start position,non-terminal,end position]
triples. Reading from this assignment there are now four
possible results: we have included C C1 C2 and C C2 C1, which
are not valid trees arising from parsing the empty string.

The culprit is the duplication of the single result returned
by the reference to the non-terminal E in the right-hand side
for the non-terminal X . The reference to the sub-results has
been duplicated, but the constraint that they must refer to
the same result has been forgotten. To fix this problem, we
have formulated a technical condition of affineness to identify
grammars that do not duplicate results of sub-parses. We give
this definition in Section VI-B, although to state it precisely
we must first consider grammars without semantic actions. We
do this in Section III and Section IV.

III. GRAMMARS THAT INDUCE PARSE RESULT TYPES

We split our technical development into grammars that
induce a type of parse results, and then build on this to develop
the theory of grammars that generate results as elements of a
pre-existing type. In this section and the next, we develop the
theory of grammars that induce a parse result type.

Fix a set T of input tokens, ranged over by t. Let NT
be a set of non-terminals, ranged over by italic roman letters
X,Y . A grammar Γ is defined as a mapping NT → RHS(1),

1We have used Haskell’s do-notation to concisely express terms built from
the monadic operators.

where for a result set A, the set RHS(A) of right-hand sides
that return values in A is defined inductively by the following
rules. We use Greek letters α, β to range over right-hand sides.

x ∈ A
acpt(x) ∈ RHS(A)

α ∈ RHS(A) β ∈ RHS(A)

or(α, β) ∈ RHS(A)

fail ∈ RHS(A)

S ⊆ T f ∈ S → RHS(A)

tok(S, f) ∈ RHS(A)

X ∈ NT α ∈ RHS(A)

nt(X,α) ∈ RHS(A)

Each of these rules introduces a constructor that we will give a
formal semantics to in Section IV. The key feature of monadic
right-hand sides is that the language recognised can depend on
the tokens that have been accepted by an instance of tok(S, f).

It is easy to see that the sets RHS(−) define a monad on the
category Set of sets and functions, with the return operation
defined as return(x) = acpt(x) and the bind (>>=) operation:

acpt(x)>>= k = k(x)

or(α, β)>>= k = or(α>>= k, β >>= k))

fail>>= k = fail

tok(S, f)>>= k = tok(S, λt. f(t)>>= k)

nt(X,α)>>= k = nt(X,α>>= k)

We can also implement the other structure we described in the
introduction, directly in terms of the constructors:

tok S = tok(S, λt. acpt(t)) nt X = nt(X, acpt(∗))

� = fail α: β = or(α, β)

Each right-hand side α ∈ RHS(1) has an associated set of
parse results for that right-hand side. This set is parameterised
by the representation of sub-results. In the next section we
will instantiate this representation either with full parse trees
or with references to other parse results.

Definition 1: Given a right-hand side α ∈ RHS(1), and V ∈
SetNT representing sub-results, the set of parse results JαK
associated with α is defined inductively as follows:

Jacpt(∗)K = 1

Jor(α, β)K = {inl(x) | x ∈ JαK} ∪ {inr(x) | x ∈ JβK}
JfailK = ∅

Jtok(S, f)K = {(t, x) | t ∈ S, x ∈ Jf(t)K}
Jnt(X,α)K = {(v, x) | v ∈ V (X), x ∈ JαK}

This definition is clearly functorial in V , so we have defined
a functor JαK : SetNT → Set. We extend this to associate a
functor SetNT → SetNT to every grammar:

Definition 2: Given a grammar Γ ∈ NT → RHS(1) define
a functor JΓK ∈ SetNT → SetNT by JΓKV X = JΓ(X)KV .

Since the functor JΓK derived from any grammar is strictly
positive, the initial algebra (i.e., least fixpoint) µJΓK ∈ SetNT

exists, with a family of isomorphisms inX : JΓK(µJΓK)X →

µJΓKX . This initial algebra represents all the possible parse
trees that can result from parsing against this grammar, indexed
by non-terminals.

IV. SEMANTICS OF GRAMMARS

We define two semantic interpretations for grammars against
given inputs. The first provides a simple to understand se-
mantics relating input strings to parse trees. For ambiguous
grammars, there may be infinitely many parse results deriv-
able from a single input, and hence infinitely many possible
meanings in the tree-producing semantics. We therefore define
a second semantics of parses for a given grammar against a
given input that can represent infinitely many parse results in
a finite derivation. We then relate the two interpretations.

For the rest of this section, we fix a grammar Γ and (except
for Definition 3) an input string input . We write input [i] to
denote the ith token of input .

A. Tree-Producing Semantics

The tree-producing semantics is a simple declarative way of
stating that a parse tree is derivable for a given grammar and
input. The following collection of rules derives judgements of
the form (i, α, j)⇒ x, where i and j are natural numbers with
i ≤ j, representing start and end positions in the input string,
α ∈ RHS(1) is a right-hand side that describes the language
to be recognised, and x ∈ JαK(µJΓK) is a parse result for α
with full trees as sub-results.

Thus a derivation of (i, α, j) ⇒ x declares that the right-
hand side α accepts the input between i and j and yields the
result x. We write (i,X, j)⇒ x if Γ(X) = α and (i, α, j)⇒
x. In this case, x ∈ JΓK(µJΓK)X ∼= µJΓKX .

(i, acpt(∗), i)⇒ ∗
(ACCEPT)

(i, α, j)⇒ x

(i, or(α, β), j)⇒ inl(x)
(L)

(i, β, j)⇒ x

(i, or(α, β), j)⇒ inr(x)
(R)

input [i] = t t ∈ S (i+ 1, f(t), j)⇒ x

(i, tok(S, f), j)⇒ (t, x)
(TOK)

(i,X, j)⇒ y (j, α, k)⇒ x

(i, nt(X,α), k)⇒ (in(y), x)
(NT)

The rule ACCEPT states that any right-hand side in the ac-
cepting state yields a trivial parse result for any zero-length
span of the input. The L and R rules capture non-determinism:
yielding results for an “or” node in a right-hand side if either
side yields a result. There is no rule to derive results for the
right-hand side fail. The TOK rule permits derivation of parse
results for right-hand sides that demand input. The rule NT
allows the derivation of parse results from a parse with the
referenced non-terminal and a parse of the rest of the input.

Definition 3: For a grammar Γ and right-hand side α ∈
RHS(1), their language L(Γ, α) is the set of inputs such that
(0, α, n)⇒ x is derivable for some x.

Theorem 1: The following closure properties hold:

1) L(Γ, or(α, β)) = L(Γ, α) ∪ L(Γ, β)
2) L(Γ, α>>=λx.β) = L(Γ, α) · L(Γ, β)

where S1 · S2 denotes the concatenation of all strings in S1

with all strings in S2.

B. Trace Semantics

Where the tree-producing semantics builds full parse trees,
the trace semantics we define in this section builds partial parse
trees, replacing sub-trees with references to whole collections
of parse trees for a given non-terminal between two positions
in the input. By replacing concrete results with references, the
trace semantics can represent an infinite number of results in
a finite derivation. SPPFs are generated by considering certain
items within derivations.

We use the family of sets V ∈ SetNT , defined as V(X) =
{[i,X, j] | 0 ≤ i ≤ j ≤ n}, to represent references to parse
results for specific non-terminals between points in the input.

A derivation D in the trace semantics consists of a list of
items of the form (i,X → α, k, j). Such an item represents
an attempt to parse the non-terminal X starting at position i
which has reached position j in the input, with right-hand side
α still to be parsed. The component k ∈ JαKV → JΓ(X)KV
represents the current stack of data that has been gathered and
is used to generate the result of parsing X from position i.

A derivation starts with an axiom item of the form (0, X →
α, λx.x, 0), where Γ(X) = α. Items are added according to
the rules listed below; items above the line must appear in the
derivation before the item below the line may be added.

(i,X → or(α, β), k, j)

(i,X → α, k ◦ inl, j)
(T-L)

(i,X → or(α, β), k, j)

(i,X → β, k ◦ inr, j)
(T-R)

input [j] = t t ∈ S (i,X → tok(S, f), k, j)

(i,X → f(t), λx. k(t, x), j + 1)
(T-TOK)

Γ(Y) = β (i,X → nt(Y, f), k, j)

(j, Y → β, λx.x, j)
(T-CALL)

(j, Y → acpt(∗), k, j′)
(i,X → nt(Y, α), k′, j)

(i,X → α, λx.k′([j, Y, j′], x), j′)
(T-COMPLETE)

We think of the set of items in a derivation as a collection
of processes all acting in parallel on the input. Each process
contains a right-hand side α determining its evolution. When
the right-hand side describes a non-deterministic choice, the
process splits to explore the two possibilities: this is handled
by the T-L and T-R rules. When the right-hand side demands
a token from the input, the input at the current location is
checked and if it matches, the process is allowed to proceed:
this is handled by the T-TOK rule. When the right-hand
side controlling a process references a non-terminal, a new

process is spawned and the spawning process is suspended
awaiting a reply: this is the T-CALL rule. When a process
terminates—when its right-hand side becomes acpt(∗)—this
fact is communicated back to suspended processes: this is the
T-COMPLETE rule.

To get a full parse of the input for a non-terminal X , a
derivation seeded with (0, X → α, λx.x, 0), where Γ(X) = α,
must contain the item (0, X → acpt(∗), k, n). Note that in
the T-COMPLETE rule, the result derived from the parse of Y
between j and j′ is not transmitted back to the calling process,
only a reference [j, Y, j′] to this result. A derivation may have
multiple items of the form (j, Y → acpt(∗), k, j′) indicating
multiple ways of parsing this non-terminal between these
points. The single reference [j, Y, j′] refers to all of these. It is
easy to check that if [j, Y, j′] appears in some parse result, then
there is at least one associated item (j, Y → acpt(∗), k, j′) in
the derivation, by the T-COMPLETE rule.

We are only really interested in the items of the form
(i,X → acpt(∗), k, j) that represent complete parses of
right-hand sides. Each new complete parse gives us more
information about the possible parses of the input with respect
to the grammar. We arrange derivations into a preorder based
on this information content:

Definition 4: D v D′ iff (i,X → acpt(∗), k, j) ∈ D
implies (i,X → acpt(∗), k, j) ∈ D′.

Note that D v D′ does not imply that D′ is longer than D.
It may be the case that D′ contains repeated sub-derivations.

C. An Example Trace Derivation
We demonstrate how a finite derivation may represent

infinitely many parse results by showing how the rules operate
on the grammar:

E 7→ nt(F, tok({x}, λ .acpt(∗)))
F 7→ or(acpt(∗), nt(F, acpt(∗)))

This is a variant on the grammar we used in Section II-B
to illustrate cyclic SPPFs, with a single repetition of the
non-terminal F , recast as a grammar with monadic right-
hand sides. We have spelt out the right-hand sides using the
constructors of RHS instead of the monadic combinators in
order to show directly the construction of a derivation.

On the input “x”, the following list of items is derivable.
We use underscore notation to represent λ-expressions with a
single variable. Each item is annotated by the rule and previous
items used to justify it.

1) (0, E → nt(F, tok({x}, λ .acpt(∗))), , 0)
2) (0, F → or(acpt(∗), nt(F, acpt(∗))), , 0) by T-CALL(1)
3) (0, F → acpt(∗), inl(), 0) by T-L(2)
4) (0, F → nt(F, acpt(∗)), inr(), 0) by T-R(3)
5) (0, E → tok({x}, λ .acpt(∗)), ([0, F, 0],), 0) by

T-COMPLETE(3,1)
6) (0, E → acpt(∗), ([0, F, 0],x,), 1) by T-TOK(5)
7) (0, F → acpt(∗), inr([0, F, 0],), 0) by

T-COMPLETE(3,4)
This derivation is maximal in the sense that all other justifiable
extra items that may be added are already present. One could

apply T-COMPLETE(7,4) to generate a new item, but this would
be the same as item 7. Likewise, T-CALL(4) could generate a
new item, but it would be the same as item 2.

From the items of the form (i,X → acpt(∗), k, j) in
the derivation, we can get the following list of assignments
of parse results to [i,X, j] triples, where we derive a parse
result with variables for sub-parses in JΓ(X)KV by feeding
the continuation k the value ∗.

[0, E, 1] 7→ {([0, F, 0],x, ∗)}
[0, F, 0] 7→ {inl(∗), inr([0, F, 0], ∗)}

This collection of assignments is the SPPF representing
all possible parses of this input. By starting from [0, E, 1]
and following the links to other results, we can reconstruct
full parse results in µJΓK(E). For example, we can obtain
(in(inl(∗)),x, ∗) and (in(inr(in(inl(∗)), ∗)),x, ∗).

D. Relating the Tree-Producing and Trace Semantics

To relate the tree-producing semantics and the trace seman-
tics, we must precisely define what it means for a derivation
D to realise a parse tree x ∈ µJΓKX for some non-terminal
X . To this end, we first define what it means for two single-
layer parse results over different sets of representations of sub-
results to be related, given a relation that relates sub-results.

Given two ways of representing sub-results, V, V ′ ∈ SetNT ,
and R(X) ⊆ V (X)×V ′(X) defining how they are related for
all X ∈ NT , we extend this to relate parse results: RJαKR ⊆
JαKV × JαKV ′, by induction on the structure of α:

RJacpt(∗)KR = {(∗, ∗)}

RJor(α, β)KR =
{(inl(x), inl(x′)) | (x, x′) ∈ RJαKR}
∪ {(inr(y), inr(y′)) | (y, y′) ∈ RJβKR}

RJfailKR = ∅
RJtok(S, f)KR = {((t, x), (t, x′)) | (x, x′) ∈ RJf(t)KR}

RJnt(X,α)KR =

{
((v, x), (v′, x′)) | (v, v′) ∈ R(X),

(x, x′) ∈ RJαKR

}
Simply put, a value in JαKV is related to a value in JαKV ′
when all their sub-result components are related by R and
everything else is equal. The next lemma states that relatedness
of parse results is monotonic in relatedness of sub-results. This
will be used to handle the accumulation of related parse results
as a trace derivation is extended.

Lemma 1: If ∀X. R(X) ⊆ R′(X), then RJαKR ⊆
RJαKR′.

We can now state what it means for a parse result reference
[i,X, j] in some derivation D to be related to some parse tree:

Definition 5: An NT -indexed relation R(X) ⊆ V(X) ×
µJΓK(X) is a D-relation for a derivation D if for all
([i,X, j], x) ∈ R(X), there exists an k such that (i,X →
acpt(∗), k, j) appears in D and (k(∗), in−1x) ∈ RJΓ(X)KR.

For any derivation D, the NT -indexed relation D̂(X) ⊆
V(X) × µJΓKX is defined to relate [i,X, j] and x if there
exists a D-relation R that relates them (so D̂ is the union of
all D-relations).

For the example derivation in Section IV-C, the following
are two possible D-relations, demonstrating how two different
elements of µJΓK(E) can be represented:

R1 =

{
([0, E, 1], (in(inl(∗)),x, ∗)),
([0, F, 0], inl(∗))

}
and

R2 =

 ([0, E, 1], (in(inr(in(inl(∗)), ∗)),x, ∗)),
([0, F, 0], inr(in(inl(∗)), ∗)),
([0, F, 0], inl(∗))

Clearly, we can represent any of the infinitely many parse
results derivable from the tree-producing semantics for this
grammar and input by selecting the appropriate D-relation R.
The definition D̂ is the greatest fixpoint of a family of mono-
tonic endofunctions on the power set of V(X) × µJΓK(X).
This coinductive definition allows us to represent infinitely
many possible parse results.

E. Soundness and Completeness

To prove soundness of the tree-producing semantics with
respect to the trace semantics, we isolate sub-derivations of a
trace semantics derivation that generate single layers in parse
trees. We define the value of a sub-derivation as the single-
layer of a parse tree that is built by that sub-derivation. The
notion of value of a sub-derivation flips from the forwards
continuation-passing style of the rules to a backwards value-
accumulating style.

Definition 6: Given a derivation D a sub-derivation
(i,X → α, k0, j

′) · · · (i,X → acpt(∗), k, j) is a sub-sequence
of items in D linking the two items via applications of T-L,
T-R, T-TOK and the second premise of T-COMPLETE.

The value of a sub-derivation (i,X → α, k0, j
′) · · · (i,X →

acpt(∗), k, j) is a value z ∈ JαKV , defined by induction on the
sequence of items in the sub-derivation:
• For the sequence (i,X → acpt(∗), k, j), the value is ∗;
• When the first rule applied in the sequence is T-L and

the rest of the sequence has value x, the value of the
sequence is inl(x); the case for T-R is similar;

• When the first rule applied in the sequence is T-TOK with
token t and the value of the rest of the sequence is x, the
value is (t, x);

• If the first rule is T-COMPLETE with [j, Y, j′] and the value
of the rest of the sequence is x, the value is ([j, Y, j′], x).

Lemma 2: If (i,X → α, k0, j
′) · · · (i,X → acpt(∗), k, j)

is a sub-derivation with value z, then k0(z) = k(∗).
Theorem 2 (Soundness): If ([i,X, j], in(x)) ∈ D̂(X) for

some derivation D, then (i,X, j)⇒ x.
Before the completeness property, we first state some prop-

erties of the relations D̂ derived from derivations D. The
next lemma states that adding results to a derivation does not
invalidate the representability of existing results:

Lemma 3: If D v D′ then for all X , D̂(X) ⊆ D̂′(X).
Lemma 4 holds because D-relations are closed under union.
Lemma 4: If (i,X → acpt(∗), k, j) ∈ D and (k(∗), x) ∈

RJΓKD̂ then ([i,X, j], in(x)) ∈ D̂(X).

We must also define what it means for two functions taking
results from one right-hand side α to another right-hand side
β to be related. This is nothing more than the definition of
relatedness for function types with Kripke logical relations.

Definition 7: For a pair of right-hand sides α and β, a
pair of functions k : JαKV → JβKV and k′ : JαK(µJΓK) →
JβK(µJΓK) are related in a derivation D if for all D′ such that
D v D′, and for all (x, x′) ∈ RJαKD̂′, then (k(x), k′(x′)) ∈
RJβKD̂′.

We can now state the main lemma for completeness.
Lemma 5: Suppose (j, α, j′) ⇒ x is derivable. Then for

any derivation D that contains (i,X → α, k, j) and k′ :
JαK(µJΓK)→ JΓ(X)K(µJΓK) such that k and k′ are related in
D, then there exists a derivation D′ extending D that includes
(i,X → acpt(∗), k†, j′) such that (k†(∗), k′(x)) are related in
RJΓ(X)KD̂′.

Theorem 3 (Completeness): If (0, X, n)⇒ x, then there is
a derivation D with ([0, X, n], in(x)) ∈ D̂(X).

V. GRAMMARS WITH SEMANTIC ACTIONS

We now build on the results of the previous sections to give
a semantics of grammars that use semantic actions to generate
parse results in an independently defined type, rather than a
type derived from the grammar definition. As we discussed in
Section II-C, we must ensure that grammars are affine in order
to get a strong soundness result relating the tree-producing and
trace semantics.

For the rest of the paper, we assume a set C of syntactic
categories and a functor F ∈ SetC → SetC . We require that
this functor have a least fixpoint µF ∈ SetC , so it also has
a C-indexed family of isomorphisms inc : F (µF)c → µFc.
The C-indexed family of sets µF is the type of ASTs that our
grammars will produce.

A. Relational Interpretations

In Section IV-D, we defined a relational interpretation of
the types induced by grammars. We also require a relational
interpretation of the functor F used to represent parse results.

Definition 8: A relational lifting F̂ of F is a mapping that
takes C-indexed relations R(c) ⊆ A(c) × B(c) to C-indexed
relations F̂R(c) ⊆ FA(c)× FB(c).
We leave the exact relation interpretation F̂ open, and we
do not require any particular properties. Note that the exact
meaning of Definition 15, which relates parse trees in µF
with SPPFs constructed from derivations, depends on the
relational interpretation that is chosen. Likewise, the definition
of affineness (Definition 16) depends on the exact definition of
F̂ . For many F , the choice of F̂ is straightforward. When F is
constructed as a C-indexed collection of polynomial functors—
built from constants, identity, products and sums—then a
canonical F̂ can be defined by induction on the structure.

B. Grammars with Semantic Actions

A set NT is a set of non-terminals for a grammar with
semantic actions if each X ∈ NT has an associated cat(X) ∈
C, denoting the syntactic category of the abstract syntax trees
produced by this non-terminal. Fix a set NT of non-terminals.

For a result set A and a C-indexed set V ∈ SetC for
representing sub-results, the set RHSV (A) of right-hand sides
that accept sub-results in V and return values in A is defined
inductively by the following rules, where Greek letters α, β
are used to range over right-hand sides.

x ∈ A
acpt(x) ∈ RHSV (A)

α ∈ RHSV (A) β ∈ RHSV (A)

or(α, β) ∈ RHSV (A)

fail ∈ RHSV (A)

S ⊆ T f ∈ S → RHSV (A)

tok(S, f) ∈ RHSV (A)

X ∈ NT f ∈ V (cat(X))→ RHSV (A)

nt(X, f) ∈ RHSV (A)

In terms of language acceptance, the constructors have exactly
the same meaning as in Section III. The only difference is
that now the rest of the right-hand side in the nt case takes
a representation of a sub-result as an argument. This enables
the right-hand side itself to construct the parse result.

It is easy to see that the sets RHSV (−) also define a
monad on the category Set, with almost identical definitions
for return and >>=. The additional structure tok , nt , � and
: is again defined directly in terms of the constructors.

Right-hand sides are parameterised over the C-indexed set
V in order to handle both the construction of concrete results
in µF and the construction of SPPFs over F . Since we do
not want the results of parsing to depend on the choice of
representation of sub-parses, we will only be interested in
right-hand sides that are uniform with respect to the choice of
V . We state this property as preservation of relations between
representations of sub-results, following Reynolds [13].

Definition 9: For relations RV,V ′(c) ⊆ V (c) × V ′(c) and
RA ⊆ A × A′ the relation R̂HSRV (RA) ⊆ RHSV (A) ×
RHSV ′(A

′) is defined inductively as follows:

(a, a′) ∈ RA
(acpt(a), acpt(a′)) ∈ R̂HSRV (RA)

(α, α′) ∈ R̂HSRV (RA) (β, β′) ∈ R̂HSRV (RA)

(or(α, β), or(α′, β′)) ∈ R̂HSRV (RA)

(fail, fail) ∈ R̂HSRV (RA)

∀t ∈ S. (f(t), f ′(t)) ∈ R̂HSRV (RA)

(tok(S, f), tok(S, f ′)) ∈ R̂HSRV (RA)

∀v v′. (v, v′) ∈ RV (cat(X))⇒ (f(v), f ′(v′)) ∈ R̂HSRV (RA)

(nt(X, f), nt(X, f ′)) ∈ R̂HSRV (RA)

Definition 10: A uniform right-hand side for a syntactic
category c ∈ C is a family αV ∈ RHSV (FV c) of right-hand
sides indexed by V ∈ SetC such that the following uniformity
property holds: For all V, V ′ and RV,V ′(c) ⊆ V (c)×V ′(c), it

is the case that (αV , αV ′) ∈ R̂HSR(F̂Rc). The collection of
all uniform full right-hand sides for a syntactic category c ∈ C
is denoted URHS(c).

In the definition of URHS we have quantified over all sets
V, V ′ to generate a set, a construction not permitted in ZF set
theory. We could observe that we only ever instantiate with
either the one-element set or the C-indexed families of sets
µF and VC as defined below. Therefore we can restrict to sets
that are smaller than the cardinality of the largest of these.
Alternatively, we could work in a meta-theory that allows for
the construction of large sets that live in some universe Set1.
The type theories implemented by Coq and Agda permit this.

In a language like Haskell, we can use higher-kinded
polymorphism to define the type of uniform right-hand sides
and—modulo non-termination and selective strictness—the
uniformity property holds automatically.

Definition 11: A grammar with semantic actions Γ is a
tuple (NT , cat,Γ) where (NT , cat) is a set of non-terminals
with associated syntactic categories as described above, and Γ
is a dependently typed function Γ ∈ ΠX∈NT.URHS(cat(X))
that maps non-terminals X to uniform right-hand sides for the
syntactic category cat(X).

For a given representation of sub-results, V ∈ SetC , and
non-terminal X , we write Γ(X)V for the right-hand side of
Γ associated with X specialised to V .

C. Factoring Semantic Actions

In the next section we give grammars with semantic actions
a pair of semantics in the same style as Section IV. In order to
relate the semantics of grammars with semantic actions with
the semantics of grammars, we define, for every grammar with
semantic actions Γ, an associated grammar Γ◦ and function
LΓM : µJΓ◦K→ µF ◦ cat that we can think of as a factorisaton
of the grammar Γ.

Definition 12: Let K1(c) = 1. Given α ∈ RHSK1(c),
define α◦ ∈ RHS(1) by induction on α.

(acpt(x))◦ = acpt(∗) (or(α, β))◦ = or(α◦, β◦)

fail◦ = fail (tok(S, f))◦ = tok(S, λt.(f(t))◦)

(nt(X, f))◦ = nt(X, (f(∗))◦)

Given α ∈ URHS(c), we now wish to show that there is a
family of functions αV : Jα◦K1

K(V ◦ cat) → FV c that maps
the results of α◦K1

to the results of αV . This is delicate because
we have defined α◦K1

by induction on αK1
, but we will need

to define the function by induction on αV , where V is the
given carrier for sub-results. Fortunately, this is possible due
to the uniformity of α: formally, ·V will have type:

·V : Πα∈RHSV (FV c).Πα′∈RHSK1
(FK1c).

(α, α′) ∈ R̂HSR(F̂Rc)→ Jα′◦K(V ◦ cat)→ FV c

where R(c) ⊆ V (c) × K1(c) is defined as R(c) = {(v, ∗) |
v ∈ V (c)}. We use uniformity here to ensure that the right-
hand side we are using to obtain data from (α) has the same
structure as the right-hand side that we are using to define

the shape of the domain of the function (α′). Having satisfied
ourselves that it is possible to define a function in this way,
we elide the details in the following definition:

Definition 13: For α ∈ URHS(c) and V ∈ SetC , define the
function αV : Jα◦K(V ◦ cat)→ FV c by induction on αV :

acpt(x)V (∗) = x

or(α, β)V (inl(x)) = αV (x)

or(α, β)V (inr(x)) = βV (x)

tok(S, f)V (t, x) = f(t)V (x)

nt(X, f)V (v, x) = f(v)V (x)

There is no clause for fail because JfailKV = ∅ has no
elements.

Definition 14: Given a grammar with semantic actions Γ,
define the grammar Γ◦ on the same set of non-terminals as
Γ◦(X) = (Γ(X))◦. Define a family of functions, parame-
terised by V ∈ SetC ,

ΓV (X) : JΓ◦K(V ◦ cat)X → FV (cat(X))

ΓV (X) = Γ(X)V

This family is natural in V .
From the natural transformation Γ we can define an NT -
indexed function LΓMX : µJΓ◦KX → µF (cat(X)), by struc-
tural recursion on µJΓK.

VI. SEMANTICS OF SEMANTIC ACTIONS

As above, we define a tree-producing semantics that gener-
ates specific abstract syntax trees, and a trace semantics that
represents many parses in a single derivation.

A. Tree-Producing Semantics
For the tree-producing semantics, we instantiate the right-

hand sides with V (c) = µFc. Consequently, the trees gener-
ated will be ordinary abstract syntax trees.

The following collection of rules derives judgements of
the form (i, α, j) ⇒ x, where i and j are natural num-
bers with i ≤ j, representing positions in the input string,
α ∈ RHSµF (F (µF)c) is a right-hand side that will yield a
parse tree, and x ∈ F (µF)c is a parse tree. The syntactic
category c ∈ C is left implicit. A derivation of (i, α, j) ⇒ x
expresses that the right-hand side α accepts the input between
i and j and yields the result x. We write (i,X, j) ⇒ x if
Γ(X)µF = α and (i, α, j)⇒ x.

(i, acpt(x), i)⇒ x
(P-ACCEPT)

(i, α, j)⇒ x

(i, or(α, β), j)⇒ x
(P-L)

(i, β, j)⇒ x

(i, or(α, β), j)⇒ x
(P-R)

input [i] = t t ∈ S (i+ 1, f(t), j)⇒ x

(i, tok(S, f), j)⇒ x
(P-TOK)

Γ(X)µF = α
(i, α, j)⇒ y (j, f(in y), k)⇒ x

(i, nt(X, f), k)⇒ x
(P-NT)

These rules have the same intended meaning as the corre-
sponding rules in Section IV-A. The main difference is that
now the right-hand side is responsible for constructing the
parse result: when acpt(x) is reached, the whole parse result
x has been constructed and this is what is returned. The NT
rule is further different because the function f is fed the sub-
result from parsing the non-terminal X . By the uniformity of
f , this cannot be used to affect the language being parsed.

The following two theorems are proved by induction on the
derivations against the grammar Γ and the derived grammar
Γ◦ respectively. A similar generalisation of the induction
hypothesis is required as in the definition of αV above, due to
the need to deal with related instantiations of a uniform right-
hand side. We use the notation Γ ` (i, α, j) ⇒ x to indicate
derivations against particular grammars.

Theorem 4 (Soundness): Let α ∈ URHS(c) be a uniform
right-hand side. If Γ ` (i, αµF , j) ⇒ x there there exists
an x′ ∈ Jα◦K(µJΓ◦K) such that Γ◦ ` (i, α◦, j) ⇒ x′ and
αµF (Jα◦KLΓMx′) = x.

Theorem 5 (Completeness): Let α ∈ URHS(c) be a uni-
form right-hand side. If Γ◦ ` (i, α◦, j) ⇒ x then Γ `
(i, αµF , j)⇒ αµF (Jα◦KLΓMx).

B. Trace Semantics

The trace semantics for grammars with semantic actions
incorporates the same changes as the tree-producing semantics.
Right-hand sides are responsible for building parse results, so
we do not carry around functions k for constructing results.
To represent sub-results, we use the family of sets VC ∈ SetC

defined as VC(c) = {[i,X, j] | 0 ≤ i ≤ j ≤ n ∧ cat(X) = c}.
Items in trace semantics derivations for grammars with

semantic actions have the form (i,X → α, j) where i ≤ j
are start and end positions in the input, X is a non-terminal
and α ∈ RHSVC (cat(X)) describes the future input that
is required. As before, derivations D are justified lists of
items built from the following rules, starting from the axiom
(0, X → Γ(X)VC , 0):

(i,X → or(α, β), j)

(i,X → α, j)
(P-T-L)

(i,X → or(α, β), j)

(i,X → β, j)
(P-T-R)

input [j] = t t ∈ S (i,X → tok(S, f), j)

(i,X → f(t), j + 1)
(P-T-TOK)

(i,X → nt(Y, f), j) Γ(Y)VC = β

(j, Y → β, j)
(P-T-CALL)

(j, Y → acpt(x), j′)
(i,X → nt(Y, f), j)

(i,X → f([j, Y, j′]), j′)
(P-T-COMPLETE)

These rules have the same intended meaning as in Section
IV-B, but now the results are constructed by the right-hand

sides themselves. In the P-T-COMPLETE rule, we pass the
reference to all results for [j, Y, j′] to the right-hand side.

As in Section IV-B, a derivation D induces a relation D̂
between members of VC and abstract syntax trees in µF :

Definition 15: A C-indexed relation R(c) ⊆ VC(c)×µF (c)
is a D-relation for a derivation D if for all ([i,X, j], x) ∈ R(c)
there exists an x′ such that (i,X → acpt(x′), j) ∈ D and
(x′, x) ∈ F̂Rc. For any derivation D, the C-indexed relation
D̂(c) ⊆ VC(c) × µFc is defined to relate [i,X, j] and x if
there exists a D-relation that relates them.

As we have done for the tree-producing semantics, we relate
the trace semantics of grammars with semantic actions to the
semantics of Section IV-B via the factorisation construction.
The completeness direction is by induction on x:

Theorem 6 (Completeness): Let Γ be a grammar with se-
mantic actions. Given a derivation D◦ against Γ◦ such that
([i,X, j], x) ∈ D̂◦, then there is a derivation D against Γ
such that ([i,X, j], LΓM(cat(X))x) ∈ D̂.

The soundness direction is more subtle. As we discussed
in Section II-C, an arbitrary grammar with semantic actions
may duplicate the information required to reconstruct the AST,
causing confusion over which result was intended.

Definition 16: A grammar with semantic actions Γ is affine
if for all derivations D, the following holds. If X ∈ NT is
a non-terminal with c = cat(X), and R is a D-relation and
x ∈ FVCc and x′ ∈ F (µF)c with (x, x′) ∈ F̂Rc, and there
is a y ∈ JΓ(X)◦K(VC ◦ cat) such that Γ(X)VC◦caty = x,
then there exists a y′ ∈ JΓ(X)◦K(µF ◦ cat) such that
(y, y′) ∈ RJΓ(X)◦K(R ◦ cat) and Γ(X)µF◦caty

′ = x′.
Diagrammatically:

y ∈ JΓ(X)◦K(VC ◦ cat)
�Γ(X)VC◦cat//

RJΓ(X)◦K(R◦cat)

x ∈ FVCc

F̂Rc

∃y′ ∈ JΓ(X)◦K(µF ◦ cat)
�Γ(X)µF◦cat// x′ ∈ F (µF)c

The grammar is linear if there is a unique choice of y′.
We illustrate this definition with an example. Consider the

grammar in Section II-C and the non-terminal X whose right-
hand side duplicated a sub-result. In this case Γ(X)V (v, ∗) =
C v v. Now consider a derivation yielding the SPPF in Section
II-C. In this derivation, the values x = C [0, E, 0] [0, E, 0] and
x′ = C C1 C2 are related as in the definition above, and with
y = ([0, E, 0], ∗), we have that Γ(X)VC◦caty = x. However,
there is no y′ ∈ JΓ(X)◦K(µF ◦cat) such that Γ(X)µF◦caty

′ =
x: for any y′ = (z, ∗), we would have to have z = C1 and
z = C2. Note that this definition permits the discarding of
parse results: in this case we are free to pick any appropriate
parse result in the derivation D to fill in the hole. If we had
required the choice of y to always be unique then we would
also be disallowing the discarding of sub-results: grammars
would be linear.

Using affineness, the following soundness result is provable,
using the same structure as the completeness property above,
but exploiting the affineness to proceed with induction on x.

Theorem 7 (Soundness): Let Γ be an affine grammar with
semantic actions. Given a derivation D against Γ such that
([i,X, j], x) ∈ D̂, then there is a derivation D◦ against Γ◦ and
an x′ ∈ µJΓKX such that ([i,X, j], x◦) ∈ D̂◦ and LΓMx◦ = x.

VII. CONCLUSIONS

We have presented a general class of grammars and de-
veloped a semantic theory to interpret these grammars. We
intend to extend the formalism described here to be yet more
expressive, including returned values from non-terminals and
tail-called non-terminals. It also remains to perform empirical
evaluation of semantically-based algorithms for parsing with
our grammars, both with respect to efficiency and expressivity.

ACKNOWLEDGEMENTS

Thanks to the anonymous reviewers for their constructive
and helpful comments. This work was funded by EPSRC grant
EP/G068917/1.

REFERENCES

[1] J. Earley. An Efficient Context-Free Parsing Algorithm. Communications
of the ACM, 13(2):94–102, February 1970.

[2] B. Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2004, pages
111–122. ACM, 2004.

[3] R. A. Frost, R. Hafiz, and P. Callaghan. Parser combinators for
ambiguous left-recursive grammars. In Practical Aspects of Declarative
Languages, 10th Int. Symp., PADL 2008, volume 4902 of LNCS, pages
167–181. Springer, 2008.

[4] G. Hutton and E. Meijer. Monadic Parsing in Haskell. J. Funct.
Program., 8(4):437–444, 1998.

[5] T. Jim and Y. Mandelbaum. A New Method for Dependent Parsing.
In Programming Languages and Systems - 20th European Symposium
on Programming, ESOP 2011, volume 6602 of LNCS, pages 378–397.
Springer, 2011.

[6] T. Jim and Y. Mandelbaum. Delayed semantic actions in Yakker. In Lan-
guage Descriptions, Tools and Applications, LDTA 2011, Saarbrücken,
Germany, March 26-27, 2011. Proceedings. ACM, 2011.

[7] T. Jim, Y. Mandelbaum, and D. Walker. Semantics and algorithms for
data-dependent grammars. In Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, pages 417–430. ACM, 2010.

[8] M. Johnson. The computational complexity of GLR parsing. In
Generalized LR Parsing. Kluwer Academic Publishers, 1991.

[9] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators
for the real world. Technical Report UU-CS-2001-27, Department of
Computer Science, Universiteit Utrecht, 2001.

[10] S. Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1998.

[11] C. McBride and R. Paterson. Applicative programming with effects. J.
Funct. Program., 18(1):1–13, 2008.

[12] S. McPeak. Elkhound: A Fast, Practical GLR Parser Generator.
Technical Report UCB/CSD-2-1214, University of California, Berkeley,
December 2002.

[13] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism. In
IFIP Congress, pages 513–523, 1983.

[14] E. Scott. SPPF-Style Parsing from Earley Recognisers. Electronic Notes
in Theoretical Computer Science, 203:53–67, 2008.

[15] E. Scott and A. Johnstone. Recognition is not Parsing – SPPF-style
parsing from cubic recognisers. Science of Computer Programming,
75:55–70, 2010.

[16] E. Scott, A. Johnstone, and G. Economopolous. BRN-table based GLR
Parsers (Draft). Technical Report CSD-TR-03-06, Royal Holloway,
University of London, 2003.

[17] S. D. Swierstra. Combinator parsing: A short tutorial. In LerNet ALFA
Summer School, volume 5520 of LNCS, pages 252–300. Springer, 2008.

[18] M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic
Publishers, 1986.

