
Substructural Simple Type Theories for

Separation and In-place Update

Robert Atkey

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2006

3

Abstract

This thesis studies two substructural simple type theories, extending the “sep-

aration” and “number-of-uses” readings of the basic substructural simply typed

λ-calculus with exchange.

The first calculus, λsep, extends the αλ-calculus of O’Hearn and Pym by di-

rectly considering the representation of separation in a type system. We define

type contexts with separation relations and introduce new type constructors of

separated products and separated functions. We describe the basic metatheory of

the calculus, including a sound and complete type-checking algorithm. We then

give new categorical structure for interpreting the type judgements, and prove

that it coherently, soundly and completely interprets the type theory. To show

how the structure models separation we extend Day’s construction of closed sym-

metric monoidal structure on functor categories to our categorical structure, and

describe two instances dealing with the global and local separation.

The second system, λinplc, is a re-presentation a of substructural calculus for

in-place update with linear and non-linear values, based on Wadler’s Linear typed

system with non-linear types and Hofmann’s LFPL. We identify some problems

with the metatheory of the calculus, in particular the failure of the substitution

rule to hold due to the call-by-value interpretation inherent in the type rules.

To resolve this issue, we turn to categorical models of call-by-value computa-

tion, namely Moggi’s Computational Monads and Power and Robinson’s Freyd-

Categories. We extend both of these to include additional information about

the current state of the computation, defining Parameterised Freyd-categories

and Parameterised Strong Monads. These definitions are equivalent in the closed

case. We prove that by adding a commutativity condition they are a sound

class of models for λinplc. To obtain a complete class of models for λinplc we re-

fine the structure to better match the syntax. We also give a direct syntactic

presentation of Parameterised Freyd-categories and prove that it is soundly and

completely modelled by the syntax. We give a concrete model based on Day’s

construction, demonstrating how the categorical structure can be used to model

call-by-value computation with in-place update and bounded heaps.

4

Acknowledgements

I would like to thank my supervisor, David Aspinall, for his help and guidance

in academic matters and especially his encouraging me to go to conferences and

workshops to speak about my work as well as his skill in finding funding for me

during my final year.

Many thanks are also due to my second supervisor, Ian Stark, as well as Alex

Simpson and John Longley who sat on my progress review panels for my second

and third years and first year respectively. I also wish to thank the other members

of the Mobile Resource Guarantees project for providing the original motivation

for this thesis.

I would also like to thank my office mates in Edinburgh, Uli Schöpp and Jan

Obdrzalek, and my office mates in Warsaw, Artur Zaw locki and Piotr Hofmann,

for putting up with my erratic working schedule. Michal Konečný was a great

help in the initial stages and I greatly enjoyed working with him. Also I would

like to thank Irwin Kennedy for many conversations on doing a PhD and many

other things. The many people I met in Warsaw, to numerous to mention, greatly

enriched my visit there.

My parents, Richard and Rosemary Atkey, have been constantly encouraging

and always there when I needed them.

Lastly, but not leastly, my partner, Lauren Gerrard, has been a bottomless

source of fun and reassurement over the course of my studies, especially during

the final frantic days before submission.

5

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except

as specified.

(Robert Atkey)

Table of Contents

1 Introduction 11

1.1 Substructural Type Theories . 12

1.1.1 New type constructors . 16

1.1.2 Type Theories . 17

1.1.3 Categorical Semantics of Substructural Type Theories . . . 19

1.2 The Separation Reading : αλ and λsep 20

1.2.1 Semantics of Separation 24

1.3 In-place Update . 26

1.3.1 Semantics of In-place Update 30

1.4 Thesis Outline . 32

2 Syntax and Typing of λsep 35

2.1 Separation Relations . 35

2.2 Typing Rules: λsep Systems . 37

2.2.1 Types, Contexts and Structural Transitions 38

2.2.2 Terms and Typing Judgements 42

2.2.3 Basic Metatheory . 43

2.3 Example: Independence of Data 47

2.4 Equational Rules: λsep Theories 48

2.4.1 Translations . 51

2.5 Type Checking Algorithm . 52

3 Categorical Semantics of λsep 63

3.1 Symmetric Monoidal Structure 64

7

8 TABLE OF CONTENTS

3.2 Categorical Structure for λsep . 67

3.2.1 Separation Products . 68

3.2.2 Permutation and S-Weakening 73

3.2.3 Weakening and Contraction 78

3.2.4 Separation Functors . 83

3.2.5 Two Example Separation Categories 84

3.2.6 Separation Closure . 86

3.3 Interpretation of λsep . 87

3.3.1 Coherence . 87

3.3.2 Soundness and Completeness 92

4 Day’s Construction and Presheaf Models 95

4.1 Dinaturality and (Co)Ends . 96

4.1.1 Definition and Properties 96

4.1.2 Day’s Notation for Coends Involving × 101

4.2 Proseparation . 102

4.2.1 Base Definition . 103

4.2.2 Permutation and S-Weakening 106

4.2.3 Discarding and Duplication 108

4.2.4 Separation Closure . 112

4.3 Instances of Proseparation Categories 113

4.3.1 Separation Categories . 113

4.3.2 Resources with Separation and Combination 117

4.3.3 Finite Sets and Injective Functions 120

5 Typed Computational Effects 127

5.1 Computational Effects . 128

5.1.1 Freyd Categories . 128

5.1.2 Strong Monads . 135

5.2 Typed Computational Effects . 138

5.2.1 Parameterised Freyd Categories 138

5.2.2 Strong Parameterised Monads 144

TABLE OF CONTENTS 9

5.2.3 Equivalence . 148

5.3 Monoidal Typed Computational Effects 151

5.3.1 Double Parameterised Freyd categories 151

5.3.2 Monoidal Parameterised Monads 155

5.3.3 Equivalence . 159

5.4 Refinements of the Definitions . 162

5.4.1 The Mono Requirement 163

5.4.2 Commutativity . 164

5.4.3 K-Closure and Typed Command Categories 165

6 Typed Command Calculus 167

6.1 Design of the Calculus . 167

6.2 Typed Command Calculus . 171

6.2.1 State Calculus . 172

6.2.2 Value and Command Calculi 174

6.2.3 Equational Theory . 177

6.3 Categorical Models . 182

6.3.1 State Calculus Interpretation 183

6.3.2 Value and Command Calculi Interpretation 184

6.3.3 Typed Command Models 184

6.4 Comparison to Alias Types . 192

7 Heap bounded state model 195

7.1 The Category . 195

7.2 Boxed Data . 199

7.3 Singly-Linked Lists . 200

8 An In-place Update Calculus 207

8.1 In-place Update Systems . 208

8.2 Substitution . 214

8.2.1 Interpretation in a Typed Command Category 216

8.3 Equational Theory . 218

8.4 Categorical Semantics . 221

10 TABLE OF CONTENTS

8.4.1 Coherence . 222

8.4.2 Soundness and Completeness 225

8.5 Commutative Typed Command Categories 229

9 Conclusions 233

9.1 Related Work . 235

9.1.1 Substructural Typing . 235

9.1.2 Separation Typing . 236

9.1.3 In-place Update and Typed Command Categories 240

9.2 Some Directions for Future Work 245

A Proofs for Chapter 5 251

A.1 Proofs for Theorem 5.2.17 . 251

A.1.1 The functor F is well-defined 251

A.1.2 The functor F is full and faithful 256

A.1.3 The functor F is essentially surjective 258

A.2 Proof of Theorem 5.3.7 . 265

A.3 Proofs for Theorem 5.3.14 . 267

A.3.1 The functor F is well-defined 267

A.3.2 The functor F is full and faithful 269

A.3.3 The functor F is essentially surjective 270

B Adjunctions and Algebras with Parameters 275

B.1 Parameterised Adjunctions . 275

B.2 Typed State Algebras . 281

B.3 Proof Details . 286

B.3.1 The functor F is well-defined 286

B.3.2 The functor F is a parameterised left adjoint 289

B.3.3 The functor L is well-defined 291

B.3.4 The functors L and K form an isomorphism 294

Bibliography 297

Chapter 1

Introduction

This thesis is about substructural simple type theories and their application to

expressing separation and safe in-place update in programming languages. We

extend O’Hearn and Pym’s αλ-calculus [Pym02, O’H03] to a new calculus λsep

that allows finer control over separation. We also re-present Wadler’s linear type

system [Wad90] with non-linear types as the system λinplc and give it an equational

theory. We investigate its semantics and discover connections with categorical

models of call-by-value augmented with state information. The investigation of

the semantics of linear typing leads to a third calculus, the Typed Command

Calculus, a simply typed version of other type systems presented in the literature

for typed memory management, such as Alias Types [SWM00] and the Capability

Calculus [WCM00].

The motivation for both these investigations is a desire for more detailed

control of memory within programs. We use ideas from substructural logics to

formulate type systems that can express separation and memory access permission

control, both of which have been identified as useful for the safe expression of

memory management.

Control of separation is essential to prevent bugs arising from unintended

aliasing. Aliasing is a long standing problem in computer science, and has been

address by many researchers [Rey78, Pym02, Bak92, IO01, Red94, BNR01, BS93].

Aliasing arises when a single piece of the computer’s store has two or more refer-

ences. Each reference in a program has assumptions connected to it, either for-

11

12 Chapter 1. Introduction

mally by the type system or informally in the mind of the programmer. Aliased

references that are not explicitly connected can become out of date with respect

to each other, and this can lead to hard to track down memory errors. This the-

sis presents a foundational calculus for controlling separation to prevent aliasing,

λsep. We introduce the ideas behind this calculus in Section 1.2 below.

Permission management is a way of stating the assumptions connected to a

piece of memory. Strict control of permissions is required to make sure that the

programmer is not able to treat a piece of memory using out-of-date assumptions.

The distribution of permissions must be tightly controlled if they are not to

become worthless. We use a substructural type system to accomplish this in our

calculus λinplc. Our investigations of λinplc will lead us to develop extensions of

categorical models of call-by-value programming languages that directly include a

notion of permission management. We introduce λinplc and our models in Section

1.3.

Before we introduce the main work of this thesis, we first describe the general

definition of substructural type theories, based on substructural logics.

1.1 Substructural Type Theories

x : A ∈ Γ

Γ ` x : A
(Var)

Γ, x : A ` e : B

Γ ` λx : A.e : A→ B
(→I)

Γ ` e1 : A→ B Γ ` e2 : A

Γ ` e1e2 : B
(→E)

Contexts, no variable x may appear more than once:

Γ ::= ε | Γ, x : A

Figure 1.1: The Simply-Typed λ-calculus

1.1. Substructural Type Theories 13

Substructural Type Theories arise by the removal of the structural rules im-

plicit in normal type theories. They are the Curry-Howard image of Substructural

Logics [Res00, SHD93].

Structural rules determine the manipulations that may be applied to contexts.

Given the normal typing rules of the simply-typed λ-calculus (Figure 1.1), the

following structural rules are admissible:

Γ, x : A, y : A,Γ′ ` e : B

Γ, x : A,Γ′ ` e[x/y] : B
(Contraction)

Γ,Γ′ ` e : B

Γ, x : A,Γ′ ` e : B
(Weakening)

Γ, x : A, y : B,Γ′ ` e : C

Γ, y : B, x : A,Γ′ ` e : C
(Exchange)

We explain each of the rules in turn, and why they are admissible. The rule

Contraction permits the identification of two previously independent variables

in a typing derivation, allowing x to be used twice. It is admissible because

the context Γ is shared between the two premises in the rule →E. The rule

Weakening shows that any derivation may have additional variables in the con-

text without affecting the typability of the term. It is admissible because the

rule Var permits Γ to contain an arbitrary list of variables, as long as it contains

the one required. The final rule, Exchange, permits the reordering of variables

in the context. It is admissible due to the form of the rule Var, which does not

specify any particular order on the variables.

The type theories in this thesis are formed by restricting the application of

the structural rules, in particular Contraction. We reformulate the rules in

Figure 1.1 to explicitly state the application of structural rules, removing their

implicit presence in the other rules. This reformulation is shown in Figure 1.2.

We have altered the definition of contexts to be inductively constructed from

variable/type pairs, a constant I and a binary constructor “,”. We have also

added a rule Struct, parameterised by “valid” transitions Γ1
ρ⇒ Γ2 between

such contexts, where ρ is a map of variables in Γ2 to variables in Γ1, applied as

a renaming in the Struct rule.

The restatement of contexts as constructed from type assignments, constants

14 Chapter 1. Introduction

x : A ` x : A
(Id)

Γ2 ` e : A Γ1
ρ⇒ Γ2 valid

Γ1 ` ρ(e) : A
(Struct)

Γ, x : A ` e : B

Γ ` λx : A.e : A (B
((I)

Γ1 ` e1 : A (B Γ2 ` e2 : A

Γ1,Γ2 ` e1e2 : B
((E)

Contexts, no variable x may appear more than once:

Γ ::= x : A | I | Γ1,Γ2

Figure 1.2: Basic Substructural λ-calculus

and constructors will allow us to generate more complex contexts with different

structural rules applicable to the different constructors. The construction of

contexts in this way is inspired by the αλ-calculus (described below in Section 1.2)

[O’H03] and is used to express the logic of Bunched Implications [OP99, Pym02]

and also to uniformly present substructural logics in [Res00].

Along with this restatement of contexts as trees rather than lists, the restate-

ment of structural rules in terms of transitions also allows greater control1. We

have already mentioned the concept of valid structural transitions. These are de-

fined inductively by a collection of rules. All of our systems include the following

as valid structural transitions:

ρ(Γ′) = Γ

Γ
ρ⇒ Γ′ valid

Γ1
ρ1⇒ Γ2 valid Γ2

ρ2⇒ Γ3 valid

Γ1
ρ1;ρ2⇒ Γ3 valid

Γ1
ρ⇒ Γ2 valid Γ′

1

ρ′⇒ Γ′
2 valid

Γ1,Γ
′
1

ρ;ρ′⇒ Γ2,Γ
′
2 valid I ⇒ I valid

These four rules express: identity up to renaming (α-equivalence), sequential

composition, and two rules for congruence with the constants and constructors for

1The idea of representing structural rules as abstract transitions was inspired by [OPTT99]’s
use of structural extensions which are sequences of structural rules.

1.1. Substructural Type Theories 15

contexts. In the third rule, note that ρ; ρ′ = ρ′; ρ by the disjoint variable condition

on contexts. The empty mapping is not written in a transition: Γ ⇒ Γ valid holds

from the rules above for any Γ. We also wish to regard the comma as associative

and I as its unit, so we include the following as valid transitions:

(Γ1,Γ2),Γ3 ⇔ Γ1, (Γ2,Γ3) valid

I,Γ ⇔ Γ valid

Γ, I ⇔ Γ valid

The double headed arrows ⇔ indicate that these transitions may be applied in

both directions.

The valid structural transitions we have present so far are all implicit in the

system of Figure 1.1, by construction of contexts as lists. The three structural

rules identified above may also be expressed as structural transitions:

Γ ≡α Γ′

Γ
[v(Γ′) 7→v(Γ)]⇒ Γ,Γ′ valid

(Contraction)

Γ ⇒ I valid
(Weakening)

Γ1,Γ2 ⇔ Γ2,Γ1 valid
(Exchange)

In the Contraction rule, the premise Γ ≡α Γ′ states that the two contexts should

be α equivalent, i.e. equivalent up to renaming of variables. The notation v(Γ)

denotes to the list of variable names in Γ, taken in depth-first left-to-right order.

The rules in Figure 1.2, when we consider all of the named structural tran-

sitions as valid, have the same power as the original system. The rule Var is

derivable from the rule Id and repeated applications of the rules Weakening and

Exchange; the rule (I is identical in form to →I; and →E is derivable from (E

and repeated applications of the rules Contraction and Exchange. Conversely,

the rule Id is a special case of Var; the rules →I and (I are identical in form; and

(E is admissible by repeated uses of Weakening and Contraction to make the

context in both premises equal to Γ1,Γ2 and an application of →E.

Removing admissible structural rules from the basic system of Figure 1.1

changes the meaning of terms and the function type. Removing Contraction

16 Chapter 1. Introduction

means that a function body may not use a variable more than once, and removing

Weakening means that a function must use a variable at least once. Note that

this basic reading of the removal of the structural rules does not hold when we

move to more complex substructural systems. See the description of the αλ-

calculus below in Section 1.2.

The system may now seem to be overly complicated; we have added an extra

rule and a complex system of contexts and valid structural transitions to produce

a system with exactly the same typable terms. However, the new complexity

brings more flexibility. We can alter the definitions of contexts and valid struc-

tural transitions to get new systems. By reading the structural rules, and their

omission, as having computational significance, we can develop new type sys-

tems that have useful properties. In this thesis we will consider the removal of

Contraction and Weakening and their application to the expression of separa-

tion and in-place update. We introduce these in Sections 1.2 and 1.3 respectively.

Before we do that, in the rest of this section we introduce some more issues

common to all substructural type systems. We first discuss the introduction of

new type constructors given by varying the structural rules, then the effect of

these constructors on the equations of a type theory, and finally we discuss the

categorical semantics of substructural systems.

1.1.1 New type constructors

Varying the valid structural transitions allows the introduction of a new binary

type constructor, the tensor product: A⊗B. This has the following introduction

and elimination rules:

Γ1 ` e1 : A Γ2 ` e2 : B

Γ1,Γ2 ` e1 ⊗ e2 : A⊗B
(⊗I)

Γ1 ` e1 : A⊗B Γ2(x : A, y : B) ` e2 : C

Γ2(Γ1) ` let x⊗ y = e1 in e2 : C
(⊗E)

The introduction rule places the contexts in the same order as the terms; the

comma between the contexts mirrors the ⊗ between the terms and types. In the

1.1. Substructural Type Theories 17

⊗E rule, the context Γ2(−) represents a context with a missing sub-term, filled

in with x : A, y : B in the premise and Γ1 in the conclusion. The free variables of

e1 are placed into the same subcontext as x and y. Note that the two variables

x and y are separated by a single comma in the context, matching the ⊗ in the

pair being split. When new context constructors are introduced below, there will

be new tensor products connected to them in the same way.

Due to the close correspondence between the terms and contexts in the intro-

duction and elimination rules, the presence or absence of the structural rules has

an effect on the way in which we interpret the tensor type.

When all the structural rules are present, the tensor type behaves similarly

at the type judgement derivation level to the normal product type A × B. The

following judgements are derivable:

x : A ` (x, x) : A⊗ A x : A ` ?I : I

x : A⊗B ` let (y, z) = x in (z, y) : B ⊗ A

In terms of structural rules, the judgements correspond to a use of the rules

Contraction, Weakening and Exchange respectively. If a rule is missing, then

the corresponding judgement is not derivable. Hence, the operations permissi-

ble on the type A ⊗ B match the valid structural transitions applicable to the

corresponding context constructor.

Removing the structural rules does not prevent the system being extended

with the traditional product type. It can be introduced using shared contexts

and eliminated using projections:

Γ ` e1 : A1 Γ ` e2 : A2

Γ ` 〈e1, e2〉 : A×B
(×I)

Γ ` e : A1 × A2

Γ ` πie : Ai

(×E-i)

1.1.2 Type Theories

To be a type theory, there must be some notion of equality between terms. In the

case of the basic calculi presented in Figures 1.1 and 1.2, we have the following

two equations:

(λx : A.e1)e2 = e1[e2/x]

18 Chapter 1. Introduction

λx : A.ex = e

These are the equational versions of the normal β and η reduction rules respec-

tively. They are the same for the non-substructural and substructural systems.

It is easy to see that if the left hand side of each equation is typable, then so is

the right hand side, under the same context and result type: for the β rule this is

by substitution, and for the η rule this is by inversion of the typing rules. When

we introduce the tensor product type, however, complications arise. We want the

usual β and η equational rules:

let (x, y) = (e1, e2) in e3 = e3[e1/x, e2/y]

let (x, y) = e in (x, y) = e

Both sides of these rules are obviously typable, by direct application of the type

rules and by the substitution property. However, they do not cover all the pos-

sible equations that we desire between terms. Due to the presence of “parasitic

types” in the elimination rules for products, we must be able to permute these

eliminations with the other rules. For example, these two terms should be equal

when x′ and y′ are not free in e3.

(let (x, y) = (let (x′, y′) = e1 in e2) in e3)

=

(let (x′, y′) = e1 in let (x, y) = e2 in e3)

The traditional approach is to require a collection of commuting conversion rules

that state all the required permutations explicitly. However, this leads to un-

wieldy systems of rules, particularly when we must consider their interaction

with the syntax-free structural rules.

To avoid this problem, we adopt the approach of Ghani [Gha95] and use

generalised η expansion:

let (x, y) = e1 in e2[(x, y)/z] = e2[e1/z]

This rule subsumes the commuting conversion rules, and when all the named

structural rules above are present, ensures that the product obeys the surjective

pairing property.

1.1. Substructural Type Theories 19

Ghani’s rule is applicable in the λsep and λinplc calculi presented in this thesis,

but we are forced to use explicit commuting conversions in the Typed Command

Calculus. See Chapter 6 for details.

1.1.3 Categorical Semantics of Substructural Type Theories

In order to give the precise requirements for models of our substructural type the-

ories, we formulate categorical semantics for them. We do this in the style of the

cartesian closed category semantics for the simply typed λ-calculus [LS88, Cro94]

by interpreting contexts and types by objects of a category C and judgements

Γ ` e : A by arrows JΓK → JAK. Equality of typed terms is modelled by equality

of arrows.

We interpret context constructors and constants by functors Cn → C, where

n is the arity of the constructor. Valid structural transitions are interpreted as

natural transformations between multiple applications of the context constructor

functors. We define the interpretations by induction on the structure of contexts

and the derivation of validity, respectively. Tensor product types are interpreted

using the same functors as the context constructors to which they correspond.

Function types are interpreted using the usual right adjoints to the context con-

structors from which they are formed.

There are many ways of deriving valid structural transitions and, due to the

fact that the Struct rule introduces no term syntax, we must ensure that all

derivations of the same valid transition Γ1
ρ⇒ Γ2 have the same interpretation. In

the case of the basic system with a single binary context constructor and unit, this

is exactly the coherence of symmetric monoidal structure on a category [Mac98].

When we consider the semantics of λsep in Chapter 3 and the direct semantics of

λinplc in Chapter 8 we will have to prove this for ourselves.

Because Struct introduces no term syntax, there may be many derivations

of a single typing judgement Γ ` e : A. We must ensure that each of these

derivations has the same interpretation. We do this following O’Hearn et al ’s

proof of coherence of the interpretation of Syntactic Control of Interference Re-

visited [OPTT99], effectively by rewriting the derivation tree to a normal form

20 Chapter 1. Introduction

and proving that the process of rewriting preserves the interpretation. To do this

we require an abstract characterisation of valid structural transitions and a way

of “factorising” them over applications of introduction and elimination rules that

preserves their interpretation. We do this for λinplc in Section 3.3.1. The other

substructural type theory in this thesis, λinplc, also requires a proof of coherence,

which is completed in the same way.

1.2 The Separation Reading : αλ and λsep

In this section we describe a way to express separation in typing contexts via the

αλ-calculus and our extension, λsep.

The αλ-calculus [O’H03, Pym02] is the typed λ-calculus corresponding via the

Curry-Howard isomorphism to the Logic of Bunched Implications (BI) [OP99].

The αλ-calculus combines a substructural type system without Contraction or

Weakening with an intuitionistic type system. The contexts of the two systems

are mixed by allowing contexts to be constructed from two context formers “,”

and “;”. The comma only allows Exchange, while the semicolon allows all the

structural rules. The contexts are given by the following grammar:

Γ ::= x : A | I | 1 | Γ1,Γ2 | Γ1; Γ2

with the usual condition that no variable x may appear more than once in a

context.

The αλ-calculus has associativity and left and right unit transitions for both

the comma and I and the semicolon and 1, as well as congruence, identity and

composition. The interesting part lies in the fact that the comma and I have

only Exchange:

Γ1,Γ2 ⇔ Γ2,Γ1 valid

While the semicolon and 1 have all the structural rules:

Γ ≡α Γ′

Γ
[v(Γ′) 7→v(Γ)]⇒ Γ; Γ′ valid Γ ⇒ 1 valid Γ1; Γ2 ⇔ Γ2; Γ1 valid

1.2. The Separation Reading : αλ and λsep 21

The introduction rule for the product type is altered from the formulation at

the end of Section 1.1.1 to make it clear that it is related to the semicolon:

Γ1 ` e1 : A Γ2 ` e2 : B

Γ1; Γ2 ` 〈e1, e2〉 : A×B
(×I)

By the Contraction structural transition, the rule for product introduction from

Section 1.1.1 is derivable from this one. We could also use an elimination rule

for products similar to the let (x, y) = e1 in e2 construct for eliminating tensor

products. Such a construct is required for the more flexible products of λsep

introduced below and developed in Chapter 2, however.

The substructural function type A –∗ B is expressed in the same way as

in Figure 1.2, albeit with a different symbol to emphasise the difference from

presentations of the linear λ-calculus.

Γ, x : A ` e : B

Γ ` λx.e : A –∗ B
(–∗I)

Γ1 ` e1 : A –∗ B Γ2 ` e2 : A

Γ1,Γ2 ` e1@∗e1 : B
(–∗E)

Note the use of the comma in the premise of the introduction rule and the conclu-

sion of the elimination rule. The same pattern may be applied with the semicolon

to get the simply-typed function space:

Γ;x : A ` e : B

Γ ` αx.e : A→ B
(→I)

Γ1 ` e1 : A→ B Γ2 ` e2 : A

Γ1; Γ2 ` e1e2 : B
(→E)

Note that whereas we could have included the product type A×B without intro-

ducing the context constructor “;” by the rules in Section 1.1.1, the introduction

of the non-substructural function type A→ B requires the use of “;” to formulate

the rule →I.

The inclusion of two kinds of function type alters the behaviour of the sub-

structural function typeA –∗ B. Despite the lack of Weakening and Contraction

we cannot regard it as a type of functions that use their argument only once, as in

the linear λ-calculus [Wad93b]. Consider the following example due to O’Hearn

22 Chapter 1. Introduction

[O’H03]:
...

x : A; f : A→ A→ B ` fxx : B

x : A ` αf.fxx : (A→ A→ B) → B

I, x : A ` αf.fxx : (A→ A→ B) → B

I ` λx.αf.fxx : A –∗ (A→ A→ B) → B

Despite the fact that λx is a substructural function abstraction, its body mentions

x twice. The function argument bound to f has no notion of any connection

between its two arguments, as it would if they had been combined in an argument

of type A×B, and may use both of them.

The αλ-calculus has a strong reading in terms of separation. Reading the

comma context constructor as stating that the two halves must be separate – due

to the lack of Contraction – and the semicolon as stating that the two sides

may share, we can give meanings to the two kinds of products and the two kinds

of function abstraction.

Since the two product types match the context constructors, we can imme-

diately read the tensor A ⊗ B as a separated, or non-sharing pairing and the

product A×B as a pairing of values that may share resources. Due to the use of

a comma between the abstracted variable and the rest of the context, the function

type A –∗ B can be read as the type of functions whose arguments are separate

from the function – the resources of the function itself being represented by the

free variables. Likewise, the use of a semicolon in the introduction rule of the

type A→ B allows sharing between the function and its arguments.

For the sharing interpretation of the calculus, we may also allow weakening

for the comma. The simplest way to allow this is to identify the two units I and 1

with a single unit 1. This variant is called the affine αλ-calculus. In this variant,

we also have a derived valid structural transition called Dereliction:

Γ1,Γ2 ⇒ (Γ1,Γ2); (Γ′
1,Γ

′
2) ⇒ (Γ1, 1); (1,Γ′

2) ⇒ Γ1; Γ′
2 ≡α Γ1; Γ2

This rule states that we may forget the fact that Γ1 and Γ2 are separate and just

regard them as a pair that may share.

1.2. The Separation Reading : αλ and λsep 23

There are other variants of the αλ-calculus that replace or add binary context

formers and alter the structural rules that are applicable over them, in particular

the removal of Exchange. This allows the expression of pointers from one heap

to another, but not in the opposite direction. See [O’H03] for more details

The context in the αλ-calculus represents the permissible sharing relationships

between the individual free variables used by the term. For example, the context

(a : A; b : B), (c : C; d : D) represents the following separation relationships:

a : A_

_

	

	I
IIIIIIII b : B_

_

5

5uuuuuuuuu

c : C d : D

From the diagram it is easy to see that the two pairs a, b and c, d are not required

to be separate internally, and that there must be total separation between them.

This is the pattern of separation given by the structure of the context.

An obvious question is whether every possible pattern of separation may be

represented by an αλ-calculus-style context. This is not possible. The use of two

contexts formers “,” and “;” means that only so-called series-parallel separation

graphs may be constructed; graphs constructed from pairwise combination of

graphs with no separation or total separation. The following fact [BdGR97,

VTL82] states that not all graphs are series-parallel:

Fact 1.2.1 (SP-graph Characterisation) A graph is series-parallel iff its re-

striction to any four vertices is not equal to the graph:

a : A_

_

	

	I
IIIIIIII b : B_

_
c : C d : D

The type theory for separation that we define and investigate in this thesis,

λsep, overcomes this problem by directly expressing an arbitrary pattern of sepa-

ration in the context. We will describe λsep in depth in Chapter 2. Here we give a

quick overview, based on the general plan for substructural type systems we laid

out in Section 1.1. The contexts of λsep are defined by the following grammar:

Γ ::= x : A | S(Γ1, . . . ,Γn)

24 Chapter 1. Introduction

where S is a separation relation, defined in Definition 2.1.1 as a binary symmetric

relation on the contexts
−→
Γ . The intended meaning of the separation relation is

that the variables in the contexts
−→
Γ refer to data which is separated according

to the relation. The context with the empty, zero-place separation relation gives

a representation of an empty context.

The valid structural transitions for λsep include the identity, composition and

congruence transitions, plus the following transitions:

S(
−→
Γ , S′(

−→
∆),

−→
Γ′) ⇔ S{S′/i}(−→Γ ,−→∆ ,

−→
Γ′)

(Flatten)
[]1(Γ) ⇔ Γ

(Single)

S′ ⊆ S

S(
−→
Γ) ⇒ S′(

−→
Γ)

(S-Weak)
Γ ≡α Γ′

Γ
v(Γ′) 7→v(Γ)⇒ []2(Γ,Γ

′)
(Contraction)

Γ ⇒ []0()
(Weakening)

σ a permutation

S(
−→
Γ) ⇔ σS(σ

−→
Γ)

(Permutation)

All of these transitions can be justified in terms of separation, which we do in

Section 2.2. The grammar of contexts also gives rise to two new type constructors,

separation products and separation functions:

S(A1, . . . , An) A1, . . . An
S−→ B

In the case when S is a two place relation then depending on the particular

relation used, these are equivalent to the affine αλ-calculus product types and

function types. The translation from the αλ-calculus into λsep is given in Section

2.4.1.

1.2.1 Semantics of Separation

There are categorical semantics for the αλ-calculus and λsep matching the general

scheme described in Section 1.1.3 above. For the αλ-calculus, this is given in

[O’H03, Pym02] as a category C with finite products for interpreting “;”/× and 1,

and symmetric monoidal products for interpreting “,”/∗ and I. The two function

types are interpreted by assuming that both product functors have right adjoints.

1.2. The Separation Reading : αλ and λsep 25

We define a categorical semantics for λsep following the same scheme. We

assume functors S : C|S| → C for each separation relation S, and natural transfor-

mations to interpret the valid structural transitions. We describe this semantics

in Chapter 3, carefully ensuring that we have enough coherence conditions to

coherently interpret valid structural transitions and typing derivations.

This semantics gives the abstract structure required to coherently and soundly

interpret λsep, but does not explicate its meaning in terms of separation of re-

sources. To do this, in Chapter 4, we construct categories with the required

structure from categories of functors from some category with structure, C, to

the category of sets and functions, Set. The basic idea is that the objects of C
represent abstract “resources” and functors C → Set interpret types as sets in-

dexed by the resources available. This is a generalisation of the frame, or possible

world, semantics of substructural logics [Res00].

O’Hearn, Pym and Yang [O’H03, Pym02, POY04] use Day’s construction of

symmetric monoidal structure in functor categories [Day70] to give a semantics

for the αλ-calculus. Day defines symmetric monoidal structure on [C,Set] by a

co-end formula2:

(A⊗B)X =

∫ Y,Z

AY ×BZ × P (Y, Z,X)

where P : Cop × Cop × C → Set is a functor equipped with several natural trans-

formations. This construction also makes the given monoidal structure closed.

Since [C,Set] is always cartesian closed, this gives a model for the αλ-calculus.

We extend Day’s construction in the Set case by considering functors PS :

(Cop)|S| × C → Set, with a different collection of natural transformations. We

prove in Chapter 4 that this gives the structure required to coherently and soundly

model λsep.

We connect this semantics to resources and separation in Sections 4.3.2 and

4.3.3. In Section 4.3.2 we consider “global separation”, where we treat each object

of the domain category as an individual resource. Resources may be combined

using coproducts and there is a predicate, modelled as a binary contravariant

2Day [Day70] also handles the case for codomain categories other than Set by using enriched
categories, but we only consider the case for Set in this thesis.

26 Chapter 1. Introduction

functor to 2, for expressing separation. The second model, in Section 4.3.3,

models “local separation” where we consider embeddings of sub-resources into a

larger resource, and their separation and combination as embeddings.

1.3 In-place Update

In the second half of this thesis we investigate another application of the re-

striction of the Contraction rule – in-place update – by constructing a type

theory λinplc, derived from Wadler’s linear/non-linear type system [Wad90] and

Hofmann’s LFPL [Hof00]. In-place update refers to the updating of memory cells

with new values, and possibly with different types to the original values. Chang-

ing the type of the data stored in a memory cell means that we have to careful

not to access the memory cell with out-of-date information about its type. This

would lead to run-time type errors.

In-place update is potentially useful because it allows the expression of explicit

memory management in a safe way. Explicit memory management means that

the precise use of memory within a program is controlled by the programmer, who

has to handle all allocation and deallocation and reuse of memory. This is already

present in languages such as C [ISO99], but the programmer is given no help in

making sure that they do not mistakenly use memory that has been de-allocated

or access memory with mistaken assumptions about its type. Another advantage

of safe in-place update is that the expression of low-level memory operations in

the typing rules gives programming language designers a handle with which to

control memory consumption and thus develop type systems for resource limited

programming. Hofmann’s LFPL (Linear Functional Programming Language)

[Hof00] is designed with this application in mind. We use LFPL as a guide for

the design of λinplc.

Another potential use of in-place update is eased reasoning about side-effecting

programs. By making the types of the memory cells operated on by the program

explicit, the requirements on the initial and final states of the memory required

and delivered by the program are treated as normal inputs and outputs. This is

1.3. In-place Update 27

in contrast to the normal situation where the state of the memory is implicit and

the programmer receives little help from the type system.

Also, we hope to be able to forget about the imperative interpretation of the

language and treat programs as a restricted subset of functional programs and

hence apply functional reasoning techniques such as β-reduction and substitution.

It will turn out, however, that the equational theory of λinplc is affected by the

type system itself. The rule of substitution is no longer admissible. This is due

to a call-by-value interpretation being required by the typing rules.

We illustrate how the removal of Contraction allows us to type safe in-place

update. Let the following be primitive operations in a typed λ-calculus:

storeA : ♦⊗ A→ [A] retrieveA : [A] → [A]⊗ A forgetA : [A] → ♦

The operation storeA takes a memory cell, represented by a value of type ♦3, and

a value of type A and returns a pointer to the same memory cell, now containing

that value of type A. The operation retrieveA takes a memory cell containing

a value of type A and returns a pair of the memory cell and the contained value.

The operation forgetA is a no-op coercion that takes a memory cell and “forgets”

the type of the data it contains.

If we were to allow Contraction in the calculus, then it would be possible

to type programs such as (where the free variable d has type ♦):

let x = storeInt(d, 2) in

let y = storeBool(d, true) in

let (d′, i) = retrieveIntx in

i+ 4

This program fragment stores the integer 2 in the memory cell d, obtaining an

integer view of the memory cell, stored in x. It then stores the boolean true in

d, obtaining a boolean view of the same memory, stored in y. The third line then

attempts to read out the integer stored in the first line. However, this attempt

will fail since it has been overwritten by a boolean in the second line. This line,

3The type ♦ to represent unused memory is taken from LFPL [Hof00]. Diamonds are
precious, and so is unused memory.

28 Chapter 1. Introduction

or the line following will cause a run-time error when it tries to use the boolean

value as an integer. Removing Contraction makes the program above untypable

since we would not be able to use d twice.

The system without contraction is far too restrictive. There are types, such

as that of integers and booleans, whose values do not occupy any space in the

computer’s mutable store. Values of these types cannot alias one another, and

permission to use integers or booleans can be duplicated at will because they are

just values.

To fix this we follow the approach of Wadler [Wad90] and Hofmann [Hof00]

(see also [Wal05]) and introduce a distinction between stateful and state-free

types. Stateful types covers types that represent memory cells, such as [A]

or ♦ above, or linked data structures that reside in the store, such as lists in

LFPL. State-free types are those such as integers and booleans that are manip-

ulated in machine registers or on the stack. State-free types may have the rules

of Contraction and Weakening applied, as shown by these conditional valid

structural transitions:

sf(Γ)

Γ ⇒ I valid

sf(Γ) Γ ≡α Γ′

Γ
[v(Γ)/v(Γ′)]⇒ Γ,Γ′ valid

where sf(Γ) is true if Γ consists of only variables of state-free type.

The tensor product of two state-free types is considered state-free. There

are two function types A → B and A (B which are state-free and stateful

respectively. The difference between them is in their introduction rules:

Γ, x : A ` e : B sf(Γ)

Γ ` λ→x : A.e : A→ B

Γ, x : A ` e : B

Γ ` λ(x.e : A (B

All of the free variables of a function of type A → B must be state-free (the

premise sf(Γ)). Therefore, values of type A→ B contain no stateful part and so

are state-free. Values of type A (B may have stateful variables free in them,

so they are stateful.

The calculus that we have just sketched, λinplc, is defined in detail in Chapter

8. It is capable of typing safe memory management operations such as in-place

1.3. In-place Update 29

update and de-allocation. To use it for reasoning about programs as well, we

must establish an equational theory for its terms. An immediate obstacle is that

the rule of substitution is not admissible for this calculus:

Γ1 ` e1 : A Γ2(x : A) ` e2 : B

Γ2(Γ1) ` e2[e1/x] : B

This rule is the basis of reasoning about terms of the calculus by β-reduction.

The failure of the substitution rule is shown by the following judgement:

x : Int ` (x, x) : Int⊗ Int

This judgement is valid if we assume that Int is state-free. Now consider another

judgement:

d : Cell ` location(d) : Int

where the type Cell is not state-free. An attempt to substitute the term location(d)

for x in the first judgement would result in an untypable term:

(location(d), location(d))

The variable d appears twice in the term, but since d is of a non-state-free type

this is not possible.

We resolve this problem by noticing that all the operational semantics of this

calculus [Wal05, Hof00] have been call-by-value. That is, in the execution of a

term like let x = location(d) in (x, x), the sub-term location(d) is reduced to

a value (i.e. the location), before being used in the body of the let expression.

Direct substitution does not take this into account.

We study the semantics of λinplc to make clear the call-by-value execution

strategy and also to explicate the meaning of the removal of Contraction. There

are two ways to read the removal of Contraction. One is to follow the reading

of the αλ-calculus and λsep in Section 1.2 and view it as the control of aliasing.

Memory cells are aliased when they have more than one reference to them. In the

above program, the single memory cell d becomes aliased by using the variable

d twice. The prohibition of Contraction prevents this. In terms of separation,

30 Chapter 1. Introduction

a non-aliased memory cell has a single reference that is separate from all other

references. Non-aliasing is taken as primary in Reynolds’ Syntactic Control of

Interference [Rey78, Rey89] and the Separation Logic of O’Hearn, Ishtiaq and

Reynolds [Rey02, IO01].

Another view is that of permission control. If we view a value of type ♦

as a permission to store data in the memory cell it represents, then the lack of

Contraction is the inability to duplicate a permission into two independent per-

missions. Once a permission has been “used up”, by the storeA operation, it is

no longer available and we get a new permission [A] in return. In this reading,

the lack of Weakening means that we cannot discard a permission. This is the

“number-of-uses” reading of the lack of Contraction and Weakening in Linear

Logic [Gir87, Wad93b, Tro93]. The view as permissions has also been empha-

sised in recent work on type systems for imperative object-oriented programming

[BNR01] and verifying concurrent programs in Separation Logic [O’H05].

We investigate the permissions view by extending categorical models of call-

by-value programming languages with attached sets of permissions. Types of

λinplc will be interpreted as pairs of value types and permissions to operate on the

state.

1.3.1 Semantics of In-place Update

In this section we will briefly describe the ideas behind our categorical semantics

of λinplc to be studied in Chapters 5 and 8. We extend two categorical models of

call-by-value programming languages, Freyd categories and Computational Mon-

ads, described in detail in Section 5.1. We introduce our extension of them to

Parameterised Freyd categories and Parameterised Monads. We will use these to

give models of λinplc. Since λinplc only corresponds to such structures that have an

additional commutativity property, we give a calculus directly related to them,

the Typed Command Calculus, in Chapter 6.

Both Freyd categories [PR97, PT99] and Computational Monads [Mog91]

model call-by-value by splitting it into two parts. First, they separate values and

computations (though values here are not exactly the values used in operational

1.3. In-place Update 31

semantics). Freyd categories accomplish this by considering identity-on-objects

functors J : C → K, where C is category of “values” and K is a category of

“computations”. The computational monad approach considers a category C and

takes all arrows of the form A → TB to be “computations”, where T is the

functor part of the monad. Secondly, both approaches consider computations-in-

context, building on some symmetric monoidal structure of the value category C.

Freyd categories do this by requiring premonoidal structure on K, consisting of

two functors A<− : K → K and −=A : K → K that agree on objects, with some

additional natural isomorphisms, such that everything is strictly preserved by J .

Computational monads are required to have a strength τA,B : A⊗TB → T (A⊗B),

obeying some axioms. Power and Robinson [PR97] prove that, when J has a right

adjoint, these two notions are equivalent.

We augment these definitions to handle explicit typing of the state by adding

a parameter category S. Objects of S are intended to represent permissions

to access parts of the state. We extend the definition of Freyd category by

considering identity-on-objects functors J : C × S → K. Thus, every arrow

of K is tagged with a start and finish permissions object taken from S. We

form composite permissions by requiring monoidal structure on S. As well as

the premonoidal structure on K with respect to C, we also require premonoidal

structure with respect to S, allowing us to lift arrows in K to larger permissions

contexts:

(A, S1)
f−→ (B, S2)

(A, S1 ⊗ S)
f<SS−→ (B, S2 ⊗ S)

We also extend the definition of monads with strength to add the parameter

category by considering functors T : Sop × S × C → C with some natural trans-

formations. Lifting of parameterised computations to larger contexts is handled

by a pair of natural transformations:

µ⊗S,S1,S2,A : T (S1, S2, A) → T (S1 ⊗ S, S2 ⊗ S,A)

µS⊗,S1,S2,A : T (S1, S2, A) → T (S ⊗ S1, S ⊗ S2, A)

As well as interpreting λinplc in categories with closed commutative versions

of this structure, we also give a direct calculus, the Typed Command Calculus.

32 Chapter 1. Introduction

This calculus directly matches the structure of the model and does not suppose

commutativity. Judgements of the Typed Command Calculus have the form:

Γ; ∆ ` c : A;S

where Γ and A are a value context and type respectively, and ∆ and S are a per-

mission, or state, context and type. Permission, or state, contexts are disallowed

from using Weakening and Contraction, but value contexts have access to all

the substructural rules. The Typed Command Calculus is defined and proven

complete for our categorical models in Chapter 6.

We also give a direct semantics of λinplc in order to get a complete class

of models for the calculus. The structure required, which we will call In-place

Update Categories, is introduced in Chapter 8. The structures described in the

previous section will be instances of the structure. In-place Update Categories

make no mention of the permissions component of λinplc types, they just embed

value (state-free) types in a larger category of potentially stateful types.

We also give an instance of an In-place Update category based on a possible

worlds semantics, using Day’s construction, that demonstrates how the imper-

ative semantics relies on non-aliasing and also how it enables heap-bounded,

resource constrained execution, thus giving a semantics of LFPL.

1.4 Thesis Outline

The order of presentation in this thesis mostly follows the order of this introduc-

tory chapter. Our type theory for separation, λsep, is presented with its models in

Chapters 2, 3 and 4. Some of the work in these three chapters has been previously

published in [Atk04]. The presentation of work on the in-place update calculus,

λinplc, is presented in a slightly different order. We present our extensions of Freyd

categories and Computational monads in Chapter 5, the calculus corresponding

directly to these constructions in Chapter 6 and the presentation of λinplc itself

and its semantics in Chapter 8.

A short synopsis of each chapter is given here:

1.4. Thesis Outline 33

Chapter 2: Syntax and Typing of λsep This chapter formally introduces the

syntax and typing of λsep. We describe the formal representation of sepa-

ration via separation relations and use them to give the typing rules. The

notion of valid structural transition is defined which simplifies the manip-

ulation of typing derivations containing term-syntax-free structural rules.

A substitution lemma is proven along with several other admissible and

derived rules. Translations from the simply-typed λ-calculus and the αλ-

calculus are given. The equational theory is also described, and proven to

be well-defined. Finally, we give a type-checking algorithm for explicitly

typed terms, demonstrating the use of structural transitions.

Chapter 3: Categorical Semantics of λsep This chapter describes the cate-

gorical structure required to model λsep. After recalling the definition of

symmetric monoidal closed structure, used to model the αλ-calculus, we

then define the structure required to model the contexts and types of λsep,

introducing the structure required for each of the structural transitions in

turn and proving it coherent. We then show that the calculus as a whole

is coherent with respect to the interpretation, as well as being sound and

complete.

Chapter 4: Day’s construction and Presheaf models We extend Day’s con-

struction of monoidal products on functor categories to the structure re-

quired for λsep described in the previous chapter. We then describe several

instances of this construction: an abstract one starting from any category

with all the necessary structure apart from closure, and then two construc-

tions which illustrate the modelling of resources and their separation.

Chapter 5: Typed Computational Effects We recall the definitions of Freyd

category and Strong Monad and give examples of how they model compu-

tational effects in call-by-value languages. We then present our extension,

Parameterised Freyd categories and Parameterised Strong Monads. We first

give the basic definitions and show they are equivalent in the closed case

and then extend them to the state context lifting operations introduced

34 Chapter 1. Introduction

above. These extensions are again equivalent. We also describe a second

form of closure that closes over contexts containing state.

Chapter 6: Typed Command Calculus We take the definitions of the pre-

vious chapter and define the Typed Command Calculus based directly upon

them. We prove that we can coherently, soundly and completely model the

calculus. We also describe the Alias Types system of Smith, Walker and

Morrisett [SWM00] and relate it to the Typed Command Calculus.

Chapter 7: Heap Bounded State We give a concrete model of the Typed

Command Calculus based on Day’s construction that demonstrates non-

aliasing and heap-size-bounded computation.

Chapter 8: An In-place Update Calculus: λinplc We present λinplc, sketched

above, based on Wadler’s system with linear and non-linear types. We give

a well-defined equational theory and show that the constructions of Chap-

ter 5 coherently and soundly model the equational theory. We also give a

direct semantics of the calculus and show that it forms a complete class of

models for the calculus.

Chapter 9: Conclusions We finish the thesis with a summary of the achieve-

ments and a discussion of related and future work.

There are also two appendices. Appendix A contains the details of some of

the proofs of Chapter 5. Appendix B contains a theoretical justification of our

definition of parameterised monad by relating them to adjunctions with parame-

ters. We define a notion of parameterised algebra and Eilenberg-Moore category

and prove that, in the case of typed side-effects, the Eilenberg-Moore category is

equivalent to a natural category of typed side-effect algebras.

Chapter 2

Syntax and Typing of λsep

In this chapter we describe the syntax and typing of λsep. We start with the

separation relations that will be used to record the separation constraints in the

typing rules, followed by the typing rules and the equational theory. We also

introduce the rules generating the valid structural transitions for λsep. They

will be crucial in helping prove both syntactic properties of the calculus in this

chapter and the connection between the syntax and the categorical semantics in

the next. We also present translations of some other typed λ-calculi into λsep and

a type checking algorithm. We finish the chapter by describing a syntax directed

type-checking algorithm for explicitly typed terms.

2.1 Separation Relations

Separation relations formalise separation relationships between members of the

context. We define the substitution of separation relations into one another,

and state some properties of this operation. These properties establish the well-

behavedness of substitution on separation relations and underlie much of the

reasoning we will do with separation relations.

Definition 2.1.1 (Separation Relation) A separation relation of arity n is a

binary, symmetric, non-reflexive relation on the set {0, ..., n− 1}.

35

36 Chapter 2. Syntax and Typing of λsep

For a separation relation S, we write |S| for the arity of the separation relation.

We define the relation S ⊆ S′ between two separation relations to hold if and

only if |S| = |S′| and, for all x and y, xSy implies xS′y. A list [r1, . . . , rk]n, where

each ri is of the form x#y denotes the smallest separation relation of arity n

containing the pairs ri. We will often omit the arity when the intended size is

clear from the context. For a separation relation S and a permutation σ on the

set {0, . . . , |S| − 1} the notation σS denotes the separation relation with iσSj iff

σ−1(i)Sσ−1(j).

Definition 2.1.2 (Substitution of Separation Relations) For separation re-

lations S and S′, with sizes n and n′ respectively, define the operation of substi-

tution S{S′/i}, where 0 ≤ i ≤ n− 1 as:

(x, y) ∈ S{S′/i} iff{
(x− i, y − i) ∈ S ′ normi

n′(x) = normi
n′(y) = i

(normi
n′(x), normi

n′(y)) ∈ S otherwise

where:

normi
n′(x) =


x x < i

i i ≤ x < i+ n′

x− n′ + 1 x ≥ i+ n′

Substitution of relations may be visualised as in Figure 2.1(a). For a pair of

positions x and y in S{S′/i}, either both x and y are in the range of S′, or at

least one of them is in the range of S. In the first case we use the relation S′;

otherwise, we map the positions back to S (up the diagram) and use S to judge

whether x and y are related. The function normi
n does the mapping back to S.

Note that if a member of S is related to any member of S′ then it is related to all

of them.

A special case is that of substituting in the zero-arity relation. As shown in

Figure 2.1(b), this removes the substituted-for position from the relation.

The following lemma establishes some basic properties of substitution. In

particular, properties 3 and 4 ensure that if we perform two non-interfering (non-

overlapping) substitutions in two different orders then we always finish in the

2.2. Typing Rules: λsep Systems 37

(a)

S{S′/3}

S′

S

OO OO OO

LL���������������

LL���������������

LL���������������

RR$$$$$$$$$$$$$$$

KK���������

OO SS''''''''' (b)

S{[]0/3}

SPP"""""""""""""""

PP"""""""""""""""

PP"""""""""""""""

NN���������������

Figure 2.1: Substitution of separation relations

same state. This is useful for reasoning about the allowable manipulations of

contexts, since a nested context may always be substituted out to a single flat

context. These properties are also required for the categorical coherence axioms

(Definition 3.2.3) to make sense.

Lemma 2.1.3 The following properties hold, where S, S1, S2 are separation re-

lations.

1. S{S1/i} is a separation relation.

2. S{[]1/i} = S

3. S{S1/i}{S2/j + n1 − 1} = S{S2/j}{S1/i}, where i < j

4. S{S1{S2/j}/i} = S{S1/i}{S2/i+ j}

Proof Routine calculation with the definitions of substitution and normi
n. �

2.2 Typing Rules: λsep Systems

We describe the definition of a λsep system in two parts. First, we describe the

types, contexts and valid structural transitions built from a set of primitive types.

We then define a λsep system as a set of primitive types and a set of primitive typed

operations that generates a typing judgement. The remainder of the section then

establishes some simple meta-theoretical properties of the system and presents

some derived rules, relating the calculus to similar calculi.

38 Chapter 2. Syntax and Typing of λsep

2.2.1 Types, Contexts and Structural Transitions

The types of the calculus are generated by the following grammar, given a set of

primitive types T :

A,B ::= X ∈ T | A1, . . . , An
S−→ B | S(A1, . . . , An)

where S is a separation relation of arity n + 1 for function types and arity n for

tuple types. The extra place in the function types represents the resources used

by the body of the function. Assuming a countably infinite set of variable names,

ranged over by x, y, etc., the types then generate the contexts, as an instance of

the structured contexts described in the introduction:

Γ,∆,Θ ::= x : A | S(Γ1, . . . ,Γn)

where the separation relation S is of arity n, and no variable x appears more

than once in a context. When writing the separation relations associated with

contexts we will often use variable names in place of numerical positions, where

appropriate.

We also consider contexts with holes by adding the following production to

the grammar:

Γ,∆,Θ ::= −a

where a is a name for the hole, no hole name may appear more than once in

a context. We will write a context with a hole as Γ(−)a, explicitly naming the

hole, or as Γ(−) when there is a single hole. The notation Γ(∆) denotes a context

with a hole filled in with another context ∆. We will also use the notation Γ() to

indicate the “removal” of a hole by substituting the empty context []() into the

hole’s position in the parent context in the tree, or by replacing the hole by the

empty context when there is no parent context.

We define v(Γ) to be the list of variable and hole names in Γ built from a depth-

first, left-to-right traversal. We write Γ ≡α Γ′ when Γ and Γ′ are equivalent up to

renaming of variables. Also, we define a(Γ) to be the set of type assignments in

Γ: that is, all the x : A pairs in Γ. We define Γ[x] to be the type of the variable

x in Γ, if it exists.

2.2. Typing Rules: λsep Systems 39

A context Γ determines a separation relation SΓ on the variables it contains

by substituting out all the nested separation relations. When Γ is x : A this is

defined to be []1. By Lemma 2.1.3, it is easy to see that the order of substitutions

used to obtain SΓ does not matter; we will always get the same relation. We

will often use SΓ as a relation between variables; the connection between variable

names and positions is determined by the v(−) function above.

A structural transition is a triple Γ
ρ⇒ ∆, where Γ and ∆ are contexts (possibly

with holes) and ρ is a mapping of variables in ∆ to variables in Γ (and possibly

holes in ∆ to holes in Γ). If ρ is omitted it stands for the identity renaming. The

rules in Figure 2.2 define a judgement Γ
ρ⇒ ∆ valid which identifies a subset of

the structural transitions which are valid for λsep.

ρ(Γ′) = Γ

Γ
ρ⇒ Γ′ valid

(Renaming)
Γ1

ρ1⇒ Γ2 valid Γ2
ρ2⇒ Γ3 valid

Γ1
ρ1;ρ2⇒ Γ3 valid

(Composition)

−−−−−−−−→
Γ

ρ⇒ ∆ valid

S(
−→
Γ)

−→ρ⇒ S(
−→
∆) valid

(Congruence)

S(
−→
Γ , S′(

−→
∆),

−→
Θ) ⇔ S{S′/i}(−→Γ ,−→∆ ,

−→
Θ) valid

((Un)Flattening)

[](Γ) ⇔ Γ valid
(Single)

S′ ⊆ S

S(
−→
Γ) ⇒ S′(

−→
Γ) valid

(S-Weakening)

σ a permutation on {0, ..., |S| − 1}

S(
−→
Γ) ⇔ σS(σ

−→
Γ) valid

(Permutation)

Γ ≡α Γ′

Γ
[v(Γ′) 7→v(Γ)]⇒ [](Γ,Γ′) valid

(Contraction)

Γ ⇒ []() valid
(Weakening)

Figure 2.2: Valid Structural Transitions for λsep

40 Chapter 2. Syntax and Typing of λsep

The rules Renaming, Composition and Congruence are the standard ones

for substructural type systems identified in Section 1.1.

We can justify the valid structural transition rules specific to λsep by appeal to

the properties of separation. The rule (Un)Flattening expresses the fact that if

a variable is declared to be separate from a group of variables, it is also separate

from them all individually. The duplication of variables by Contraction is valid

since the right hand side has no separation: we may duplicate values as long

as we do not mind that they will share resources. The rule S-Weakening is

justified by observing that if we have a context which promises more separation

than we require, then we may forget about the extra separation. Transitions

Weakening and Permutation are justified by the fact that we consider the

underlying combination of values to be given by a normal product type. The

Single transition fulfils an administrative role mediating between bare contexts

and the trivial separated context. Many times it may be replaced by instances of

(Un)Flattening.

The following lemma brings all these justifications together. It characterises

valid structural transitions as transitions which preserve separation and types.

As well as showing that our choice of rules is complete, this characterisation will

be enormously useful in proving meta-theoretic properties of λsep in this chapter

and proving the connection between the calculus and the categorical structure

defined in the next chapter.

Lemma 2.2.1 A structural transition Γ
ρ⇒ ∆ is valid if and only if:

1. If xS∆y then ρ(x)SΓρ(y), and the same for holes; and

2. For all variables x ∈ v(∆), ∆[x] = Γ[ρ(x)].

Proof We prove the forward implication by induction over the derivation of a

valid structural transition. Note that all the rules preserve the types of variables,

and the Contraction rule, the only way of introducing maps that take two

variables to a single variable ensures that they are not required to be separate.

For the converse, we construct a canonical derivation of validity for a structural

transition Γ
ρ⇒ ∆ that matches the specification given in the lemma statement.

2.2. Typing Rules: λsep Systems 41

We do this in stages, composed with Composition and Congruence:

1. For each variable x in Γ generate, in place of x, a sub-context depending

on ρ−1(x): if ρ−1(x) = ∅ then use Weakening to generate []0(); otherwise

repeatedly use Contraction (and possibly Renaming) to generate a con-

text of the form [](x : A, [](. . .)), with the names and number of copies of

x dictated by ρ−1(x). Combine all these transitions with the Congruence

rule to produce a valid structural transition from Γ to a context with the

same variables as ∆, and a renaming action equal to ρ.

2. Repeatedly use Flatten and possibly Single to produce the fully flattened

context;

3. Apply S-Weak and Perm in the empty context to give the context the

separation relation S∆;

4. Repeatedly apply Unflatten and possibly Single to produce the structure

of ∆.

Note that the final three stages produce valid structural transitions that do not do

any renaming, hence by Composition the structural transition Γ
ρ⇒ ∆ is valid. �

Using these contexts and structural rules we can simulate the bunches of

the affine αλ-calculus. If we replace the context former “,” with [1#2](−,−)

and “;” with [](−,−) we can rewrite an αλ context into a λsep context. The

associativity of the two context formers is then a two-way derived rule formed

from two applications of Flatten and its inverse:

S(S(∆1,∆2),∆3) ⇔ S{S/0}(∆1,∆2,∆3) = S{S/1}(∆1,∆2,∆3) ⇔ S(∆1, S(∆2,∆3))

where S = [] or S = [0#1]. Since we have S-Weak and Weak we are simulating

the affine αλ-calculus.

In the affine αλ-calculus, the (appropriately restricted form of) S-Weakening

is derivable from Contraction and Weakening because the two unit contexts

are identified. In terms of the translation from αλ contexts to λsep contexts

42 Chapter 2. Syntax and Typing of λsep

described above, the derivation is:

[1#2](x : A, y : B) ⇒ []([1#2](x : A, y : B), [1#2](x′ : A, y′ : B))

⇒ []([1#2](x : A, []()), [1#2]([](), y′ : B))

⇒ [](x : A, y′ : B)

⇒ [](x : A, y : B)

However, when the targeted context has a separation structure not expressible in

the form []2(Γ1,Γ2) this scheme fails. An example is:

[1#2, 2#3, 3#4, 1#4](w : A, x : B, y : C, z : D)

⇒ [1#2, 2#3, 3#4](w : A, x : B, y : C, z : D)

2.2.2 Terms and Typing Judgements

A λsep system is a pair (T ,Φ) of primitive types and primitive operations f :

A → B over the types generated from T . A system generates a valid structural

transition judgement by the rules in Figure 2.2 and a typing judgement by the

rules in Figure 2.3 over the terms generated by this grammar:

e ::= x

| λS(x1 : A1, . . . , xn : An).e | e@S(e1, . . . , en)

| S(e1, . . . , en) | let S(x1, . . . , xn) = e1 in e2

| f e

where f ∈ Φ.

We will write Φ(A,B) for the subset of Φ of the form f : A→ B.

By reading the contexts as representing the resources used by the term we

obtain an informal justification of the typing rules. The rule SI uses the same

relationship between the contexts on the left as for the terms on the right; there-

fore, if the free variables of the terms obey the required separation then so will

the corresponding terms. The elimination rule for tuples, SE, exploits the struc-

ture of the contexts. The position of the hole in ∆(−) indicates the relationships

2.2. Typing Rules: λsep Systems 43

x : A ` x : A
(Id)

Γ′ ` e : A Γ
ρ⇒ Γ′ valid

Γ ` ρ(e) : A
(Struct)

−−−−−−→
Γ ` e : A

S(
−→
Γ) ` S(−→e) : S(

−→
A)

(SI)
Γ ` e : S(

−→
A) ∆(S(

−−−→
x : A)) ` e′ : B

∆(Γ) ` let S(−→x) = e in e′ : B
(SE)

S(Γ,
−−−→
x : A) ` e : B

Γ ` λS(−→x).e :
−→
A

S−→ B
(

S−→I)
Γ ` e1 :

−→
A

S−→ B
−−−−−−−→
∆ ` e2 : A

S(Γ,
−→
∆) ` e1@S(−→e2) : B

(
S−→E)

Γ ` e : A f : A −→ B ∈ Φ

Γ ` fe : B
(Prim)

Figure 2.3: Typing Rules of a system (T ,Φ)

that the resources used by the variables xi must have with the rest of ∆; by

substituting Γ directly into this hole we are maintaining the same relationships.

The rules
S−→I and

S−→E can be understood similarly; in the introduction rule

we have the nested sub-context Γ representing the resources used by the function

body, treated as a single block. The required separation between the function’s

arguments and the function itself are recorded in S, which becomes part of the

function’s type. The relations are then reconstituted in the elimination rule.

The Prim rule incorporates the set of primitive operations Φ. We assume that

primitive operations consume no resources themselves.

2.2.3 Basic Metatheory

We now present some basic properties of λsep. We first concentrate on properties

of structural transitions, and then on derived and admissible typing rules.

A direct consequence of Lemma 2.2.1 is that this generalised form of Contraction

44 Chapter 2. Syntax and Typing of λsep

is valid:
¬(xSΓy)

Γ(x : A)()
[y 7→x]⇒ Γ(x : A)(y : A)

where we have confused the variables x and y in Γ(x : A)(y : A) and the holes

they are substituted for. Variables in λsep contexts may be contracted exactly

when they are not required to be separate.

For reasoning about the use of valid structural transitions in type derivations,

we will need the following “factorisation” lemma that takes a valid structural

transition whose codomain is the final context of a typing rule application and

information about how the variables of the domain are distributed in the final

term and splits the structural transition into parts that must go after the appli-

cation of the typing rule, and parts that may go before. Using this lemma we

will rewrite derivation trees containing structural rules to a normal form and so

be able to prove coherence of the categorical interpretation (Theorem 3.3.4).

Lemma 2.2.2 The following two “factorisation” properties hold for valid struc-

tural transitions:

1. Given a valid structural transition Γ
ρ⇒ S(Γ1, . . . ,Γn) and a mapping δ from

v(Γ) to subsets of {1, . . . , n} such that for all x, i ∈ δ(x) implies ρ(y) =

x for some y in Γi, there exist contexts ∆1, . . . ,∆n and valid structural

transitions:

Γ
α⇒ S(∆1, . . . ,∆n) ∆i

βi⇒ Γi

Such that for all x, ρ(e) = α((β1 ∪ . . . ∪ βn)(x)) and for all x ∈ v(Γ) and

y ∈ α−1(x), y ∈ v(∆i) iff i ∈ δ(x). Also, α and the ∆is are determined

solely by Γ, δ and S.

2. Given a valid structural transition Γ
ρ⇒ Γ1(Γ2) and a mapping δ from v(Γ)

to subsets of {1, 2} such that for all x, i ∈ δ(x) implies ρ(y) = x for some

y in Γi, there exist contexts ∆1 and ∆2 and valid structural transitions:

Γ
α⇒ ∆1(∆2) ∆1(−)

β1⇒ Γ1(−) ∆2
β2⇒ Γ2

2.2. Typing Rules: λsep Systems 45

Such that for all x, ρ(e) = α((β1 ∪ β2)(e)) and for all x ∈ v(Γ) and y ∈
α−1(x), y ∈ v(∆i) iff i ∈ δ(x). Also, α and the ∆is are determined solely

by Γ and δ.

Proof Construct the contexts ∆′
i as having variables zx

i for each x ∈ v(Γ)

such that i ∈ δ(x) and separation relations zx
i S∆′

i
zy

i iff xSΓy. Set α(zx
i) = x and

βi(x) = z
ρ(x)
i . They are valid since ρ is. Since α and β are constructed from ρ

they have the same renaming. Property 2 is proven similarly. �

We can derive more usual rules for products and functions in the case of total

non-separation:

−−−−−−→
Γ ` e : A

−→
Γ ` []n(−→e) :

−→
A

Γ ` e : []n(
−→
A) 1 ≤ i ≤ n

Γ ` πi(e) : Ai

Γ ` f :
−→
A

[]n−→ B Γ ` a1 : A1 . . . Γ ` an : An

Γ ` f@[]n(−→a) : B

where πi(e) is defined as let []n(x1, . . . , xn) = e in xi.

Substitution is an admissible rule of λsep. Before we prove this, we need the

following lemma that details how substitution interacts with the rule Struct:

Lemma 2.2.3 Assume:

• Typed variables x1 : A1, ..., xn : An and contexts ∆1, ...,∆n;

• For each xi, zero or more variables yi
1, ..., y

i
ki

;

• A valid structural transition Γ1(x1 : A1)...(xn : An)
α⇒ Γ2

−−−−−→
(y1 : A1)...

−−−−−−→
(yn : An)

such that for all i, j, α(yi
j) = xi and for all i, j1, j2, ¬(yi

j1
SΓ2y

i
j2

).

For each yi
j generate a new context from ∆i called ∆i

j by renaming the variables

so there is a valid structural transition ∆i

ρi
j⇒ ∆i

j such that ρi
j is a bijection. Then

there is a valid structural transition Γ1(∆1)...(∆n)
β⇒ Γ2

−−→
(∆1)...

−−→
(∆n) such that for

all i, j and z ∈ v(∆i
j), β(x) = ρi(z) and for all z ∈ v(Γ2(−)), β(z) = α(z).

Proof Simply define β to have the same action as α on variables in Γ2(−) and

the action of ρi
j for variables in ∆i

j. The fact that for all i, j1, j2, ¬(yi
j1

SΓ2y
i
j2

)

implies that this gives a valid structural transition. �

46 Chapter 2. Syntax and Typing of λsep

Lemma 2.2.4 (Substitution) The following rule is admissible:

Γ
−−−−→
(x : A) ` e : B

−−−−−−→
∆ ` e : A

Γ
−−→
(∆) ` e

[−→
e/x

]
: B

(Subst)

Proof By induction on the derivation of Γ
−−−−→
(x : A) ` e : B:

Id Trivial.

Struct The derivation ends in the form:

Γ2

−−−−−→
(yi : Ai)...

−−−−−−→
(yn : An) ` e′ : B

Γ1(x1 : A1)...(xn : An)
α⇒ Γ2

−−−−−→
(yi : Ai)...

−−−−−−→
(yn : An)

Γ1(x1 : A1)...(xn : An) ` α(e′) : B

where α(yi
j) = xi for all yi

j. Applying Lemma 2.2.3 with α and
−→
∆, we

get contexts ∆i
j, renamings ∆i

ρi⇒ ∆i
j and a valid structural transition β.

Rename each of the judgements ∆i ` ei : A to get judgements ∆i
j ` ei

j : Ai

such that ei = ρi
j(e

i
j). Apply the induction hypothesis to get a judgement:

Γ2

−−→
(∆1)...

−−→
(∆n) ` e′[

−−−→
e1/y1, ...,

−−−→
en/yn] : B

Applying Struct with the valid structural transition β gives:

Γ1(∆1)...(∆n) ` β(e′[
−−−→
e1/y1, ...,

−−−→
en/yn]) : B

By the properties of β guaranteed by Lemma 2.2.3, β(e′[
−−−→
e1/y1, ...,

−−−→
en/yn]) =

α(e′)[e1/x1, ..., en/xn], as required.

SI The derivation ends in a rule application of the form:

Γ1
−−−−−→
(x1 : A1) ` f1 : A1 . . . Γn

−−−−−−→
(xn : An) ` fn : An

S(Γ1
−−−−−→
(x1 : A1), . . . ,Γn

−−−−−−→
(xn : An)) ` S(f1, . . . , fn) : S(A1, . . . , An)

Where each of the
−−−−−→
(xi : Ai) are distinct by the definition of contexts. Apply

the induction hypothesis to each of the premises; obtaining judgements

Γi
−−→
(∆i) ` fi

[−−→
ei/xi

]
: Ai. The result then follows using the SI rule.

SE,
S−→I,

S−→E, Prim All these cases are similar to the previous case. �

2.3. Example: Independence of Data 47

Lemma 2.2.5 (Strengthening) If Γ
−−−−→
(x : A) ` e : B and the −→x do not appear

free in e then Γ
−→
() ` e : B.

Proof By induction on the derivation of Γ(x : A) ` e : B. The only way to

gain superfluous variables is via Struct(Weak). �

Using Lemma 2.2.1 makes it possible to easily prove convenient inversion

principles for the calculus:

Lemma 2.2.6 (Inversion) The following inversion properties hold:

1. Given a derivation of Γ ` S(e1, . . . , en) : S(A1, . . . , An) there exist deriva-

tions of the judgements Γi ` e′i : Ai, 1 ≤ i ≤ n, and a valid structural

transition Γ
ρ⇒ S(Γ1, . . . ,Γn) such that for all i, ρ(e′i) = ei.

2. Given a derivation of Γ ` λS(−→x).e :
−→
A

S−→ B there exists a derivation of

the judgement S(Γ′,
−−−→
x : A) ` e′ : B and a valid structural transition Γ

ρ⇒ Γ′

such that ρ(e′) = e.

Proof Property (1) — the second is similar — is shown by induction on the

height of the derivation. By the form of the term the only possible rules are SI and

Struct: in the case of SI the property is satisfied with the trivial valid structural

transition; in the case of Struct we apply the induction hypothesis and extend

the resulting valid structural transition by the current structural rule. �

2.3 Example: Independence of Data

As an example let us consider a primitive for analysing statistical data. This

analysis takes two items of data and returns a result. The analysis requires that

the data come from independent sources to be statistically valid; we capture this

constraint in the type of the analysis operation:

analyse : [1#2](D,D) → R

This operation is expressible in the αλ-calculus by typing it so:

analyse : D ∗D → R

48 Chapter 2. Syntax and Typing of λsep

Now consider three such analyses to be run over four items of data. It does

not matter if we use the same data twice in two analyses, only that each analysis

must operate on independent data. This can be represented as:

(analyse [1#2](a, b), analyse [1#2](b, c), analyse [1#2](c, d)) : [](R,R,R)

A context for this term should represent the constraints here as accurately as

possible; it should constrain sharing where required, but allow sharing as often

as possible. In λsep the context can be written as:

[a#b, b#c, c#d](a : D, b : D, c : D, d : D)

Here the only constraints are between members of the context whose separation is

forced by the construction of the term. In contrast, the affine αλ-calculus cannot

express this configuration. The restriction to binary combinations for expressing

separation forces a context where there is extraneous separation enforced. One

can get close using a context such as:

((a : D; d : D), b : D, c : D)

where ’;’ represents possible sharing, and ’,’ no sharing. However, this requires

that a and c be separate, whereas λsep does not require this. By Fact 1.2.1 this

separation is not representable at all in the αλ-calculus.

2.4 Equational Rules: λsep Theories

A λsep theory is a triple (T ,Φ,Σ) where (T ,Φ) is a λsep system and Σ is a

collection of axioms of the form Γ ` e = e′ : A where Γ ` e : A and Γ ` e′ : A. A

theory generates an equational judgement Γ ` e1 = e2 : A by the rules in Figure

2.4.

The first two rules state that the equality judgements include the equality

axioms and that equality is preserved by the structural rules. The remaining four

rules are the β and η rules for products and functions. The premises for the β

rules are more restrictive than the usual presentation, but Lemma 2.4.2 below

shows that the usual rules are derivable. The η rule for functions is standard.

2.4. Equational Rules: λsep Theories 49

(Γ ` e = e′ : A) ∈ Σ

Γ ` e = e′ : A
(Eq-Ax)

Γ′ ` e = e′ : A Γ
ρ⇒ Γ′

Γ ` ρ(e) = ρ(e′) : A
(Eq-Struct)

−−−−−−→
∆ ` e : A Γ(S(

−−−→
x : A)) ` f : B

Γ(S(
−→
∆)) ` (let S(−→x) = S(−→e) in f) = f [

−→
e/x] : B

(Eq-β-S)

∆ ` f : S(
−→
A) Γ(z : S(

−→
A)) ` e : C

Γ(∆) ` (let S(−→x) = e in f [S(−→x)/z]) = f [e/z] : C
(Eq-η-S)

S(Γ,
−−−→
x : A) ` f : B

−−−−−−→
∆ ` a : A

S(Γ,
−→
∆) ` (λS(−→x).f)@S(−→a) = f [

−−→
a/x] : B

(Eq-β-λ)

Γ ` e :
−→
A

S−→ B −→x 6∈ Γ

Γ ` (λS(−→x).e@S(−→x)) = e :
−→
A

S−→ B
(Eq-η-λ)

Plus reflexivity, symmetry, transitivity and congruence rules.

Figure 2.4: Equational Rules

50 Chapter 2. Syntax and Typing of λsep

The η rule for products is taken from Ghani’s rule for linear tensor products

[Gha95]. This rule subsumes the traditional η conversion rule, plus the commuting

conversion rules needed for typing rules with “parasitic formulae” [GLT89]. Due

to the inclusion of Contraction and Weakening for []2(A,B) products and

the unit []0(), the system includes the expected extensionality rules for them as

derived rules:

Lemma 2.4.1 The following rules are derivable:

c : [](A,B) ` (let [](a, b) = c in a, let [](a, b) = c in b) = c : [](A,B)
(η-×)

Γ ` e : []0()

Γ ` []0() = e : []0()
(η-0)

Proof For the first rule, from right to left:

c

= let [](x, y) = c in [](x, y)

= let [](x, y) = c in [](let [](a, b) = [](x, y) in a, let [](a, b) = [](x, y) in b)

= [](let [](a, b) = c in a, let [](a, b) = c in b)

The steps are by applications of Eq-η-S, Eq-β-S and Eq-η-S respectively. The

second rule can be shown to be derivable by similar steps. �

Using the inversion rules above, the restrictive form of the β rules can be

relaxed to give the more usual presentation:

Lemma 2.4.2 The following are admissible equational rules

∆ ` S(−→e) : S(
−→
A) Γ(S(

−−−→
x : A)) ` f : B

Γ(∆) ` (let S(−→x) = S(−→e) in f) = f [
−→
e/x] : B

Γ ` λS(−→x).e :
−→
A

S−→ B
−−−−−−→
∆ ` a : A

S(Γ,
−→
∆) ` (λS(−→x).e)@S(−→a) = e[

−−→
a/x] : B

Proof In each case invert the premises by Lemma 2.2.6, apply the appropriate

equational rule and then apply Struct using the valid structural transition given

by the inversion. �

2.4. Equational Rules: λsep Theories 51

The equational theory always produces well-formed judgements:

Proposition 2.4.3 If Γ ` e = e′ : A is derivable then Γ ` e : A and Γ ` e′ : A.

Proof By induction on the derivation of Γ ` e = e′ : A. All cases are straight-

forward applications of the typing rules and Lemma 2.2.4. �

2.4.1 Translations

The simply-typed λ-calculus may be translated into a subset of λsep via a map

(·)∗. For types and contexts:

A∗ = A, when A atomic

(A×B)∗ = []1(A
∗, B∗)

(A→ B)∗ = A∗ []2−→ B∗

I∗ = []0()

(x : A)∗ = x : A∗

(Γ1; Γ2) = []2(Γ
∗
1,Γ

∗
2)

Terms:

x∗ = x

(e1, e2)
∗ = []2(e

∗
1, e

∗
2)

(πie)
∗ = let []2(x1, x2) = e∗ in xi

(λx : A.e)∗ = λ[]2(x : A).e∗

(e1e2)
∗ = e∗1@[]2e

∗
2

This translation has the expected properties:

Proposition 2.4.4 If Γ ` e : A in the simply typed λ-calculus, then Γ∗ ` e∗ : A∗

in λsep. If Γ ` e1 = e2 : A in the simply typed λ-calculus, then Γ∗ ` e∗1 = e∗2 : A∗

in λsep.

Proof By induction on the derivations. �

52 Chapter 2. Syntax and Typing of λsep

We extend the translation to the affine αλ-calculus via a mapping (·)† (which

has the same value on simple types as (·)∗). On types and contexts:

(A ? B)† = [0#1]2(A
†, B†)

(A –∗ B)† = A† [0#1]2−→ B†

(Γ1,Γ2)
† = [0#1]2(Γ

†
1,Γ

†
2)

Extension to terms:

(e1 ? e2)
† = [0#1]2(e

†
1, e

†
2)

(let x ? y = e1 in e2)
† = let [0#1]2(x, y) = e†1 in e†2

(λ?x : A.e)† = λ[0#1]2(x : A).e†

(e1@e2)
† = e†1@[0#1]2e

†
2

We have written the term constructor of substructural function type of the αλ-

calculus as λ? and for the simply typed function as λ rather than the λ and α

used in [O’H03]. This translation also has the expected properties:

Proposition 2.4.5 If Γ ` e : A in the αλ-calculus, then Γ† ` e† : A† in λsep. If

Γ ` e1 = e2 : A in the αλ-calculus, then Γ† ` e†1 = e†2 : A† in λsep.

Proof By induction on the derivations. �

2.5 Type Checking Algorithm

We now describe an algorithm for determining whether, for a given term e and set

of type assignments V , there is a type derivation Γ ` e : A such that a(Γ) ⊆ V .

This is again complicated by the existence of syntax-free structural rules; the

typing rules as given above do not determine exactly where structural rules must

be inserted to give a derivation. We prove that there is an algorithm that soundly

and completely determines the typability of λsep terms. Moreover, the typing

context generated by the algorithm is minimal in a certain sense.

The algorithm operates by applying typing rules according to the structure of

the term. When a typing rule does not immediately apply we try to bridge the

gap by inserting instances of structural rules. This occurs in three ways:

2.5. Type Checking Algorithm 53

1. Rules with multiple premises (SI, SE and
S−→E) may not always be applica-

ble because their prospective antecedents may have shared variable names.

In this case we define an operation merge that takes several typing con-

texts that may share variables and attempts to integrate them into a single

context. This corresponds to a sequence of Contr applications in a typing

derivation. The operation may fail if a variable has two uses which are

constrained to be separate by the term.

2. In SE we need to determine whether the variables being pattern matched

can be made to obey the separation relation defined by the term syntax.

Also, we may need to change the separation relation to treat all the pat-

tern matched variables uniformly with respect to the rest of the context.

This corresponds to using S-Weak and Weak and is implemented by the

operation group1.

3. Similarly, for
S−→I we need to group the non-abstracted variables into a

single sub-context. This is implemented by the operation group2.

We define the algorithm by a set of syntax directed inference rules, as shown

in Figure 2.5. The rules define a judgement V, e Z⇒ A,Θ, where V is a set of type

assignments x : A (with no repeated variable names), e is a term, A is a type and

Θ is an abstract context.

Definition 2.5.1 An abstract context is a pair Θ = 〈V, S〉 of a set of type

assignments x : A or named hole −a, with no repeated variable or hole names

and a separation relation on the the variable and hole names.

As for concrete contexts above we write Θ(−)a for an abstract context with a

named hole. We will omit the name of the hole if it is not important. Where they

have disjoint sets of variables, we define the substitution of one abstract context

into a hole in another as:

Θ1(Θ2)a = 〈v(Θ1) ∪ v(Θ2), SΘ1{SΘ2/−a}〉

54 Chapter 2. Syntax and Typing of λsep

x : A ∈ V

V, x Z⇒ A, 〈x : A, []1〉
(Alg-Id)

−−−−−−−−→
V, e Z⇒ A,Θ

V, S(−→e) Z⇒ S(
−→
A),merge(S(−→−),

−→
Θ)

(Alg-SI)

V, e1 Z⇒ S(
−→
A),Θ1

V ∪ {−−−→x : A}, e2 Z⇒ B,Θ2 group1(Θ2, S, [
−−−→
x : A]) = Θ′

2(−)

V, let S(−→x) = e1 in e2 Z⇒ B,merge(Θ′
2(−),Θ1)

(Alg-SE)

V ∪ {−−−→x : A}, e Z⇒ B,Θ group2(Θ, S, [
−−−→
x : A]) = Θ′

V, λS(
−−−→
x : A).e Z⇒ −→

A
S−→ B,Θ′

(Alg-
S−→I)

V, f Z⇒ −→
A

S−→ B,Θf
−−−−−−−−→
V, a Z⇒ A,Θ

V, f@S(−→a) Z⇒ B,merge(S(−→−),Θf ,
−→
Θ)

(Alg-
S−→E)

V, e Z⇒ A,Θ f : A −→ B ∈ Φ

V, fe Z⇒ B,Θ
(Alg-Prim)

Figure 2.5: Syntax-directed Typechecking Rules

2.5. Type Checking Algorithm 55

For a renaming α, αΘ denotes the abstract context Θ with all the variables

renamed via α. When renaming a variable to the same name as an existing

variable the separation relationships of the two are merged.

By Lemma 2.2.1, we can use abstract contexts as the domains and codomains

of valid structural transitions.

The operation merge as described above is used to merge two abstract contexts

which share variables into a single context. Sometimes this is not possible since it

may require variables that are meant to be separated to be merged, hence merge

is partial.

Definition 2.5.2 Define the operation merge(Θ1(−)a,Θ2) as:

merge(Θ1(−),Θ2) =

{
undefined if ∃x ∈ V.s.t. xSΘ1a or ∃x.Θ1[x] 6= Θ2[x]

α−1(Θ1(αΘ2)) otherwise

where V = v(Θ1) ∩ v(Θ2) and α is a renaming making all the variables in Θ2

disjoint from those in Θ1.

We define the iterated merging operator merge(Θ
−→
(−),

−→
Θ′) by the repeated

application of the unary merge operation. This is only defined if all the nested

applications of merge are defined.

We prove two essential properties of merge, required for the soundness and

completeness properties of the typechecking algorithm. The first property states

that each application of merge is witnessed by a valid structural transition. This

is required for the soundness proof. The second property states that merge does

not perform any more contractions than are required. This is required for the

completeness proof.

Lemma 2.5.3 The following two properties hold of merge:

1. If merge(Θ1(−),Θ2) is defined then there exists a valid structural transi-

tion merge(Θ1(−),Θ2)
ρ⇒ Θ1(α(Θ2)) such that ρ = α−1, where α is any

renaming that makes the variables in Θ1 disjoint from the variables in Θ2.

56 Chapter 2. Syntax and Typing of λsep

2. Given valid structural transitions Γ
α⇒ Θ1(∆) and ∆

β⇒ Θ2, such that α

maps all variables in Θ1 to themselves and β does no renaming, there exists

a valid structural transition Γ
ρ⇒ merge(α(Θ1(−)), α(Θ2)) such that ρ does

no renaming.

Proof For property 1 define ρ(x) = α−1(x). This preserves typings since merge

is defined. If xSΘ1(αΘ2)y then ρ(x)Smerge(Θ1(−),Θ2)ρ(y) also because merge is define.

For property 2 we have to show that if xSmerge(α(Θ1(−)),α(Θ2))y then xSΓy. This

follows by the fact that merge introduces no extra separation over Θ1 and Θ2. �

The operation group1 attempts to group variables into a sub-context with a

given separation relation. It may fail in doing this if the variables are already

constrained to be more separate.

Definition 2.5.4 Define the operation group1(Θ, S, [
−−−→
x : A]) on an abstract con-

text, separation relation and a list of type assignments as:

group1(Θ, S, [
−−−→
x : A]) =

{
undefined if ∃xi, xj.xiSΘxj and ¬(xiSxj)

〈Θ\{−→x : A} ∪ {−a}, SΘ′〉 otherwise

where the hole name −a is fresh and:

ySΘ′z ⇔


never if y = a and z = a

∃i.ySΘxi if z = a

∃i.xiSΘz if y = a

ySΘz otherwise

Similarly to merge we have two properties for group1. The first states that

there is always a valid structural transition to witness the operation of group1.

This is required for the soundness proof. The second states that group1 is the

“best” way of grouping the variables into this context. Again, this is required for

the completeness proof.

Lemma 2.5.5 The following two properties hold of group1:

1. If group1(Θ, S, [−→x]) = Θ′(−) then there is a valid structural transition

Θ′(S(
−−−→
x : A))

ρ⇒ Θ.

2.5. Type Checking Algorithm 57

2. Given a valid structural transition Γ(S(
−−−→
x : A))

ρ⇒ Θ that does no renaming

then, for some Γ′(−), group1(Θ, S,−→x) = Γ′(−) and there is a valid structural

transition Γ(−)
ρ′⇒ Γ′(−) that does no renaming.

Proof For property 1, define ρ(x) = x. This is a valid structural transition

because group1 only ever introduces separation. For property 2, group1 is defined

since, by the existence of ρ, the variables −→x are not too separated. Define ρ′(x) =

x, this is a valid structural transition because group1 only introduces separation

between members and the hole where it already exists, which is already in Γ(−).

�

The last operation we need is group2. This is similar to group1.

Definition 2.5.6 Define the operation group2(Θ, S, [−→x]) on an abstract context,

separation relation and a set of type assignments as:

group2(Θ, S, [−→x]) =


undefined if ∃xi, xj.xiSΘxj and ¬(xiSxj)

undefined if ∃x ∈ v(Θ)\{−→x }, xi.xSΘxi and ¬(0Sxj)

〈Θ\{−−−→x : A}, SΘ\{−→x }〉 otherwise

Lemma 2.5.7 The following two properties hold of group2:

1. If group2(Θ, S, [−→x]) = Θ′ then there is a valid structural transition S(Θ′,
−−−→
x : A)

ρ⇒
Θ.

2. Given a valid structural transition S(Γ,
−−−→
x : A)

ρ⇒ Θ that does no renaming

then, for some Γ′, group2(Θ, S,−→x) = Γ′ and there is a valid structural

transition Γ
ρ′⇒ Γ′ that does no renaming.

Proof Similar to Lemma 2.5.5. �

We can now prove the soundness of the typechecking algorithm, using the

properties of the operations.

Theorem 2.5.8 (Soundness) If V, e Z⇒ A,Θ then Θ ` e : A.

Proof By induction on the derivation of V, e Z⇒ A,Θ.

Alg-Id In this case Θ = []1(x : A) and e = x so Id provides a derivation of

x : A ` x : A.

58 Chapter 2. Syntax and Typing of λsep

Alg-SI By the induction hypothesis there are derivations of Θi ` ei : Ai. Rename

them all to be disjoint to get derivations of Θ′
i ` e′i : Ai. Apply SI to get a

derivation of S(
−→
Θ′) ` S(

−→
e′) : S(

−→
A). By Lemma 2.5.3(1) there is a derivation

of Θ ` e : S, as required.

Alg-SE By the induction hypothesis there are derivations of Θ1 ` e1 : S(
−→
A) and

Θ2 ` e2 : B. By the third premise of this rule and Lemma 2.5.5(1) there is

a context Θ′
2 and a derivation of Θ′

2(S(
−−−→
x : A)) ` e2 : B. Renaming variables

in Θ1 and Θ′
2 to make sure they are disjoint makes it possible to apply SE to

get a derivation of Θ′′
2(Θ′

1) ` let S(−→x) = e′1 in e′2 : B. Use Lemma 2.5.3(1)

to obtain the required derivation.

Alg-
S−→I By the induction hypothesis there is a derivation of Θ ` e : A. By

Lemma 2.5.7(1) there is a derivation of S(Θ′,
−−−→
x : A) ` e : B. Applying

S−→I

gives a derivation of Θ′ ` λS(
−−−→
x : A).e : B as required.

Alg-
S−→E Similar to case for Alg-SI.

Alg-Prim Apply induction hypothesis and apply Prim. �

Completeness is more complicated. We use the factorisation lemma, Lemma

2.2.2, proven above to locally rewrite the derivation tree into a canonical form that

moves contractions as far up the derivation tree as possible. This then ensures

that they can be simulated by use of merge in the typechecking algorithm.

We will need the following simple weakening lemma:

Lemma 2.5.9 If V, e Z⇒ A,Θ and V ⊆ V ′ then V ′, e Z⇒ A,Θ.

Proof Induction on the derivation of V, e Z⇒ A,Θ. �

As for the proof of categorical coherence (Lemma 3.3.3) we prove a stronger

property than is necessary. The extra valid structural transition allows us to do

the rewriting necessary.

Lemma 2.5.10 Given a derivation of Γ ` e : A and a valid structural transition

Γ′ ρ⇒ Γ then there is a derivation of a(Γ′), ρ(e) Z⇒ A,Θ and a valid structural

transition Γ′ ρ′⇒ Θ, such that ρ′ does no renaming.

2.5. Type Checking Algorithm 59

Proof By induction on the height of the derivation of Γ′ ` e : A. Analyse by

cases on the last rule applied:

Id Derivation looks like:

x : A ` x : A

An instance of the rule Alg-Id gives a derivation of {x : A}, x Z⇒ A, 〈x :

A, []1〉. Renaming via ρ and applying Lemma 2.5.9 gives a derivation of

a(Γ′), ρ(x) Z⇒ A, 〈ρ(x) : A, []1〉, and there is a valid structural transition

Γ′ ρ′⇒ ρ(x) : A, derived from ρ.

Struct The derivation ends in the form:

Γ′ ` e : A Γ
α⇒ Γ′ valid

Γ ` α(e) : A

Extending ρ by α and applying the induction hypothesis gives a derivation of

a(Γ′), ρ(α(e)) Z⇒ A,Θ and a valid structural transition Γ′ ⇒ Θ, as required.

SI The derivation ends in the form:

Γ1 ` e1 : A1 . . . Γn ` en : An

S(Γ1, . . . ,Γn) ` S(e1, . . . , en) : S(A1, . . . , An)

Apply Lemma 2.2.2(1) to ρ to get Γ′ α⇒ S(∆1, . . . ,∆n) and ∆i
βi⇒ Γi. Apply

the induction hypothesis to the premises and the βis to get derivations of

a(∆i), βi(ei) Z⇒ Ai,Θi and valid structural transitions ∆i

β′i⇒ Θi that do no

renaming. Rename via α and apply Lemma 2.5.9 to get derivations of:

a(Γ′), α(βi(ei) Z⇒ Ai, α(Θi)

Apply Alg-SI to these to get a derivation of

a(Γ′), ρ(S(−→e)) Z⇒ S(
−→
A),merge(S(−→−),

−→
αΘ)

This is as required. The required valid structural transition is given by

Lemma 2.5.3(2).

60 Chapter 2. Syntax and Typing of λsep

SE The derivation ends in the form:

Γ1 ` e1 : S(A1, . . . , An) Γ2(S(x1 : A1, . . . , xn : An)) ` e2 : B

Γ2(Γ1) ` let S(x1, . . . , xn) = e1 in e2 : B

Apply Lemma 2.2.2(2) to ρ to get Γ′ α⇒ ∆2(∆1), ∆1
β1⇒ Γ1 and ∆2(−)

β2⇒
Γ2(−). Apply the induction hypothesis to the premises and the βis to get

derivations of:

a(∆1), β1(e1) Z⇒ S(
−→
A),Θ1 a(∆2(S(

−−−→
x : A))), β2(e2) Z⇒ B,Θ2

and valid structural transitions ∆1

β′1⇒ Θ1 and ∆2(S(
−−−→
x : A))

β′2⇒ Θ2, both of

which do no renaming. Rename via α and apply Lemma 2.5.9 to get:

a(Γ′), α(β1(e1)) Z⇒ S(
−→
A), α(Θ1) a(Γ′) ∪ {−−−→x : A}, α(β2(e2)) Z⇒ B,α(Θ2)

Apply Lemma 2.5.5(2) to get a context Θ′
2, a valid structural transition

∆2(−) ⇒ Θ′
2(−) and the fact that group2 is defined. Apply Alg-SE to get:

a(Γ′), ρ(e) Z⇒ A,merge(α(Θ′
2(−)), α(Θ1))

as required. By Lemma 2.5.3(2) the required valid structural transition

exists.

S−→I The derivation ends in the form:

S(Γ, x1 : A1, . . . , xn : An) ` e : B

Γ ` λS(x1 : A1, . . . , xn : An).e : A1, . . . , An
S−→ B

We can extend ρ to a valid structural transition S(Γ′,
−−−→
x : A)

ρ′⇒ S(Γ,
−−−→
x : A).

Apply the induction hypothesis with this to get a derivation of:

a(S(Γ′,
−−−→
x : A)), ρ(e) Z⇒ B,Θ

and a valid structural transition S(Γ′,
−−−→
x : A) ⇒ Θ that does no renaming.

Apply this to Lemma 2.5.7(2) to get a context Θ′ and Γ′ ρ′⇒ Θ′. This is the

required valid structural transition and an application of Alg-
S−→I gives

the required derivation.

S−→E Similar to case of SI.

Prim Follows directly by the induction hypothesis. �

2.5. Type Checking Algorithm 61

Theorem 2.5.11 (Completeness) If Γ ` e : A then there exists a derivation

of a(Γ), e Z⇒ A,Θ and a valid structural transition Γ
ρ⇒ Θ that does no renaming.

Proof Instance of Lemma 2.5.10. �

Corollary 2.5.12 (Minimal Contexts) If Γ ` e : A then there exists a con-

text Γ′ such that Γ′ ` e : A and for all Γ′′ such that Γ′′ ` e : A, there is a valid

structural transition Γ′′ ⇒ Γ′ that does no renaming.

Chapter 3

Categorical Semantics of λsep

In this chapter we describe the structure required of a category to soundly and co-

herently model λsep. Models in categories with this structure will form a complete

class of models. Following the general categorical interpretation of substructural

type theories sketched in Section 1.1.3 in the Introduction, we will interpret the

types and contexts of λsep as objects and well-typed terms as arrows. Of par-

ticular importance is the interpretation of valid structural transitions as natural

transformations.

Before defining the categorical structure we require, we recall the definition

of a symmetric monoidal closed category and sketch how cartesian closed cate-

gories with additional closed symmetric monoidal structure, called Doubly Closed

Categories (DCCs), are used to model the αλ-calculus.

In Section 3.2 we define the structure required to model λsep. First, we define

separation products which are used to model the contexts and separation product

types, and the valid structural transitions Flatten and UnFlatten. We prove

that this structure is coherent in the same sense as Mac Lane’s property for

symmetric monoidal structure. The structure required to interpret the rest of the

rules for valid structural transitions is built up in pieces: first the S-Weakening

and Permutation rules, and then the Weakening and Contraction rules. At

each stage we prove that the structure is coherent, culminating in the fact that

the interpretation of a valid structural transition Γ
ρ⇒ ∆ is independent of its

derivation, despite being defined over the structure of the derivation.

63

64 Chapter 3. Categorical Semantics of λsep

While defining the structure required we also define a category with the struc-

ture built from the judgements of λsep itself. We will use this to construct a term

model and prove completeness. We also give two small examples of categories

with separation products. To finish Section 3.2 we define closure for categories

with separation products, used to interpret function types, and separation func-

tors, functors that preserve separation product structure.

In Section 3.3 we define the interpretation of the typing judgements of a λsep

system in a category with the structure defined in Section 3.2. We prove that

this interpretation is coherent, sound and complete.

3.1 Symmetric Monoidal Structure

To fix notation we give the definition of symmetric monoidal structure [Mac98]

on a category here:

Definition 3.1.1 Given a category C, symmetric monoidal structure on C is a

6-tuple (⊗, I, α, λ, ρ, σ) consisting of a bifunctor ⊗ : C × C → C, an object I of C
and natural isomorphisms:

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) λA : I ⊗ A→ A ρA : A⊗ I → A

σA,B : A⊗B → B ⊗ A

Subject to the following coherence diagrams:

((A⊗B)⊗ C)⊗D (A⊗ (B ⊗ C))⊗D

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D)

//α⊗D

��

α

��

α

��

α

oo A⊗α

3.1. Symmetric Monoidal Structure 65

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

//α

''OOOOOOOOOOOOOO
ρ⊗B

���
� �
� �
� �

A⊗λ

(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗ A)

//α

���
� �
� �
� �

σ⊗C

//σ

���
� �
� �
� �

α

//
α

//
B⊗σ

A⊗B

B ⊗ A A⊗B
$$JJJJJJJJJJJ

A⊗B

��
σ

//σ

I ⊗ A A⊗ I

A

//σ

��?
??

??
??

??
??

??
??

λ

���
� �
� �
� �
� �
� �

ρ

If the components of α, λ, ρ and σ are all identities then this is strict symmetric

monoidal structure.

A category with a specified symmetric monoidal structure is a symmetric

monoidal category (C,⊗, I, α, λ, ρ, σ). We will usually just refer to C being sym-

metric monoidal and leave the rest of the structure implicit. Usually they will

be named as in this definition. When the symmetry natural transformation

σ : A ⊗ B → B ⊗ A is missing then the structure is known as plain monoidal

structure.

The importance of the coherence diagrams lies in the coherence theorem which

is derived from them. All instances of arrows built from the natural isomorphisms

of the symmetric monoidal structure and the ⊗ functor and composition with the

same domain and codomain are equal. See Mac Lane [Mac98] and the extension

to the structure required for λsep in Section 3.2.

A category with chosen finite products has symmetric monoidal structure.

The bifunctor is the one derived from the × operation on objects and the unit

66 Chapter 3. Categorical Semantics of λsep

object is the chosen terminal object. The natural transformations are given by

the appropriate combinations of pairing and projection.

Definition 3.1.2 A closed symmetric monoidal category C has, for each object

A, a specified right adjoint to the functor −⊗ A, written A (−.

The αλ-calculus is interpreted in a category with chosen cartesian closed struc-

ture and symmetric monoidal closed structure, called a Doubly Closed Category.

Contexts are interpreted using the two different products and types are inter-

preted in the same way, using the two different products for the two different

product types and the closed structure for the two different function types.

JIK = I J1K = 1 Jx : AK = JAK JΓ1,Γ2K = JΓ1K⊗ JΓ2K

JΓ1; Γ2K = JΓ2K× JΓ2K

The interpretation of the rest of the αλ-calculus effectively follows from this

definition. See [O’H03] and [Pym02] for more details on the interpretation of the

αλ-calculus in Doubly Closed Categories. The structure we will present in the

next section is an extension of Doubly Closed Structure.

We also recall the definition of a symmetric monoidal functor, a functor that

preserves symmetric monoidal structure.

Definition 3.1.3 Given two symmetric monoidal categories C,D a symmetric

monoidal functor from C to D is a triple (F, F1, F2) where F is a functor C → D,

F1 is a natural transformation FA⊗FB → F (A⊗B) and F2 is an arrow I → FI,

such that the following diagrams commute:

(FA⊗ FB)⊗ FC FA⊗ (FB ⊗ FC)

F (A⊗B)⊗ FC FA⊗ F (B ⊗ C)

F ((A⊗B)⊗ C) F (A⊗ (B ⊗ C))

//α

��

F1⊗FC

��

FA⊗F1

��

F1

��

F1

//
F (α)

I ⊗ FA FA

FI ⊗ FA F (I ⊗ A)

//λ

��

F2⊗FA

//F1

OO

F (λ)

3.2. Categorical Structure for λsep 67

FA⊗ FB FB ⊗ FA

F (A⊗B) F (B ⊗ A)

//σ

��

F1

��

F1

//
F (σ)

When F1 and F2 are isomorphisms then the functor is strong. If they are identities

then the functor is strict.

Note that the “missing” diagram for ρ analogous to the diagram for λ follows

from the diagrams for λ and σ and the axioms of a symmetric monoidal category.

3.2 Categorical Structure for λsep

We begin by introducing separation products, a generalisation of monoidal prod-

ucts. This gives us the basic structure required to model contexts and tuple

types and the Flatten and UnFlatten structural rules. We will then consider

the extra structure required to model the other structural rules. For each piece

of structure we must also ensure that the appropriate interpretation is coherent.

To provide a completeness result, as well as an example of a category with

the required structure, we will demonstrate each piece of structure in the term

category constructed from the syntax of a theory.

Definition 3.2.1 For a λsep theory T = (T ,Φ,Σ), the category TmT has as

objects the types of the theory and as arrows A → B equivalence classes of

judgements [x : A ` e : B] under the equational theory.

Identity arrows for each object A are given by [x : A ` x : A]. Composition

f ; g of f : A→ B and g : B → C is given by [x : A ` g[f/x] : C].

Proposition 3.2.2 Definition 3.2.1 is a well-defined category.

Proof Identity is a left unit (right unit is similar):

[x : A ` x : A]; [x : A ` f : B] = [x : A ` f [x/x] : B] = [x : A ` f : B]

68 Chapter 3. Categorical Semantics of λsep

Composition is associative:

([x : A ` f : B]; [x : B ` g : C]); [x : C ` h : D]

= [x : A ` g[f/x] : C]; [x : C ` h : D]

= [x : A ` h[g[f/x]/x] : D]

= [x : A ` (h[g/x])[f/x] : D]

= [x : A ` f : B]; [x : B ` h[g/x] : D]

= [x : A ` f : B]; ([x : B ` g : C]; [x : C ` h : D]

where the middle line follows by usual properties of substitution. �

3.2.1 Separation Products

Definition 3.2.3 (Separation Products) For a category C, separation prod-

uct structure is a triple (S, α, λ) composed of a family of functors S : C|S| → C,

for each separation relation S and a family of natural transformations:

αS(A,S′(B),C) : S(
−→
A, S′(

−→
B),

−→
C) → S{S′}(−→A,−→B ,−→C)

and a natural transformation:

λA : []1(A) → A

These must satisfy the following commutative diagrams:

1. It does not matter in which order we flatten sibling applications:

S(
−→
A, S′(

−→
B),

−→
C , S′′(

−→
D),

−→
E) S{S′}(−→A,−→B ,−→C , S′′(−→D),

−→
E)

S{S′′}(−→A, S′(−→B),
−→
C ,
−→
D,

−→
E) S{S′}{S′′}(−→A,−→B ,−→C ,−→D,−→E)

//α

���
� �
� �
� �

α

���
� �
� �
� �

α

//α

2. It does not matter in which order we flatten nested applications:

S(
−→
A, S′(

−→
B , S′′(

−→
C),

−→
D),

−→
E) S{S′}(−→A,−→B , S′′(−→C),

−→
D,

−→
E)

S(
−→
A, S′{S′′}(−→B ,−→C ,−→D),

−→
E) S{S′{S′′}}(−→A,−→B ,−→C ,−→D,−→E)

//α

���
� �
� �
� �

S(id|A|,α,id|E|)

���
� �
� �
� �

α

//α

3.2. Categorical Structure for λsep 69

3. Flattening singleton separation products is the same as using λ:

S(
−→
A, [](B),

−→
C)

α ..

S(
−→
A ,λ,

−→
B)

00 S(
−→
A,B,

−→
C)

and

[](S(
−→
A))

α ,,

λ
22 S(
−→
A)

Note that in properties 1 and 2, the two different paths around the dia-

gram, top-right and left-bottom, give the same substituted separation relations

by Lemma 2.1.3.

We now prove coherence for separation products. In short, we wish to prove

that any two arrows constructed from instances of α, α−1, λ and λ−1 and compos-

ites of them with the same start and end points are equal. This is equivalent to

showing that there is a unique arrow between two instances of separation product

functor applications that is entirely constructed from αs, α−1s, λs and λ−1s. We

will follow and adapt the technique of Mac Lane [Mac98] for monoidal categories.

The plan is to construct a category which forms a “model” of coherence in

that each arrow of this category should give a canonical natural transformation

in our target category that is equal to any other natural transformation with

the same domain and codomain constructed from the λs and αs. We call this

category W:

Definition 3.2.4 (Category W) For each separation relation S define the set

of words WS to be:

W[]0 = {[]0()} W[]1 = {[]1(−),−}

WS = {S′(w1, . . . , wn)|∃−→S .wi ∈ WSi
∧ S = S′{−→S }}, |S| ≥ 2

The category W has as objects the union of all such sets and for every w1, w2 ∈
WS, for some S a unique arrow w1 → w2.

The objects of W are all the possible ways of applying separation product

functors, grouped by the separation relation they describe. The category W has

70 Chapter 3. Categorical Semantics of λsep

separation products. The separation product functors are defined on objects by

the construction of words. The action on arrows and the αs and λs are all trivially

defined by the uniqueness of arrows.

The objects of W abstractly represent instances of applications of separation

product functors. For a category C with separation products, we map a word w

of size n to a functor Cn → C:

F ([]0()) = ? 7→ []0() F (−) = Id F (S(w1, ..., wn)) = S(Fw1, ..., Fwn)

We can now state and prove the coherence theorem:

Theorem 3.2.5 (Coherence) For a category C with separation products and

any arrow w1 → w2 of W there is a unique natural transformation Fw1 ⇒ Fw2

called the canonical natural transformation, such that the identity arrow []0() →
[]0() is canonical, the identity transformation idC : []1 ⇒ []1 is canonical, all α, α−1,

λ and λ−1 are canonical and the composite and separation product of canonical

arrows is canonical.

Proof We follow the proof of the similar proposition for monoidal categories

in [Mac98]. There appear to be several choices for a natural transformation

constructed from the separation product structure given an arrow of W. We will

show that they are all equal.

We describe the possible arrows by sequences of composable natural transfor-

mations β, constructed from αs, α−1s, λs, λ−1s and S(1a, β, 1b)-composites, such

that the domain of the first arrow is Fw1 and the codomain of the last is Fw2.

Sequences that consist solely of αs and composites of them are flattening paths,

the those with α−1s are unflattening.

Note that any S(. . .)-nested instances of λs may be replaced by the appropriate

αs, so we need only consider λs operating at the “top level” of the word structure.

After this replacement, if a λ occurs in the middle of a sequence then it must be of

the form []1(−) → − or its inverse and must be immediately followed by its inverse

(to allow other components to be applied), therefore the pair may be removed,

preserving the identity of the sequence. The only other possible locations for λ

instances are at the start and end of the sequence, and these depend entirely on

3.2. Categorical Structure for λsep 71

whether the start or end words are of the form −. Thus, λ arrows are ignored in

the rest of this proof.

For each separation relation S there is a word wS of the form S(−→−) with a

canonical flattening path from any other word with the same separation relation

then applying flattenings in a left-to-right, depth-first order. With the reverse,

unflattening, path this gives a canonical arrow between any two words.

The following diagram shows the components of an arbitrary sequence between

the images of two words, displayed as flattening arrows. The dotted lines show

the canonical paths to FwS.

Fu1 Fu1 Fu2

Fw1 FwS Fw2

��

oo //

�� ��?
??

??
??

??
??

?

��

??������������
// oo

The diagram illustrates that to show that the path across the top is equal to

the canonical path along the bottom it suffices to show that each of the triangles

commutes.

Using the two commutative diagrams for separation products the paths can

be rewritten to equal paths with all components that remove []0s at the start:

Fw1
++
33 Fx

,,
22 FwS

The two arrows on the left contain only []0 removals and x is u with all instances

of []0 removed. All such sequences of []0-removing arrows are equal by the first

commuting diagram for separation products.

The two right-hand arrows are also equal by induction on the count of nested

non-[]1 words, not including the outermost one. Note that every flattening arrow

decreases the count. When the count is 0 or 1 there is only one possible path.

For count > 1, consider branches of the form:

F (S′(w1, . . . , wn)) Fw′′

Fw′ Fz

//γ

��

β

��
//

72 Chapter 3. Categorical Semantics of λsep

There are always arrows for the dotted edges, making the square commute:

β = S′(1a, β′, 1b) :

γ = S′(1c, γ′, 1d) : If a = c then complete the square by induction on |S|
(this is possible since u contains no instances of []0()). Otherwise,

complete the square by functorality of S′.

γ = α : If γ flattens in position a + 1 and β′ is an instance of α then

complete the square as an instance of the second commuting diagram

for separation products. Otherwise, complete the square by naturality.

β = α :

γ = S′(1c, γ′, 1d) : Similar to the second sub-case above.

γ = α : If γ and β operate on the same position then they are equal and

the square may be completed by identity arrows. Otherwise, complete

the square by the first commuting diagram for separation products.

By the induction hypothesis we know that any two paths from z are equal,

hence any two paths from w1 to wS are equal. So we can define the unique

canonical natural transformation to be the canonical path constructed. All of the

natural transformations listed in the theorem statement are obviously canonical.

�

From separation product structure we may define two distinct monoidal prod-

ucts.

Proposition 3.2.6 A category with separation products also has two monoidal

products ⊗ and �, defined as:

A⊗B = []2(A,B) A�B = [1#2]2(A,B)

sharing a unit I = []0(). The associativity natural isomorphisms are defined as

(where � = ⊗,�):

A�(B�C)
α−→ S(A,B,C)

α−1

−→ (A�B)�C

3.2. Categorical Structure for λsep 73

where S = []3 or [1#2, 1#3, 2#3]3 as appropriate. The unit natural isomorphisms

are defined as:

I�A
α;λ−→ A A�I

α;λ−→ A

Proof The required coherence diagrams hold by Theorem 3.2.5. �

Separation product structure is present in the term category:

Lemma 3.2.7 The category TmT has separation products.

Proof Define the separation product functors as:

S(A1, . . . , An) = S(A1, . . . , An)

S(
−→
f) = [x : S(

−→
A) ` let S(−→y) = x in S(f1[y1/x], . . . , fn[yn/x]) : S(

−→
B)]

Define the instances of α and α−1 as (omitting the contexts and result types):

[let S(−→a , b,−→c) = x in let S′(
−→
b) = b in S{S′}(−→a ,−→b ,−→c)]

[let S{S′}(−→a ,−→b ,−→c) = x in S(−→a , S′(−→b),−→c)]

Define the instances of λ and λ−1 as:

[x : []1(A) ` let []1(z) = x in z : A] [x : A ` []1(x) : []1(A)]

The fact that these obey the correct equations and are natural transformations

follows by routine calculation with the equational theory. �

3.2.2 Permutation and S-Weakening

The two structural transitions Perm and S-Weak are similar in that they both

operate on a single instance of a separation product – unlike (Un)Flatten – and

do not duplicate or discard members – unlike Contr and Weak. Both may be

treated as straightforward natural transformations and have similar diagrams for

their coherence proofs.

We first define Pre-Permutation and Pre-S-Weakening structure on a category

with separation products and what it means for the two structures to commute

74 Chapter 3. Categorical Semantics of λsep

with each other. We will then define a notion of substitution for these transitions

into separation relations and vice versa, and use this to state the coherence axioms

required for full Permutation and S-Weakening structure.

Definition 3.2.8 (Pre-Permutation Structure) Pre-Permutation for a cat-

egory with separation products is a family of natural isomorphisms γ[σS], indexed

by separation relation S and permutations σ on the set {0, . . . , |S| − 1}:

γ[σS] : S ⇒ σS

such that the following laws are obeyed:

γ[σS]; γ[σ′σS] = γ[(σ;σ′)S] γ[idS]A = idA γ[σS]−1 = γ[σ−1
σS]

Definition 3.2.9 (Pre-S-Weakening Structure) Pre-S-Weakening for a cat-

egory with separation products is a family of natural isomorphisms ζ[S′, S] indexed

by pairs of separation relations S ⊆ S′:

ζ[S′, S] : S′ ⇒ S

such that the following laws are obeyed:

ζ[S, S′]; ζ[S′, S′′] = ζ[S, S′′] ζ[S, S]A = idA

Definition 3.2.10 A category with separation products, pre-permutation and

pre-weakening commutes pre-permutation and pre-weakening if all instances of

the following diagram commute:

S(A1, . . . , An) σS(Aσ(1), . . . , Aσ(n))

S′(A1, . . . , An) σS′(Aσ(1), . . . , Aσ(n))

//
γ[σS]

���
� �
� �
� �
� �

ζ[S,S′]

���
� �
� �
� �
� �

ζ[σS,σS′]

//
γ[σS′]

The first two definitions define the basic structure required for interpreting

Permutation and S-Weakening. The laws that each must obey will allow us to

rewrite formal homogeneous sequences of composed permutation or S-weakening

3.2. Categorical Structure for λsep 75

transformations into single steps, thus providing a canonical form for such se-

quences. Definition 3.2.10 will allow us to move permutations and S-weakenings

past each other, providing a canonical form for sequences containing both types

of transformation.

To provide a canonical form for paths also involving αs and their inverses is

trickier. The problem stems from the fact that the flattenings and unflattenings

affect the separation relation that the transformation is operating upon and it

is not immediately clear that it is always possible to preserve the meaning of a

permutation or S-weakening when its separation relation is modified.

Our solution is to consider the substitution of transformations into separation

relations and separation relations into transformations. Following the operation

of substitution on separation relations, as represented in the category by the

α natural isomorphisms, we commute transformations with flattenings by per-

forming the appropriate substitution on the transformation. We first define an

abstract notion of transformation that is suitable for formalising substitution.

Definition 3.2.11 An abstract transformation is a pair of separation relations

S1, S2 such that |S1| = |S2| and a bijection:

� : {0, . . . , |S1| − 1} → {0, . . . , |S2| − 1}

This is written as 〈S1,�, S2〉.

We identify two classes of abstract transformation that are captured by the

pre-permutation and pre-S-weakening structure above. Abstract transformations

that strictly preserve separation correspond to permutation natural transforma-

tions. Abstract transformations that are the identity on positions but may discard

some separation correspond to S-weakening natural transformations. Given an

abstract transformation of one of these classes, there is a natural transformation

that models its action. We write the associated natural transformation as �̂ since

the start and finish separation relations will be clear from the context. Substitu-

tion of abstract transformations into separation relations and vice versa preserves

these classes:

76 Chapter 3. Categorical Semantics of λsep

Definition 3.2.12 Given an abstract transformation 〈S1,�, S2〉, a separation

relation S and position i, define abstract transformations:

• 〈S{S1/i}, S{�/i}, S{S2/i}〉, substituting � into position i of S. Set:

S{�/i}(x) =

{
�(x− i) + i if normi

n(x) = i

x otherwise

• 〈S1{S/i},�{S/i}, S2{S/i}〉, substituting S into position i of �. Set:

�{S/i}(x) = x− basei
n(normi

n(x)) + base�(i)
n (�(normi

n(x)))

where:

basei
n(x) =

{
x if x ≤ i

x+ n− 1 if x > i

Clearly, a permutation transformation that undergoes substitution remains

a permutation transformation, as does an S-weakening transformation. We may

now state the required property that a category must have to be able to commute

transformations and flattening:

Definition 3.2.13 A category with separation products has permutation struc-

ture if it has pre-permutation structure and for each permutation transformation

〈S1,�, S2〉 the following diagram commutes:

S(
−→
A, S′(

−→
B),

−→
C) S(

−→
A,�S′(�

−→
B),

−→
C)

S{S′}(−→A,−→B ,−→C) S{�S′}(−→A,�−→B ,−→C)

//
S(...,�̂,...)

��

α

��

α

//
Ŝ{�}

S(
−→
A, S′(

−→
B),

−→
C) �S(�(

−→
A, S′(

−→
B),

−→
C))

S{S′}(−→A,−→B ,−→C) �S{S′}(�{S ′/i}(−→A,−→B ,−→C))

��

α

//�̂

��

α

//
�̂{S′/i}

Likewise, a category with separation products has S-weakening structure if it

has pre-S-weakening structure and for each S-weakening transformation 〈S1,�, S2〉
the above diagram commutes.

3.2. Categorical Structure for λsep 77

These four diagrams, along with the diagram in Definition 3.2.10, allow us to

construct a canonical path between two words with separation relations S1 and

S2 where S2 ⊆ S1, performing arbitrary permutations, such that any other path

is equal to it. The canonical path extends the canonical path of the proof of The-

orem 3.2.5 by flattening to the fully flattened word, performing the permutation,

then the S-weakening and then unflattening to the final form. To formalise this

we need to extend the definition of arrows in the word category W:

Definition 3.2.14 (Category W′) The category W′ has as objects pairs 〈w, σ〉
of objects of W and permutations on the set {0, ..., |S| − 1} where S is the sepa-

ration relation of w. It has a unique arrow 〈w1, σ1〉 → 〈w2, σ2〉 if Sw2 ⊆ Sw1 .

The objects of W′ are also abstract functors constructed from separation prod-

ucts, as was the case for W, but they may also permute their variables. Define

a map from objects of size n of W′ to functors Cn → C as G′(〈w, σ〉) = σ∗;Gw

where G is as defined above and σ∗ is the functor satisfying σ∗(A1, ..., An)i = Aσ(i).

By the discussion above we have the following coherence theorem for categories

with separation products and permutation and S-weakening that commute:

Theorem 3.2.15 (Coherence 2) If a category C has separation products and

permutation and S-weakening that commute, then for any arrow f : 〈w1, σ1〉 →
〈w2, σ2〉 of W′ there is a unique natural transformationG′(〈w1, σ1〉) ⇒ G′(〈w2, σ2〉)
called the canonical natural transformation such that the identity arrow []0() →
[]0() is canonical, the identity transformation idC : []1 ⇒ []1 is canonical, all α,

α−1, γ and ζ are canonical and the composite and S separation combination of

canonical arrows is canonical.

The definitions of monoidal products on a category with separation products

from Proposition 3.2.6 have extra properties when the category also has permu-

tation and/or S-weakening:

Proposition 3.2.16 Given a category C with separation products take the def-

initions of monoidal products from Proposition 3.2.6.

78 Chapter 3. Categorical Semantics of λsep

1. If C has permutation structure then both monoidal products are symmetric,

with the symmetry given by the appropriate instance of γ.

2. If C has S-weakening, then there is a natural transformation A�B ⇒ A⊗B,

given by S-weakening.

3. If C has S-weakening, then C is linearly distributive in the sense of [CS97,

CS99]. The distribution natural transformations are given by the compos-

ites:

A� (B ⊗ C) ∼= [0#1, 0#2](A,B,C) → [0#1](A,B,C) ∼= (A�B)⊗ C

(B ⊗ C)� A ∼= [0#2, 1#2](B,C,A) → [1#2](B,C,A) ∼= B ⊗ (C � A)

4. If C has S-weakening and permutation that commute, then the linear dis-

tribution of part 3 is symmetric in the sense of [CS97].

Proof The coherence diagrams all follow from Theorem 3.2.15. �

The term category has the all required structure, as expected:

Lemma 3.2.17 The category TmT has permutation and S-weakening that com-

mute.

Proof Define the permutation natural transformations as:

[x : S(
−→
A) ` let S(x1, . . . , xn) = x in σS(xσ(1), . . . , xσ(n)) : σS(σ

−→
A)]

Define the S-weakening natural transformations as:

[x : S(
−→
A) ` let S(x1, . . . , xn) = x in S′(x1, . . . , xn) : S′(

−→
A)]

That these definitions obey the conditions may be verified by calculation with

the equational theory. �

3.2.3 Weakening and Contraction

The final piece of structure required for interpreting valid structural transitions

is that for the rules Weakening and Contraction. As above we will give coher-

ence requirements for the two natural transformations that we require and prove

3.2. Categorical Structure for λsep 79

that this gives coherence. The conditions we state will actually be weaker than

we require to model the calculus itself, but they will be sufficient to model the

contexts and valid structural transitions. We will give the complete structure in

Section 3.3.

The rules Weakening and Contraction will be interpreted by two natural

transformations:

discardA : A→ []0() dupA : A→ []2(A,A)

We motivate the coherence requirements we impose by considering the con-

struction of a canonical derivation of a valid structural transition in the proof of

Lemma 2.2.1. We will use this canonical derivation as the canonical path in the

coherence proof below.

Recall that the canonical path is constructed from a structural transition

Γ
ρ⇒ ∆ that preserves separation and types by first using Weakening and

Contraction to match the action of the map ρ on variables. It then uses the

rest of the rules to transform the resulting context to ∆. Therefore, the canonical

path corresponds to the arrow:

Γ(
−−→
mkx); i

The notation Γ denotes a functor derived from a context Γ by the separation

products with an argument for every variable. The natural transformations mkx :

A → []2(A, ..., []0()) are composed from dup and discard to give |ρ−1(x)| copies

of the variables position. The natural transformation i is the canonical natural

transformation as defined from Theorem 3.2.15.

We need to ensure that any two constructions of mkx are equal. We do this by

requiring that, for every object A, the triple (A, dupA, discardA) is a comonoid.

We will prove coherence by induction of an arbitrary path and show that it is

equal to the canonical path. In the case of components built from any of α, λ, γ, ζ

the equality is covered by Theorem 3.2.15. In the case of components built from

discardA and dupA, we need a way to commute them with the natural transfor-

mation i. To do this we require that a single instance of w or dup operating on

an application of a separation product functor may be decomposed into multiple

80 Chapter 3. Categorical Semantics of λsep

discards or dups operating on the constituent parts, composed with a canoni-

cal natural transformation. This ensures that we can commute post-composed

instances of discard and dup to the mkx instances that operate on individual

variable positions.

We gather the requirements into a definition:

Definition 3.2.18 (Discarding and Duplication) A category with separa-

tion products and permutation and S-weakening that commute has discarding

and duplication if it has a pair of natural transformations:

discardA : A→ []0() dupA : A→ []2(A,A)

such that the following diagrams commute. Both must preserve separation struc-

ture:

S(
−→
A) S(

−−→
[]0())

[]0()

//
S(
−−−−−→
discardA)

��?
??

??
??

??
??

??
?

discard
S(
−→
A)

���
� �
� �
� �
� �
�

i1

S(
−→
A) S(

−−−−−→
[]2(A,A))

[]2(S(
−→
A), S(

−→
A))

//
S(
−−−→
dupA)

��?
??

??
??

??
??

??
??

??

dup
S(
−→
A)

���
� �
� �
� �
� �
� �
�

i2

where i1 and i2 are the canonical natural transformations between these in-

stances of separation product functors. Further, for each object A, the triple

(A, dupA, discardA) is a comonoid:

A

[]2(A,A) []2(A,A)

[]2(A, []2(A,A)) []2([]2(A,A), A)

���
� �
� �
� �
�

dupA

''OOOOOOOOOOOOOOOOOOO

dupA

���
� �
� �
� �

[]2(idA,dupA)

���
� �
� �
� �

[]2(dupA,idA)

//α

[]2([]0(), A)

A []2(A,A)

[]2(A, []0())

??�������������

λ−1;α−1

//
dupA

��?
??

??
??

??
??

??

λ−1;α−1

OO� � � � � � � � �

[]2(discardA,idA)

���
� �
� �
� �
� �

[]2(idA,discardA)

3.2. Categorical Structure for λsep 81

To show coherence we again extend the definition of word category to cope

with words that may use repeated variables. The arrows of this category must

obey the same separation preservation condition that we identified for valid struc-

tural transitions in Lemma 2.2.1.

Definition 3.2.19 (Category W′′) The category W′′ has as objects triples

〈w, n, f〉 of objects of W , natural numbers n ≤ |w| and maps f : {0, ..., |w|−1} →
{0, ..., n − 1}. An arrow 〈w1, n1, f1〉 → 〈w2, n2, f2〉 where n1 = n2 is a map

ρ : {0, ..., |w1| − 1} → {0, ..., |w2| − 1} such that ρ(f2(i)) = f1(i) and if iSw2j then

ρ(i)Sw1ρ(j).

Given a category C with separation products We again define a map from

objects of 〈w, n, f〉 ∈ W′′ to functors Cn → C as G′′(〈w, n, f〉) = f ∗;Gw where

f ∗ is the functor satisfying f ∗(A1, ..., An)i = Af(i) and G is the functor defined

above for plain separation products.

Theorem 3.2.20 (Coherence 3) If a category C has separation products, per-

mutation and S-weakening that commute and discarding and duplication, then

for any arrow ρ : 〈w1, n1, f1〉 → 〈w2, n2, f2〉 of W′′ there is a unique natural

transformation G′′(〈w1, n1, f1〉) ⇒ G′′(〈w2, n2, f2〉) called the canonical natural

transformation such that the identity arrow []0() → []0() is canonical, the identity

transformation idC : []1 ⇒ []1 is canonical, all α, α−1, γ, ζ, discard and dup are

canonical and the composite and S separation combination of canonical arrows

is canonical.

Proof As for Theorems 3.2.5 and 3.2.15 we define a canonical such natural

transformation and prove that all other candidates are equal to it. The canonical

natural transformation is defined using the construction of a derivation of a valid

structural transition in Lemma 2.2.1. By the argument outlined above, it is equal

to any other path constructed from the structure. �

The following proposition states what happens when some or all of the require-

ments for discarding and duplication are fulfilled by finite product structure.

Proposition 3.2.21 Assume a category C with separation products, permuta-

tion and S-weakening that commute and discarding and duplication.

82 Chapter 3. Categorical Semantics of λsep

1. If the object []0() is a choice for terminal object (so that wAis the unique

arrow) then the separation product preserving axioms is automatically ful-

filled.

2. If C has products then []2(A,B) being a suitable choice for them is equivalent

to the following diagram holding:

[]2(A,B) []2([]2(A,B), []2(A,B))

[]2(A,B) []2([]2(A, []0()), []2([]0(), B))

//
dup[]2(A,B)

���
� �
� �
� �
� �

id

���
� �
� �
� �
� �

[]2([]2(A,discardB),[]2(discardA,B))

oo
[]2(α;λ,α;λ)

where the projections are defined as:

π1 = []2(A, discardB);α;λ π2 = []2(discardA, B);α;λ

And for f : X → A and g : X → B, define 〈f, g〉 = dupX ; []2(f, g).

Proof Part 1 is immediate by the uniqueness of the arrows to the terminal

object. For part 2, if the []2(A,B) is a product with the stated definitions then

it the diagram certainly holds. For the converse we require this diagram and the

comonoid properties of discard and dup for this to be a choice for the product. �

Again, the term category has the required structure:

Lemma 3.2.22 The category TmT has discarding and duplication such that

[]0[] is terminal object and []2(A,B) is a product.

Proof The unique arrow from any object A to []0 is defined as:

[x : A ` []0() : []0()]

This arrow is unique by the η-0 equational rule. The arrow dupA is defined as:

[x : A ` []2(x, x) : []2(A,A)]

By calculation with the equational theory this can be seen to satisfy the equations.

In particular, the derived η-× equational rule gives the surjective pairing property.

�

3.2. Categorical Structure for λsep 83

3.2.4 Separation Functors

We now state what it means for a functor to preserve the structure we have

defined so far.

Definition 3.2.23 (Separation Functor) For two categories C, D with sep-

aration products with permutation, S-weakening, discarding and duplication, a

separation functor is a functor F : C → D and a family of natural transformations:

FS,A1,...,An : S(
−−−→
F (A)) → F (S(

−→
A))

Such that they preserve the natural transformations of the structure (where � ∈
{γ, ζ} for the third diagram):

S(
−−−→
F (A), S′(

−−−→
F (B)),

−−−→
F (C)) S{S′}(−−−→F (A),

−−−→
F (B),

−−−→
F (C))

S(
−−−→
F (A), F (S′(

−→
B)),

−−−→
F (C))

F (S(
−→
A, S′(

−→
B),

−→
C)) F (S{S′}(−→A,−→B ,−→C))

//α

���
� �
� �
� �

S(id,FS′ ,id)

���
� �
� �
� �
� �
� �
� �
� �
� �
�

FS{S′}

���
� �
� �
� �

FS

//
F (α)

[](F (A)) F (A)

F ([](A))

//λ

���
� �
� �
� �
� �
� �

F[]

??���������������

F (λ)

S(
−−−→
F (A)) S′(�(

−−−→
F (A)))

F (S(
−→
A)) F (S′(�(

−→
A)))

//�

��

FS

��

FS′

//
F (�)

FA F ([]0())

[]0()

//
F (discard)

��?
??

??
??

??
??

??
?

discard

���
� �
� �
� �
� �

F[]0

F (A) [](F (A), F (A))

F ([](A,A))

//dup

$$JJJJJJJJJJJJJJ

F (dup)
��

F[]

A separation functor (F, {FS}) is a strong separation functor if the natural trans-

formations FS are actually isomorphisms.

84 Chapter 3. Categorical Semantics of λsep

The following properties of separation functors are a direct consequence of the

definition:

Proposition 3.2.24 1. A separation functor (F, {FS}) : C → D is also a

symmetric monoidal functor (Definition 3.1.3) in the two monoidal products

defined in Proposition 3.2.6 with the comparisons given by F[]0 in both cases

for the unit and F[]2 and F[0#1] for the two products.

2. If the discarding and duplication structure on two categories C and D is

given by finite products and F preserves finite products then the final two

diagrams in the definition hold automatically.

3.2.5 Two Example Separation Categories

Example 3.2.25 (Structural Morphisms) The structural morphisms of the

previous chapter provide a simple example of a category with separation structure

with permutation, S-weakening, weakening and duplication. This construction is

less complicated than the full-blown term category construction. The objects of

the category are contexts over a type language with only one type, where we

identify two contexts if they are α-equivalence. The morphisms of the category

are structural morphisms. That is, a morphism Γ → ∆ maps positions in ∆ to

positions in Γ, preserving separation. Clearly, we can define all the structural

morphisms and they obey the coherence requirements trivially. We will call this

category SepCtxt.

Example 3.2.26 (Rel#) This example is a simplified version of Reddy’s model

of Interference Controlled Algol [Red94], we have changed from using the category

of coherence spaces and linear maps as a base to just using sets and relations since

we do not require fixpoints. Define the category Rel# as:

Objects Pairs (X,#X) of a set X and a binary symmetric relation # ⊆ X ×X;

Arrows f : (X,#X) → (Y,#Y) are relations f ⊆ X×Y such that if (x1, y1) ∈ f
and (x2, y2) ∈ f then y1#Y y2 implies x1#Xx2.

3.2. Categorical Structure for λsep 85

The intuition behind this definition is that the objects are sets of “events” with a

relation that states when two events are independent. An arrow is a collection of

input/output pairs (x, y); to see output event y one must observe input event x.

The independence condition on arrows states that if two outputs are independent

then the corresponding inputs must be independent: arrows may not introduce

dependencies.

Define separation products as:

S((X1,#X1), ..., (Xn,#Xn)) = (X1 + ...+Xn, i.x#j.y ⇔ iSj ∨ (i = j ∧ x#Xi
y))

Thus, a separation product consists of tagged events from its constituent compo-

nents, and two events are independent if they come from independent components

(as specified by S), or if they are from the same component and are independent

there.

The λ natural transformation is just the obvious isomorphism. The flattening

and unflattening natural isomorphisms do the obvious renumbering: assuming

objects A1, ..., Ai−1, B1, ..., Bj and C1, ..., Ck, define α to consist of components

like so:

α : S(
−→
A, S′(

−→
B),

−→
C) → S{S′/i}(−→A,−→B ,−→C)

α =

{(l.a, l.a) | 1 ≤ l < i ∧ a ∈ Al}
∪{(i.l.b, (i+ l).b) | 1 ≤ l ≤ j ∧ b ∈ Bl}
∪{(l.c, (l + j).c) | 1 ≤ l ≤ k ∧ c ∈ Cl}

This is easily seen to obey the independence condition, naturality and the two

commuting diagrams. Likewise, permutation and S-weakening are the obvious

renumbering and forgetful relations. The separation functor []0() is interpreted

as the empty set, with the trivial independence relation. This is a suitable choice

of terminal object in Rel# and so have discarding. Duplication is interpreted by

the arrow:

dup : A→ []2(A,A)

dup = {(a, 1.a) | a ∈ A} ∪ {(a, 2.a) | a ∈ A}

86 Chapter 3. Categorical Semantics of λsep

Note that there is no similar arrow A → [1#2]
2
(A,A). For all elements a ∈ A

we would have to have a#Aa, which is not in general true. Reddy terms objects

A such that ∀a ∈ A.a#Aa passive and uses them to interpret passive types in

Interference Controlled Algol.

3.2.6 Separation Closure

The final property we require of a category to model λsep is that for function types.

As usual this is specified as requiring the existence of specified right adjoints to

existing functors.

Definition 3.2.27 A category with separation products is separation closed if

each functor S(−,−→A) : C → C has a specified right adjoint [
−→
A

S−→ −] : C → C.

Call the isomorphism of homsets Λ:

Λ : C(S(A,
−→
B), C) ∼= C(A, [

−→
B

S−→ C])

and the counit evS,A,B : S([
−→
A

S−→ B],
−→
A) → B.

Lemma 3.2.28 The category Tm(T ,F ,Φ) is separation closed.

Proof For each separation relation S the functor [
−→
A

S−→ B] is defined as
−→
A

S−→ B on objects and on arrows [fi] : Bi → Ai and [g] : C → D as:

[x :
−→
A

S−→ C ` λS(−→x).g[x@S(f1[x1/x], . . . , fn[xn/x])/x] :
−→
B

S−→ D]

The unit and counit of the adjunction are:

[x : A ` λS(−→x).S(x,−→x) :
−→
A

S−→ S(A,
−→
A)]

[x : S(
−→
A

S−→ B,
−→
A) ` let S(f,−→a) = x in f@S(−→a) : B]

These can easily be seen to obey the adjunction laws. �

3.3. Interpretation of λsep 87

3.3 Interpretation of λsep

We collect all the requirements on a category to soundly model λsep in a single

definition:

Definition 3.3.1 A λsep-category is a category with separation products, per-

mutation and S-weakening that commute, discarding and duplication given by

finite products and separation closure.

Given a λsep system (T ,Φ) and a λsep-category C, an interpretation of (T ,Φ)

in C is a pair of maps I : T → ObC and IA,B : Φ(A,B) → C(JAK, JBK) where J·K
is defined on types as:

JAK = I(A) JS(A1, . . . , An)K = S(JA1K, . . . , JAnK)

JA1, . . . , An
S−→ BK = [JA1K, . . . , JAnK

S−→ JBK]

Contexts are interpreted as functors Cn → C, where n is the number of holes:

Jx : AK = ? 7→ JAK : 1 → C

JS(Γ1, ...,Γk)K = (JΓ1K× ...× JΓkK); S : Cn1+...+nk → C J−aK = Id : C → C

We will just treat the interpretation of contexts with no holes as objects of C.

Valid structural transitions Γ
ρ⇒ ∆ are interpreted as natural transformations

JΓK ⇒ ρ∗; J∆K, where ρ∗ is the functor that makes J∆K have the same arity as

JΓK by mapping holes according to ρ. The interpretation is defined by induction

over the derivation in Figure 3.1. Typing judgements Γ ` e : A are interpreted

as arrows JΓK → JAK by induction over their derivation as shown in Figure 3.2.

3.3.1 Coherence

Since we have defined the interpretation of typing judgements by induction on

the structure of their typing derivations we are faced with the possibility that a

single typing judgement may have two different interpretations. Fortunately, it

follows from Theorem 3.2.20 and the factorisation lemma, Lemma 2.2.2, that any

two derivations of the same judgement have the same interpretation.

88 Chapter 3. Categorical Semantics of λsep

ρ(Γ) = Γ′

JΓ ρ⇒ Γ′ validK = id JS(
−→
Γ , S′(

−→
∆),

−→
Θ) ⇔ S{S′/i}(−→Γ ,−→∆ ,

−→
Θ) validK = α

J[](Γ) ⇔ Γ validK = λ

S′ ⊆ S

JS(
−→
Γ) ⇒ S′(

−→
Γ) validK = ζ[S, S′]

σ a permutation on {0, ..., |S| − 1}

JS(
−→
Γ) ⇔ σS(σ

−→
Γ) validK = γ[σS]

(Permutation)

Γ ≡α Γ′

JΓ
[v(Γ′) 7→v(Γ)]⇒ [](Γ,Γ′) validK = dup

(Contraction)

JΓ ⇒ []() validK = discard
(Weakening)

Renaming, Composition and Congruence are defined by the identity, natu-

ral transformation composition and application of separation product functors

respectively.

Figure 3.1: Interpretation of valid structural transitions

3.3. Interpretation of λsep 89

Jx : A ` x : AK = idJAK

JΓ′ ` e : AK = e JΓ ρ⇒ Γ′ validK = s

JΓ ` ρ(e) : AK = s; e

−−−−−−−−−−→
JΓ ` e : AK = e

JS(
−→
Γ) ` S(−→e) : S(

−→
A)K = S(−→e)

(SI)

JΓ ` e : S(
−→
A)K = e J∆(S(

−−−→
x : A)) ` e′ : BK = e′

J∆(Γ) ` let S(−→x) = e in e′ : BK = J∆K(e); e′
(SE)

JS(Γ,
−−−→
x : A) ` e : BK = e

JΓ ` λS(−→x).e :
−→
A

S−→ BK = Λ(e)
(

S−→I)

JΓ ` f :
−→
A

S−→ BK = f
−−−−−−−−−−−→
J∆ ` a : AK = a

JS(Γ,
−→
∆) ` f@S(−→a) : BK = S(f,−→a); ev

(
S−→E)

JΓ ` e : AK = e

JΓ ` fe : BK = e; IA,B(f)
(Prim)

Figure 3.2: Interpretation of typing judgements

90 Chapter 3. Categorical Semantics of λsep

The method we use is adapted from the proof of the coherence of the interpre-

tation of Syntactic Control of Interference Revisited by O’Hearn et al [OPTT99].

This method operates by locally rewriting the derivation tree by pushing con-

traction rules upwards until they reach the point where the two variables they

are contracting are introduced into the same context. This effectively gives us

a canonical form for the derivation and hence a way to show that any other

derivation is equal. The factorisation Lemma 2.2.2 allows to do this rewriting.

Another possible approach is to give an explicit syntax for every typing deriva-

tion so that typing derivations are uniquely specified by judgements. A set of

rewriting rules would then allow rewriting into a normal form. This could then

be used to show that every judgement in the original system has a unique inter-

pretation. This is the approach taken by Curien and Ghelli [CG92] for System

F≤. We choose the approach taken here to avoid the formulation of a second

calculus where the structural rules are made explicit in the term syntax.

First we observe that the interpretation of valid structural transitions is co-

herent:

Lemma 3.3.2 If π1 and π2 are two different derivations of a judgement Γ
ρ⇒

∆ valid then Jπ1K = Jπ2K.

Proof Follows directly from Theorem 3.2.20. �

The following lemma is an adaptation of the key coherence lemma of [OPTT99].

It is a stronger property than we require; the extra structural morphisms are the

pieces of derivation tree that we will need to rewrite using the previous two lem-

mas and commute upwards in the tree.

Lemma 3.3.3 Given derivations π1 and π2 of judgements Γ1 ` e1 : A and

Γ2 ` e2 : A respectively and valid structural transitions Γ
ρi⇒ Γi such that ρ1(e1) =

ρ2(e2) then Jρ1K; Jπ1K = Jρ2K; Jπ2K.

Proof Induction on the sum of the heights of the derivation trees π1 and π2.

Name the term ρ1(e1) = ρ2(e2) as e. Proceed by case analysis on the final rules

applied in each derivation:

Both end with Id: By Lemma 3.3.2.

3.3. Interpretation of λsep 91

One ends with Struct: Append the valid structural transition to the appro-

priate structural morphism and apply the induction hypothesis.

Both end with SI: The derivations both end in the form:

Γi1 ` ei1 : A1 . . . Γin ` ein : An

S(Γi1, . . . ,Γin) ` S(ei1, . . . , ein) : S(A1, . . . , An)

where the derivations of the premises are labelled πi1, . . . , πin. Apply Lemma

2.2.2(1) to the ρi, using the distribution of variables in e for δ, to get struc-

tural morphisms α1, α2 and
−→
β1,

−→
β2 such that α1 = α2. The result follows by

the calculation:

Jρ1K; Jπ1K = JαK; S(Jβ11K, . . . , Jβ1nK); S(Jπ11K, . . . , Jπ1nK)

= JαK; S(Jβ11K; Jπ11K, . . . , Jβ1nK; Jπ1nK)

= JαK; S(Jβ21K; Jπ21K, . . . , Jβ2nK; Jπ2nK)

= Jρ2K; Jπ2K

where the middle step follows from the induction hypothesis and the equal-

ities between interpretations of valid structural transitions follows from

Lemma 3.3.2.

Both end with SE: The derivations both end in the form:

Γi1 ` ei1 : S(A1, . . . , An) Γi2(S(x1 : A1, . . . , xn : An)) ` ei2 : B

Γi2(Γi1) ` let S(x1, . . . , xn) = e1 in e2 : B

where the derivations of the premises are labelled πi1 and πi2. Apply Lemma

2.2.2(2) to the ρi, using the distribution of variables in e for δ, to get

structural morphisms α = α1 = α2, β11, β12 and β21, β22. The result follows

by the calculation:

Jρ1K; Jπ1K = Jρ1K; JΓ12K(Jπ11K); Jπ12K

= JαK; Jβ12K; JΓ12K(Jβ11K); JΓ12K(Jπ11K); Jπ12K

= JαK; J∆1K(Jβ11K; Jπ11K); Jβ12K; Jπ12K

92 Chapter 3. Categorical Semantics of λsep

= JαK; J∆1K(Jβ21K; Jπ21K); Jβ22K; Jπ22K

= JαK; Jβ22K; JΓ22K(Jβ21K); JΓ22K(Jπ21K); Jπ22K

= Jρ2K; Jπ2K

Both end with
S−→I: The derivations both end in the form:

S(Γi, x1 : A1, . . . , xn : An) ` ei : B

Γi ` λS(x1, . . . , xn).ei : A1, . . . , An
S−→ B

where the derivation of the premise is labelled π′i. The result follows by

calculation:

Jρ1K; Jπ1K = Jρ1K; Λ(Jπ′1K)

= Λ(S(Jρ1K,
−→
id); Jπ′1K)

= Λ(S(Jρ2K,
−→
id); Jπ′2K)

= Jρ2K; Λ(Jπ′2K)

= Jρ2K; Jπ2K

Both end with
S−→E: Similar to the case for SI.

Both end with Prim: Trivial, since this rule is interpreted by post-composition.

�

Theorem 3.3.4 (Coherence) If π1 and π2 are two derivations of the same

judgement Γ ` e : A then Jπ1K = Jπ2K.

Proof Instance of Lemma 3.3.3. �

3.3.2 Soundness and Completeness

Now that we are sure that we can interpret typing derivations in a well-defined

way, we must make sure that the category soundly models the equational theory

of the calculus. We do this with reference to a definition of a model of a λsep

theory.

3.3. Interpretation of λsep 93

A model of a λsep theory (T ,Φ,Σ) is an interpretation (I, IA,B) of the system

(T ,Φ) with the condition that for all the axioms Γ ` e1 = e2 : A in Σ, it is the

case that JΓ ` e1 : AK = JΓ ` e2 : AK.

We begin by the proving the standard result about the interpretation of sub-

stitution. This follows the structure of the proof of the well-typing of substitution.

Lemma 3.3.5 (Soundness of Substitution) If JΓ
−−−−→
(x : A) ` e : BK = e and

for all i, J∆i ` ai : AiK = ai then JΓ
−−→
(∆) ` e[−−→a/x] : BK = JΓK

−→
(a); e

Proof By induction on the derivation of Γ
−−−−→
(x : A) ` e : B. This follows the

structure of the proof of Lemma 2.2.4, the result follows by simple categorical

reasoning about the interpretations. �

Soundness is a direct consequence of this:

Theorem 3.3.6 (Soundness) For a λsep theory T and a model M of this the-

ory, if Γ ` e = e′ : A in T then JΓ ` e : AK = JΓ ` e′ : AK in M.

Proof By induction on the derivation of Γ ` e = e′. All cases are straightfor-

ward — either by simple calculation or substitution (Lemma 3.3.5). �

To prove completeness, we construct a model of a λsep theory T in the term

category TmT we have developed in Lemmas 3.2.7, 3.2.17, 3.2.22 and 3.2.28.

There is an obvious interpretation of the system component of T in TT that

maps primitive types to their corresponding objects and primitive operations f

to arrows [x : A ` fx : B]. To show that this is a model, we must prove a

connection between the interpretation of a judgement Γ ` e : A and an arrow of

TmT. To this end, for a context Γ, define the corresponding type Γ by induction.

x : A = A S(Γ1, ...,Γn) = S(Γ1, ...,Γ2)

And given a judgement Γ ` e : A, then x : Γ ` Γ, x, e : A is derivable, where:

y : A, x, e = e[y/x]

S(Γ1, ...,Γn), x, e = let S(x1, ..., xn) = x in Γ1, x1, ...,Γn, xn, e

Proposition 3.3.7 (Term Model) The interpretation of a theory T in TT as

defined above is a model with the property that JΓ ` e : AK = [x : Γ ` Γ, x, e : A].

94 Chapter 3. Categorical Semantics of λsep

Proof The property of the interpretation holds by induction on the derivation

of Γ ` e : A and reasoning about the interpretation using the equational rules.

This, along with the construction of arrows of TmT as equivalence classes, implies

that the interpretation is a model. �

Theorem 3.3.8 (Completeness) If JΓ ` e1 : AK = JΓ ` e2 : AK in all models

then Γ ` e1 = e2 : A.

Proof We prove the contrapositive. Assume Γ ` e1 6= e2 : A. This implies

that x : Γ ` Γ, x, e1 6= Γ, x, e2 : A. Hence JΓ ` e1 : AK 6= JΓ ` e2 : AK in the term

model, i.e. the interpretations are not equal in all models. �

Chapter 4

Day’s Construction and Presheaf

Models

In [Day70], Day shows how closed (symmetric) monoidal structure on functor

categories may be generated from promonoidal structure on the domain category,

of which (symmetric) monoidal structure is an instance. In this chapter we extend

Day’s construction to separation products, in the special case of functors into

Set, by defining proseparation structure and showing how this generates closed

separation products on the functor category. A category with separation products

(not necessarily closed) will form an instance of proseparation structure. To show

how λsep models resources and their separation we give two models based on

separation. The first, in Section 4.3.2, models global separation where there is a

fixed notion of separation between resources. The second, in Section 4.3.3 models

localised separation, where the notion of separation is local to the resources used

in particular separation product.

Day’s construction is a generalisation of the frame, or possible world, seman-

tics of substructural logics [Res00]. Instead of boolean valued predicates on a

partial order of possible worlds, we model types as Set-valued functors over a cat-

egory. Functor category semantics were used by Reynolds and Oles to model the

block structure of Idealised Algol [Rey81, Ole82]. Pym, O’Hearn and Yang used

Day’s construction to provide a models of BI and the αλ-calculus [POY04, O’H03]

95

96 Chapter 4. Day’s Construction and Presheaf Models

by constructing closed symmetric monoidal structure on the functor category from

(possibly partial) symmetric monoidal structure on the domain category.

In Day’s original paper he used the term premonoidal for the structure he

requires on the domain category. We use the terms promonoidal and prosep-

aration by analogy with profunctors, a categorical generalisation of relations

[Win05, DS95, Bor94].

Since Day’s construction is defined in terms of ends and coends, we shall first

recall the definitions of dinaturality, end and coend and state some useful facts

about them. We then give the definition of proseparation structure, our adapta-

tion of Day’s promonoidal structure, and then give three examples of classes of

categories with the correct structure. The second and third of these give us an

explicit resource interpretation of λsep.

4.1 Dinaturality and (Co)Ends

We now recall the definition of dinaturality, ends and coends and some useful

facts about them. The material in the first subsection is a re-presentation of the

section on dinaturality and (co)ends in [Mac98], §IX.4-8, and also some parts

from [CHW02]. The second subsection contains a definition and a lemma from

[Day70] that will be useful in the next section.

4.1.1 Definition and Properties

Dinatural transformations generalise the definition of natural transformations

by describing transformations between functors that have both covariant and

contravariant arguments.

Definition 4.1.1 (Dinatural Transformation) For functors F,G : C×Cop →
D, a dinatural transformation from α : F

..→ G is a family of arrows αC :

F (C,C) → G(C,C), indexed by objects C of C, such that for every f : A → B

4.1. Dinaturality and (Co)Ends 97

in C the following diagram commutes:

F (B,B) G(B,B)

F (B,A) G(A,B)

F (A,A) G(A,A)

//αB

''OOOOOOOOO
G(f,B)

77ooooooooo

F (B,f)

''OOOOOOOOO

F (f,A)

//
αA

77ooooooooo G(A,f)

It is easy to see that this definition specialises to the definition of natural

transformation when F andG are both constant in their first or second arguments.

A special case occurs when either F or G is constant. The case when F is

constant is called a wedge α : X
..→ G:

G(B,B)

X G(A,B)

G(A,A)

$$JJJJJJJJJ
G(f,B)

44jjjjjjjjjjjjjjjjjjjjj

αB

**TTTTTTTTTTTTTTTTTTTTTT

αA

::ttttttttt G(A,f)

The case when G is constant is also called a wedge α : F
..→ X. Ends and coends

are universal such wedges:

Definition 4.1.2 (End) An end for a functor F : Cop × C → D is a universal

wedge. The object part of the end is written
∫

A
F (A,A). That is, there is a

wedge β :
∫

C
F (C,C)

..→ F such that for any other wedge α : X
..→ F , there is a

unique arrow h : X →
∫

C
F (C,C) making all instances of the following diagram

commute:

F (B,B)

X ∫
C
F (C,C) F (A,B)

F (A,A)

$$JJJJJJJJJJ
F (f,B)

44jjjjjjjjjjjjjjjjjjjjjjj

αB

**TTTTTTTTTTTTTTTTTTTTTTT

αA

//h

::tttttttt βB

$$JJJJJJJJ
βA

::tttttttttt F (A,f)

98 Chapter 4. Day’s Construction and Presheaf Models

Definition 4.1.3 (Coend) A coend of a functor F : Cop × C → D is a couni-

versal wedge. The object of the wedge is written is written
∫ A

F (A,A). That is,

there is a wedge β : F
..→

∫ C
F (C,C) such that for any other wedge α : F

..→ X,

there is a unique arrow h :
∫ C

F (C,C) → X making all instances of the dual of

the above diagram for ends commute.

We will be concerned with (co)ends with the codomain category D equal to

Set and where C is small. A choice for ends and coends in Set is given by the

following proposition:

Proposition 4.1.4 ((Co)Ends in Set) A choice for the end of a functor F :

Cop × C → Set is given by:∫
A

F (A,A) = {x ∈
∏
A

F (A,A)|∀f : A→ B.F (f,B)xB = F (A, f)xA}

A choice for the coend of a functor F : Cop × C → Set is given by:∫ A

F (A,A) = (
∑

A

F (A,A))/ ≈

where ≈ is the least equivalence relation such that:

(A, x) ≈ (B, y) if ∃f : B → A.∃z ∈ F (A,B).x = F (A, f)z ∧ y = F (f,B)z

Proof See [CHW02]. �

By this proposition, an end in Set is isomorphic to a subset of the product

of the sets F (A,A) for all objects A in C which respect the action of the arrows

of C. We shall use ends as a generalisation of the ∀ quantifier of logic. Dually,

coends in Set are isomorphic to a quotient of the disjoint sum of sets F (A,A)

for all A. We shall use coends as a generalisation of the ∃ quantifier. We shall

not formalise these connections.

Given the informal connection to existential quantification, we read the ele-

ments of the universal wedge βA : F (A,A) →
∫ C

F (C,C) can be read as “sum-

ming out” the variable A; instantiating the existential with the witness A.

To demonstrate the reading of ends as a categorical generalisation of uni-

versal quantification that respects naturality, the following proposition gives a

4.1. Dinaturality and (Co)Ends 99

description of the natural transformations between two functors in terms of an

end.

Proposition 4.1.5 (Ends and Natural Transformations) Given functors F,G :

C → D, ends describe the set of natural transformations F ⇒ G.

[C,D](F,G) ∼=
∫

A

D(F (A), G(A))

Proof See §IX.5 in [Mac98]. �

Given this formulation of natural transformations as ends, we can restate the

Yoneda Lemma in terms of ends:

Proposition 4.1.6 (Yoneda Lemma) Given functors F : C → Set, G :

Cop → Set and an object B of C, the following are isomorphisms:∫
A

[C(B,A), F (A)] ∼= F (B)

∫
A

[C(A,B), G(A)] ∼= G(B)

These isomorphisms are natural in B and F .

We now state some propositions which give more useful properties of ends

and coends. Firstly, if the functor F has additional parameters such that the end∫
A
F (A,A, P) exists for all P , then this induces a functor in the parameter. This

proposition will allow us to use ends and coends to define objects of a functor

category.

Proposition 4.1.7 (Parameterisation) Given a functor F : P×Cop×C → D
such that for every object P ∈ P it has an end αP :

∫
A
F (P,A,A)

..→ F (P,−,−),

there is a unique functor H : P → D such that H(P) =
∫

A
(F (P,A,A) and the

following diagram commutes for every f : P → P ′ in P and C ∈ C:

H(P) = ∫
A
F (P,A,A) F (P,C,C)

H(P ′) = ∫
A
F (P ′, A,A) F (P ′, C, C)

���
� �
� �
� �

H(f)

//
(αP)C

���
� �
� �
� �
� �

F (f,C,C)

//
(α′P)C

The dual proposition also holds for coends.

Proof This is Theorem IX.7.2 in [Mac98]. �

100 Chapter 4. Day’s Construction and Presheaf Models

It is also possible to express ends and coends as limits and colimits in a certain

category. Therefore, standard facts about preservation of limits carry over to ends

and coends:

Proposition 4.1.8 (Ends and Homsets) Given a functor F : Cop × C → D
and an object B of D, the homset functor D(−,−) preserves ends and reverses

coends: ∫
A

D(B,F (A,A)) ∼= D(B,

∫
A

F (A,A))

D(

∫ A

F (A,A), B) ∼=
∫

A

D(F (A,A), B)

Proof Follows directly from Proposition IX.5.3 in [Mac98], showing that ends

may be expressed as limits in a certain category and the fact that homset functors

preserve limits. �

It is also possible to change the order of iterated ends, in the same way that

iterated limits may be interchanged:

Proposition 4.1.9 (Interchange of Iterated Ends) Let F : Aop×A×Cop×
C → D be a functor such that for all A,B ∈ A the end

∫
C
F (A,B,C,C) exists and

for all C,D ∈ C the end
∫

A
F (A,A,C,D) exists, then there is an isomorphism:∫

A

∫
C

F (A,A,C,C) ∼=
∫

C

∫
A

F (A,A,C,C)

Proof This is the Corollary in §IX.8 in [Mac98]. �

Finally, in this section, we state the Density formula:

Proposition 4.1.10 (Density Formula) Given functors F : C → Set and

G : Cop → Set, the following are isomorphisms:

d :

∫ A

F (A)× C(A,B) ∼= F (B) dop :

∫ A

G(A)× C(B,A) ∼= G(B)

All natural in B and any other variables in X. Moreover, the inverse d−1 obeys

4.1. Dinaturality and (Co)Ends 101

the following diagram:

Xa

∫ x

R(a, x)×Xx

R(a, a)×Xa

//d−1

$$JJJJJJJJJJJJJJJJ

〈!;îd,id〉

OO

qa

A similar diagram holds for d−1
op .

Proof See Section 7.2 in [CHW02]. The property of the inverse can be seen

to hold by working directly with the choice of coends in Set given above. �

4.1.2 Day’s Notation for Coends Involving ×

We will make heavy use of coends of the form
∫ A

F (A,−)×G(A,−) where F and

G are functors of different variances in A into Set. Following Day, we abbreviate

such expressions to F (A,−)×G(A,−), the repeated variable A showing the bound

variable of the coend. The rest of this subsection is a re-presentation of some of

[Day70] on the properties of such expressions.

Observe that for every expression X involving uses of × there is an expression

X formed by replacing each × by ×. There is also a canonical natural transfor-

mation qX : X → X defined by applying the universal wedges of the coends in a

depth first manner.

We now state the following lemma from [Day70], which shows that this qX is

in fact a universal wedge for a multiple coend of all the variables bound in X.

Lemma 4.1.11 Let Y be a functor into Set and X be an expression built using

×. Let f : X → Y be a transformation, natural in all the variables bound in X.

Then there is a unique g such that the following diagram commutes:

X X

Y

//qX

��?
??

??
??

??
?

f
��

g

Proof This is Day’s Lemma 2.5. �

102 Chapter 4. Day’s Construction and Presheaf Models

We now describe some of the applications of this Lemma noted by Day and

used in his construction. They will be useful in the next section.

When f = h; qY : X → Y we write the induced arrow as h : X → Y . Further,

when h = i × j, then we write i×j instead of i× j. We can treat × as being a

two argument functor.

When h is one of the isomorphisms of symmetric monoidal structure of × in

Set, the uniqueness given by Lemma 4.1.11 ensures that the coherence theorem

for × also holds for ×.

4.2 Proseparation

We are going to interpret the types of λsep as functors from a category of resources

into the category Set of sets and functions. Thus, each type is interpreted se-

mantically as a family of sets, indexed by the available resources.

To interpret separation products and functions we extend Day’s construc-

tion for monoidal products and functions on functor categories. Day defines

promonoidal structure on the domain category and shows how this can be used

to define monoidal structure on the functor category. Day formulated his def-

initions and results for general functor categories [C,V], where V is a complete

and co-complete category and C is a small, V-enriched category. For simplicity

we shall restrict to the case where V = Set. In this case, C is a normal small

category.

In this restricted case, the first half of Days’ promonoidal structure consists

of a pair of functors:

P : Cop × Cop × C → Set J : C → Set

These are used to define the monoidal products and the unit objects respec-

tively. The monoidal products are defined by the coend formula:

(A⊗B)x =

∫ a,b

Aa×Bb× P (a, b, x)

4.2. Proseparation 103

To finish the definition Day requires three natural isomorphisms:

λab : Jx×P (x, a, b) → C(a, b) ρab : Jx×P (a, x, b) → C(a, b)

αabcd : P (a, b, x)×P (x, c, d) → P (b, c, x)×P (a, x, d)

These must obey axioms similar to the coherence axioms for monoidal struc-

ture. These isomorphisms are then used to generate the structural isomorphisms

for the monoidal structure on the functor category. Their axioms ensure the

satisfaction of the axioms for monoidal structure. Monoidal closure follows auto-

matically from these definitions. Day then shows that the monoidal structure on

the functor category can be made to be symmetric by postulating the existence

of an extra natural isomorphism, obeying appropriate commuting diagrams.

We shall extend this definition to cover the structure required to model λsep by

requiring the existence of a family of functors PS, indexed by separation relations

S. This definition, with the attendant isomorphisms and commutative diagrams

in given in the next subsection, along with a proof that the do indeed satisfy the

definitions of the previous chapter.

The next two sections, give the additional isomorphisms to give permutation

and S-weakening structure and then duplication and weakening structure. Finally

we show that, as for Day’s construction, separation closure in the functor category

follows from these definitions.

4.2.1 Base Definition

Definition 4.2.1 A category C has proseparation structure if it has, for each

separation relation S, a functor:

PS : (Cop)|S| × C → Set

And natural isomorphisms:

α̂ : PS′(−→s , s)×PS(−→r , s,−→t , u) ∼= PS{S′}(
−→r ,−→s ,−→t , u)

and

λ̂ : P[]1(a, b)
∼= C(a, b)

104 Chapter 4. Day’s Construction and Presheaf Models

Such that the α̂s obey two commutative diagrams:

PS′ (
−→
b , b)×(PS′′ (

−→
d , d)×PS(−→a , b,−→c , d,−→e ,−)) PS′′ (

−→
d , d)×(PS′ (

−→
b , b)×PS(−→a , b,−→c , d,−→e ,−))

PS′ (
−→
b , b)×PS{S′′}(−→a , b,−→c ,

−→
d ,−→e ,−) PS′′ (

−→
d , d)×PS{S′}(−→a ,

−→
b ,−→c , d,−→e ,−)

PS{S′}{S′′}(−→a ,
−→
b ,−→c ,

−→
d ,−→e ,−)

//∼=

��

id×α̂

��

id×α̂

**VVVVVVVVVVVVVVVVVVVVVVVVVV

α̂

��

α̂

and,

PS′′ (
−→c , x)×(PS′ (

−→
b , x,

−→
d , y)×PS(−→a , y,−→e ,−)) (PS′′ (

−→c , x)×PS′ (
−→
b , x,

−→
d , y))×PS(−→a , y,−→e ,−)

PS′′ (
−→c , x)×PS{S′}(−→a ,

−→
b , x,

−→
d ,−→e ,−) PS′{S′′}(

−→
b ,−→c ,

−→
d , y)×PS(−→a , y,−→e ,−)

PS{S′{S′′}}(−→a ,
−→
b ,−→c ,

−→
d ,−→e ,−)

//∼=

��

id×α̂

��

α̂×1

**VVVVVVVVVVVVVVVVVVVVVVVVVVV

α̂

��

α̂

The form of the substituted separation relations makes sense by Lemma 2.1.3.

Further, the λ̂ and α̂ must obey the following two diagrams:

P[](b, x)×PS(−→a , x,−→c ,−) PS(−→a , b,−→c ,−)

PS(−→a , x,−→c ,−)×P[](b, x) PS(−→a , x,−→c ,−)×C(b, x)

//α̂

��

∼=

//
id×λ̂

OO

dop

and,

PS(−→a , x)×P[](x,−) PS(−→a ,−)

PS(−→a , x)×C(x,−)

//α̂

���
� �
� �
� �

id×λ̂

77ooooooooooooooo
d

The commutative diagrams express the same conditions as the required di-

agrams in Definition 3.2.3. Indeed, each of the diagrams above will imply the

corresponding diagram for the separation products in the functor category.

4.2. Proseparation 105

We now define how the proseparation structure is used to define separation

structure in the functor category.

Definition 4.2.2 (Separation Products on [C, Set]) Define separation prod-

ucts as the functor:

S(
−→
A) = A1a1×(A2a2×(. . . Anan×PS(−→a ,−)) . . .)

and the flattening natural isomorphisms α by:

S(
−→
A, S′(

−→
B),

−→
C)

=
−→
Aa×(

−→
Bb×PS′(

−→
b , b))×−→Cc×PS(−→a , b,−→c ,−)

∼= −→
Aa×−→Bb×−→Cc×PS′(

−→
b , b)×PS(−→a , b,−→c ,−)

id×α̂
−→ −→

Aa×−→Bb×−→Cc×PS{S′}(
−→a ,−→b ,−→c ,−)

= S{S′}(−→A,−→B ,−→C)

The natural isomorphisms λ are defined by:

[]1(A)−

= Aa×P[](a,−)

id×λ̂
−→ Aa×C(a,−)

d−→ A−

Proposition 4.2.3 Definition 4.2.2 defines separation products on [C,Set].

Proof Proposition 4.1.7 ensures that the definition of S actually defines a

functor. The definitions of α and λ give natural isomorphisms by Lemma 4.1.11.

It remains to show that the definitions of α and λ satisfy the required properties.

The second condition for λ holds by examination of this diagram:
−→
Aa×(PS(−→a , x)×P[](x,−))

id×α̂

++

id×(id×λ̂)

&&

(−→Aa×PS(−→a , x))×P[](x,−)

∼=

jjUUUUUUUUUUUUUUUUU
α //

id×λ̂

��

−→
Aa×PS(−→a ,−)

(−→Aa×PS(−→a , x))×C(x,−)

d

55kkkkkkkkkkkkkkk

∼=
��−→

Aa×(PS(−→a , x)×C(x,−))

id×d

;;vvvvvvvvvvvvvvvvvvvvvvv

106 Chapter 4. Day’s Construction and Presheaf Models

The topmost triangle commutes by the definition of α; the leftmost by natu-

rality; and the bottom by Day’s Lemma 2.9. Hence the inner diagram commutes.

The first condition for λ holds by a similar diagram and an application of Day’s

Lemma 2.7.
The first diagram for α̂ can be seen to imply the first diagram for α by

examination of the special case in the following diagram:

−→
Aa×−→Bb×(PS′′×(PS′×PS))

−→
Aa×S

′′
(
−→
B)b×(PS′×PS)

S
′
(
−→
A)a×−→Bb×(PS′′×PS) S(S

′
(
−→
A), S

′′
(
−→
B)) S{S′}(−→A, S

′′
(
−→
B))

−→
Aa×−→Bb×(PS′′×PS{S′})

−→
Aa×−→Bb×(PS′×(PS′′×PS)) S{S′′}(S(

−→
A),

−→
B) S{S′}{S′′}(−→A,

−→
B)

−→
Aa×−→Bb×(PS′×PS{S′′})

''OOO

id×(id×α̂)

''OOOOOOOOOOOOOOOOO
id×α̂

OO� � � � � � � �
∼=

??��������������������������

∼=

''OOOOOOOOOOOOOOOOO

id×α̂

//α

���
� �
� �
� �
�

α

oo ∼=

OO� � � � � � � �
∼=

���
� �
� �
� �
�

α

//∼=

wwooooooooooooooooo

id×α̂

OO� � � � � � � �
∼=

''OOOOOOOOOOOOOOOOO

id×(id×α̂)

���
� �
� �
� �
�

∼=

//
α 77ooooooooooooooooo

id×α̂

The outer edge of the diagram commutes by the first diagram for α̂ and

the outer diagrams commute either by the coherence of the isomorphisms, the

definition of α, or naturality. Hence, the inner diagram commutes, as required.

The second diagram for α commutes by similar reasoning. �

4.2.2 Permutation and S-Weakening

Again, we must take care to get the correct coherence axioms. These are derived

from the coherence axioms from the previous chapter.

Definition 4.2.4 (Proseparation Permutation) A category C that has pros-

eparation structure has permutation if it has a family of natural isomorphisms,

indexed by separation relations S and permutations σ on the set {0, . . . , |S| − 1}:

γ̂[σS] : PS(−→r , r) ∼= PσS(σ(−→r), r)

4.2. Proseparation 107

Subject to the following equations:

γ̂[σS]; γ̂[σ′σS] = ̂γ[(σ;σ′)S] γ̂idS A = idA γ̂[σS]
−1

= γ̂[σ−1
S]

and the following two commuting diagrams:

PS′(
−→
b , b)×PS(−→a , b,−→c ,−) PσS′(σ(−→b), b)×PS(−→a , b,−→c ,−)

PS{S′}(−→a ,
−→
b ,−→c ,−) PS{σS′}(−→a , σ(−→b),−→c ,−)

//
γ̂[σS′]×id

���
� �
� �
� �

α̂

���
� �
� �
� �

α̂

//
̂γ[S{σS′}]

PS′(
−→
b , b)×PS(−→a , b,−→c ,−) PS′(

−→
b , b)×PσS(σ(−→a , b,−→c),−)

PS{S′}(−→a ,
−→
b ,−→c ,−) PσS{S′}(σ(−→a , [−→b],−→c),−)

���
� �
� �
� �

α̂

//
id×γ̂[σS]

���
� �
� �
� �

α̂

//
̂γ[σS{S′}]

where the substitution of permutations into separation relations and vice versa

is as defined in Definition 3.2.12.

Definition 4.2.5 (Proseparation S-Weakening) A category that has pros-

eparation structure has S-Weakening if it has a family of natural transformations,

indexed by pairs of separation relations S ⊆ S′:

ζ̂[S′, S] : PS′(−→a , a) → PS(−→a , a)

Subject to the following equations:

ζ̂[S, S′]; ̂ζ[S′, S′′] = ζ̂[S, S′′] ζ̂[S, S]A = idA

And also the analogues of the two diagrams from Definition 4.2.4 for the ζ natural

transformations. Moreover, if the category has permutation and S-weakening

then the following diagram should commute:

PS(−→a , a) PσS(σ(−→a), a)

PS′(−→a , a) PσS′(σ(−→a), a)

//γ̂[σS]

��

ζ̂[S,S′]

��

̂ζ[σS,σS′]

//
γ̂[σS′]

108 Chapter 4. Day’s Construction and Presheaf Models

Definition 4.2.6 (Permutation and S-Weakening in [C,Set]) Define the fam-

ily γ[σS] : S(
−→
A) → σS(σ(

−→
A)) as:

A1a1×(A2a2×(. . . Anan×PS(−→a ,−)) . . .)

∼=;id×(...×γ̂[σS])
−→ Aσ(1)aσ(1)×(Aσ(2)aσ(2)×(. . . Aσ(n)aσ(n)×PσS(σ(−→a),−)) . . .)

Define the family ζ[S, S′] : S(
−→
A) → S′(

−→
A) as:

A1a1×(A2a2×(. . . Anan×PS(−→a ,−)) . . .)

id×(...×ζ̂[S,S′])
−→ A1a1×(A2a2×(. . . Anan×PS′(−→a ,−)) . . .)

We can now show that these definitions do indeed define permutation and

S-weakening in [C,Set].

Proposition 4.2.7 Definition 4.2.6 defines the permutation and S-weakening

of Section 3.2.2 in [C,Set].

Proof We only verify the properties for the permutation natural transforma-

tions; the S-weakening properties are almost identical.

The definition of γ[σS] is a natural isomorphism by Lemma 4.1.11 with the

fact that γ̂[σS] is a natural isomorphism. The algebraic laws hold by the algebraic

laws for the proseparation permutation. Therefore this definition satisfies the

requirements of Definition 3.2.8.

The commutativity of the two diagrams involving γ and α (Definition 3.2.13)

follows from the commutativity of the two diagrams involving γ̂ and α̂, by similar

diagrams to the proof of Proposition 4.2.3. Similarly, the diagram involving γ

and ζ (Definition 3.2.10) follows from the diagram requiring γ̂ and ζ̂ commute. �

4.2.3 Discarding and Duplication

The final piece of structure required to model λsep is that for discarding and

duplication. We are only able to construct categories where the object []0() is

the terminal object because it is not possible to give an arrow from an arbitrary

functor of [C,Set] to []0() just by information on C. As before, there is a one-one

4.2. Proseparation 109

correspondence between the axioms for the structure in a proseparation category

and the axioms for the functor category.

Definition 4.2.8 (Proseparation Weakening and Duplication) A category

with proseparation structure, permutation and S-weakening has weakening and

duplication if P[]0(a) = {∗}, so that P[]0 is the (unique up-to isomorphism) termi-

nal object in [C,Set], and there is a dinatural transformation:

d̂up : 1
..−→ P[]2(−,−,+)

These are subject to the following commutative diagrams for left and right

unit (where îda maps to the identity arrow for each a):

1 C(a, a)

P[]2(a, a, a) P[]1(a, a)

P[]2(a, a, a)× P[]0(a) P[]2(a, x, a)×P[]0(x)

//îda

��
d̂upa

��
λ̂

��
〈id,!〉

��
α̂−1

//qa

1 C(a, a)

P[]2(a, a, a) P[]1(a, a)

P[]2(a, a, a)× P[]0(a) P[]2(x, a, a)×P[]0(x)

//îda

��
d̂upa

��
λ̂

��
〈id,!〉

��
α̂−1

//qa

The following diagram for associativity must commute:

1 P (a, a, a)× P (a, a, a) P (a, a, x)×P (a, x, a)

P (a, a, a)× P (a, a, a) P (a, a, x)×P (x, a, a) P (a, a, a, a)

//〈d̂up,d̂up〉

��

〈d̂up,d̂up〉

//qa

��

α̂

//qa //α̂

110 Chapter 4. Day’s Construction and Presheaf Models

The following diagram for surjective pairing must commute:

P (a, b, x) P (a, b, x)× (P (a, b, x)× P (x, x, x))

(P (b)× P (a, b, x))× ((P (a)× P (a, b, x))× P (x, x, x))

(P (b)×P (a, b, x))× ((P (a)×P (a, b, x))× P (x, x, x))

P (a, x)× (P (b, x)× P (x, x, x))

P (a, b, x) P (a, x1)×(P (b, x2)×P (x1, x2, x))

//〈id,〈id,!;d̂up〉〉

��

id

��

〈!,id〉×(〈!,id〉×id)

��

qb×(qa×id)

��

α̂×(α̂×id)

��

qxx

oo
(id×α̂);α̂

Finally, the following diagram for the preservation of separation structure

must commute:

PS(−→a , x) (P (a1, a1, a1)× (. . .× PS(−→a , x)) . . .)

PS(−→a , x)× (PS(−→a , x)× P (x, x, x)) (P (a1, a1, b1)×(. . .×PS(−→b , x)) . . .)

PS(−→a , y)×(PS(−→a , z)×P (y, z, x)) PS′(−→a, a, x)

PS′′(−→a ,−→a , z)

//〈!;d̂up,〈...,id〉...〉

��

〈id,〈id,!;d̂up〉〉

��

qa1...an

��

qxx

��

−→
id×α̂;...;α̂

**VVVVVVVVVVVVVVVVVVVVVVVVVV
(id×α̂);α̂

��

ζ̂;γ̂

Definition 4.2.9 (Weakening and Duplication in [C,Set]) Given a prosep-

aration category C, with weakening and duplication define define dup as the com-

posite:

Ax
〈id,〈id,!;dup〉〉−→ Ax× (Ax× P (x, x, x))

4.2. Proseparation 111

qxx−→ Aa×(Ab×P (a, b, x))

Proposition 4.2.10 Definition 4.2.9 defines the required discarding and dupli-

cation structure in [C,Set], where []2(A,B) is the product.

Proof The defined family of arrows is clearly natural in A. Naturality in x

follows from the dinaturality of d̂up. Since P[]0(a) is the single element set, and

[]0()(a) = P[]0(a) by Definition 4.2.1, then []0() is the unique (up to isomorphism)

terminal object in [C,Set];

The diagram for right unit in Definition 4.2.8 implies the diagram for right

unit in 3.2.18. The left unit case is similar. Consider the following diagram,

which contains the definitional unfolding of the required diagram for [C,Set] in

the centre:

Aa × C(a, a) Aa × P (a, a) Aa × (P (y)×P (a, y, a))

Aa Ax×C(x, a) Ax×P (x, a) Ax×(P (y)×P (x, y, a))

Aa × (Aa × P (a, a, a)) Ax×(Ay×P (x, y, a))

Aa × (P (a)× P (a, a, a))

���
� �
� �
� �
�

qa

//id×λ̂−1

���
� �
� �
� �
�

qa

//id×α̂−1

���
� �
� �
� �
�

qa

77ooooooooooooooooooo

〈id,!;îd〉

//d−1

''OOOOOOOOOOOOOOOOOOO

〈id,〈id,!;d̂up〉〉

//
id×λ̂−1

//
id×α̂−1

//qaa

''OOOOOOOOOOOOOOOOOO

id×(!a×id)

77oooooooooooooooooo

id×(!y×id)

??���������������������������

qaa

Along the top row, the first triangle commutes by the definition of d−1 and the

two squares commute by the definition of the × notation. The bottom “square”

also commutes by the definition of the× notation. The outer edges of the diagram

are equal by the properties of finite products and the diagram for right unit in

Definition 4.2.8. Hence the inner diagram commutes, as required.

The axiom for associativity may be seen to hold in similar fashion by writing

out the required diagram in terms of the definitions of α and dup, then noting

that the commutativity of the associativity diagram for d̂up implies the commu-

tativity of this diagram, using Lemma 4.1.11, naturality and the properties of

finite products.

112 Chapter 4. Day’s Construction and Presheaf Models

Similarly, the required diagram for separation preservation holds; the two

sides of the diagram generated by unfolding the definitions can be shown to be

equal to two arrows derived from the two sides of the diagram in Definition 4.2.8

for separation preservation. The proof relies on the uniqueness property of the

arrows induced by Lemma 4.1.11.

Finally, the case for surjective pairing is similar to the previous case. The

proof again relies on the uniqueness property of the arrows induced by Lemma

4.1.11. �

4.2.4 Separation Closure

We now show that, given the definition of a category with proseparation structure,

the resulting functor category is separation closed.

Proposition 4.2.11 When C has proseparation structure then the category

[C,Set] is separation closed. The function objects are given by:

[
−→
A

S−→ B]a0 =

∫
c

[A1a1×(. . . (Anan×PS(a0,−→a , c))), Bc]

Proof We show that the functor [
−→
A

S−→ −], defined on objects as above, is

right adjoint to the functor S(−,−→A) in [C,Set].

[C,Set](S(X,
−→
A), B)

=

∫
c

[∫ a0

Xa0 × (A1a1× . . . PS(a0,−→a , c)), Bc
]

∼=
∫

c

∫
a0

[Xa0 × (A1a1× . . . PS(a0,−→a , c)), Bc]

∼=
∫

c

∫
a0

[Xa0, [(A1a1× . . . PS(a0,−→a , c)), Bc]]

∼=
∫

a0

∫
c

[Xa0, [(A1a1× . . . PS(a0,−→a , c)), Bc]]

∼=
∫

a0

[
Xa0,

∫
c

[(A1a1× . . . PS(a0,−→a , c)), Bc]
]

=

∫
a0

[
Xa0,

[−→
A

S−→ B
]
a0

]
= [C,Set](X, [

−→
A

S−→ B])

4.3. Instances of Proseparation Categories 113

In order, these lines are justified by: Definition 4.2.1 and Proposition 4.1.5; Propo-

sition 4.1.8; Currying; Proposition 4.1.9; Proposition 4.1.8; the definition above;

and Proposition 4.1.5. Each of the constituent parts is a natural isomorphism, so

the resulting isomorphism of homsets is natural in B and X. �

Summing up the results of this section we have the following theorem:

Theorem 4.2.12 If C is a small category with proseparation structure as de-

fined in Definition 4.2.1, Permutation as defined in Definition 4.2.4, S-Weakening

as defined in Definition 4.2.5 and weakening and duplication as defined in Defi-

nition 4.2.8 then the functor category [C,Set] is a λsep-category.

Proof This is Propositions 4.2.3, 4.2.7, 4.2.10 and 4.2.11. �

4.3 Instances of Proseparation Categories

The previous section has shown that, given the correct structure on a category

C, the functor category [C,Set] can interpret λsep. In this section we shall give

three examples of proseparation structure.

The first example assumes that C has separation structure and shows how it

can be used to define proseparation structure. The second and third examples

show how λsep models separation of resources.

4.3.1 Separation Categories

It is possible to dualise the constructions of Section 4.2 so that we require functors

PS : C|S| × Cop → Set. The rest of the definitions can be dualised appropriately

and the construction of separation structure takes place in the category [Cop,Set].

If C has separation structure with []0() the terminal object and []2(A,B) the

product then it also has proseparation structure. Start by defining the functors

PS:

PS(a1, . . . , an, a) = C(a, S(a1, . . . , an))

114 Chapter 4. Day’s Construction and Presheaf Models

These clearly have the correct variances by the variances of the homset func-

tors. Set λ̂ to be the Yoneda embedding of the λ arrows:

C(b, a)
C(id,λa)−→ C(b, []0(a))

= P[]0(a, b)

And set α̂ to be the composite:

PS′(
−→
b , b)×PS(−→a , b,−→c , x)

= C(b, S′(
−→
b))×C(x, S(−→a , b,−→c))

∼=;d−→ C(x, S(−→a , S′(−→b),−→c))
C(x,α)−→ C(x, S{S′}(−→a ,−→b ,−→c))

= PS{S′}(
−→a ,−→b ,−→c , x)

For permutation and S-weakening, set γ̂[σS] to be C(id, γ[σS]) and ζ̂[S, S′] to

be C(id, ζ[S, S′]). Lastly, define d̂upa as the function 1 → C(a, []2(a, a)) whose

value is always the dupa arrow in C.

With these definitions we have the following result:

Theorem 4.3.1 The definitions above define proseparation structure on C with

permutation, S-weakening, duplication and weakening.

Proof The definitions should obey the axioms required for a proseparation

category. To save space, we only show two illustrative instances. Firstly, for the

first axiom for γ̂, consider the following diagram:

C(b, S′(−→b))×C(z, S(−→a , b,−→c))
C(b,γ)×id //

α̂

��

∼=;d

))SSSSSSSSSSSSSS
C(b, σS′(σ−→b))×C(z, S(−→a , b,−→c))

∼=;d
ttjjjjjjjjjjjjjjjj

α̂

��

C(z, S(−→a , S′(−→b),−→c))
C(z,S(id,γ,id))//

C(z,α)uukkkkkkkkkkkkkk
C(z, S(−→a , σS′(σ−→b),−→c))

C(z,α)

**TTTTTTTTTTTTTTT

C(z, S{S′}(−→a ,
−→
b ,−→c))

C(z,γ) // C(z, S{σS′}(−→a ,
−→
b ,−→c))

The left and right inner regions commute by the definition of α̂; the upper

region commutes by the naturality of d; and the lower region commutes by the

appropriate axiom for γ. Hence, the outer diagram commutes, as required.

4.3. Instances of Proseparation Categories 115

The second axiom for γ̂ and the rest for ζ̂, λ̂ and α̂ can be shown to hold in

a similar way. The axiom describing the interaction between γ̂ and ζ̂ is a trivial

consequence of the appropriate axiom for γ and ζ.

Secondly, consider the following diagram for the left unit diagram for d̂up,

where the outer edge is the one required to commute:

1 C(a, a)

C(a, [](a, a)) C(a, [](a))

C(a, [](a, a))× C(a, []()) C(a, []([](), a))

C(a, []())× C(a, [](a, a)) C(a, [](x, a))×C(x, []())

C(x, []())×C(a, [](x, a))

//îda

���
� �
� �
� �
� �

d̂upa

���
� �
� �
� �
� �

C(a,λ−1)

���
� �
� �
� �
� �

〈id,̂!〉

''OOOOOOOOOOOOOOOOOOO

C(a,[](!,id))

���
� �
� �
� �
� �

C(a,α−1)

���
� �
� �
� �
� �

∼=

''OOOOOOOOOOOOOOOOOOO

qa

//ev

���
� �
� �
� �
� �

d−1

''OOOOOOOOOOOOOOOOOOO

qa

���
� �
� �
� �
� �

∼=

The top inner region of the diagram commutes by the comonoid axioms for

dup; the next region down commutes by the properties of homset and functors

and their evaluation; the next one commutes by the properties of d; and the

final region commutes by Lemma 4.1.11. Hence, the whole diagram commutes,

as required.

The other diagrams for associativity, surjective pairing and separation preser-

vation all commute for similar reasons. Finally, d̂up is a dinatural transformation

since dup is a natural transformation. �

We can simplify the expression of the objects of the closed structure of Propo-

sition 4.2.11 in this case:

116 Chapter 4. Day’s Construction and Presheaf Models

[
−→
A

S−→ B]a0

=

∫
c

[A1a1×(. . . (Anan×C(c, S(a0, . . . , an)))), Bc]

∼=
∫

c

∫
a1

. . .

∫
an

[A1a1 × . . .× Anan × C(c, S(a0, . . . , an)), Bc]

∼=
∫

c

∫
a1

. . .

∫
an

[A1a1 × . . .× Anan, [C(c, S(a0, . . . , an)), Bc]]

∼=
∫

a1

. . .

∫
an

[A1a1 × . . .× Anan,

∫
c

[C(c, S(a0, . . . , an)), Bc]]

∼=
∫

a1

. . .

∫
an

[A1a1 × . . .× Anan, B(S(a0, . . . , an))]

where all the isomorphisms follow from the propositions in Section 4.1 and

are natural in A1, ..., An, B and a0.

Thus this construction may be used to add separation closure to any non-

closed Separation Category, such as SepCtxt, defined in Section 3.2.5. This

construction also preserves the existing separation structure, in the sense of Def-

inition 3.2.23:

Theorem 4.3.2 When C has proseparation structure, the Yoneda embedding

Y : C → [Cop,Set] is a strong separation functor.

Proof Define mS to be the repeated application of the d isomorphisms:

S(Y a1, . . . , Y an)

= C(a′1, a1)×(. . .×C(−, S(a′1, . . . , a
′
n)))

−→
id×d
−→ C(a′1, a1)×(. . .×C(−, S(a′1, . . . , an)))

. . .

d−→ C(−, S(a1, . . . , an))

= Y (S(a1, . . . , an))

Each of the required diagrams from Definition 3.2.23 can easily be seen to

hold by writing them out in terms of the definitions. �

4.3. Instances of Proseparation Categories 117

4.3.2 Resources with Separation and Combination

The previous section gave a general family of proseparation structures, but we

still do not have a connection between the calculus and something resembling

resources with separation. We rectify this in this section and the next.

Definition 4.3.3 A Resource Category is a category R with finite coproducts

and a finite product preserving functor # : Rop ×Rop → Set that is symmetric

in the sense that r1#r2 = r2#r1 for all objects r1, r2, and similarly for arrows.

We interpret the objects of R as representing the actual resources we are

concerned about. An arrow r1 → r2 implies that anything that is possible with

resources r1 is also possible with resources r2. This is captured by the functorial

action of the objects of [R,Set]. The existence of finite sums allows us to consider

composite resources.

The functor −#− is a separation predicate on the objects of R. If r1#r2 6= ∅
then we regard r1 and r2 as being separate resources. This will be used to give

meaning to the separation relations. The functor is contravariant so that if two

resources are separate, and we take two “lesser” resources, then they will also

be separate. The fact that this functor is finite product preserving implies the

following isomorphism exists:

r#(r1 + ...+ rn) ∼= r#r1 × ...× r#rn

That is, a resource separate from a composite resource is also separate from them

individually. The symmetry requirement matches the definition of separation

relations as a symmetric relation.

Example 4.3.4 Let X be some set of individual resources. Take R to be the

category with objects the power set of X and an arrow r1 → r2 iff r1 ⊆ r2. This

R has finite sums given by set union and a separation predicate given by:

r1#r2 =

{
{∗} r1 ∩ r2 = ∅
∅ otherwise

It is easy to see that R so defined is a resource category.

118 Chapter 4. Day’s Construction and Presheaf Models

Given a resource category R, define proseparation functors as:

PS(r1, . . . , rn, s) =
−−−−→R(r, s)× Π(i,j)∈Sri#rj

Define α̂ as the composite:∫ y

PS′(
−→
b , y)× PS(−→a , y,−→c , x)

=

∫ y

(
−−−−→R(b, y)× S ′)× (

−−−−→R(a, x)×R(y, x)×−−−−→R(c, x)× S)

∼= (
−−−−→R(a, x)×−−−−→R(c, x)× S 6y × S ′)×

∫ y

(R(y, x)× Sy)×R(b1 + ...+ bn, y)

id×dop∼= (
−−−−→R(a, x)×−−−−→R(c, x)× S 6y × S ′)× (R(b1 + ...+ bn, x)× Sb1+...+bn)

∼=
−−−−→R(a, x)×−−−−→R(b, x)×−−−−→R(c, x)× S{S ′}

= PS{S′}(
−→a ,−→b ,−→c , x)

where the terms S, S ′ and S{S ′} stand for the products of all the separation

predicates required for the separation relations S, S′ and S{S′} respectively. The

terms S 6y and Sy stand for the two parts of S not involving and involving the object

y respectively, and Sb1+...+bn is Sy with all instances of y replaced by b1 + ...+ bn.

The transformation λ̂ : P[]1(a, b)
∼= R(a, b) is the obvious isomorphismR(a, b)×

1 ∼= R(a, b). The transformations γ̂ and ζ̂ are defined by the obvious isomorphism

and use of projection on the product of separation predicates respectively. The

dinatural transformation d̂up is defined as:

d̂upa = 〈îda, îda〉 : 1 → R(a, a)×R(a, a) = P[]2(a, a, a)

where îda maps the single element of 1 to the identity arrow in R(a, a).

Theorem 4.3.5 The above definitions define R as a category with prosepara-

tion structure with S-weakening, permutation, duplication and discarding.

Proof We check each of the conditions for the structure in turn. The PS so

defined are clearly functors by their construction. The families of arrows α̂ are

natural isomorphisms by their construction from natural isomorphisms. That

they obey the two required commuting diagrams can be seen by noting that the

4.3. Instances of Proseparation Categories 119

conditions boil down to the commuting of two instances of dop, which are Day’s

Lemmas 2.10 and 2.11 [Day70].

The family λ̂ so defined is clearly a natural isomorphism. It obeys the two

required interaction diagrams with α̂ by a direct consequence of the definitions.

The families defined for Permutation and S-Weakening are natural transforma-

tions by definition, and they clearly obey the required algebraic equations. The

commuting diagrams for permutation can be seen to hold by writing them out in

terms of the definitions and observing that since the functors R(−, x) and −#−
preserve products on Rop we can commute the permutation and flattening. The

commuting diagrams for S-weakening also hold by writing them out in terms of

their definitions. Similarly, the interaction diagram between permutation and

S-Weakening is easily seen to hold.

The value of P[]1(a) is always 1, the terminal object in Set. The family of

arrows d̂up is dinatural since îd is. The four diagrams for duplication all hold

because of the way d̂up is defined in terms of identity arrows and the equation

for the inverse of the density formula. �

Corollary 4.3.6 Given a Resource Category R, the functor category [R,Set]

is a λsep-category.

Given [R,Set] as a model of λsep, we can use the Yoneda embedding to add

extra types to the calculus to represent particular resources. For any object r of

a resource category R define a new type Yr interpreted by Yoneda:

JYrK = R(r,−)

Thus, in the case of Example 4.3.4 the meaning of Yr is the set of all resources

containing r. We can use this to specify fixed resources that other values must

be separate from. Consider an example where we have a region k representing

kernel memory in an operating system. Calls from the operating system kernel to

user programs must not pass references to kernel memory, since it is inaccessible

to user programs. This constraint may be typed as follows:

callUserProgram : [1#2](Yk,Message) → Result

120 Chapter 4. Day’s Construction and Presheaf Models

The representation of named resources in the calculus has a precedent in the

nominals of hybrid logic. See, e.g. [AB01].

4.3.3 Finite Sets and Injective Functions

Our next example of a category with proseparation structure in the category of

finite sets and injective functions, I. We will define notions of separation and

combination in I that are distinct from the Resource Categories of the previous

subsection. This will give a different view, based on more localised notion of

separation rather than the global separation of the previous section.

We note that the category I has symmetric monoidal structure, given on

objects by disjoint union. This can be used, via Day’s construction to model the

αλ-calculus. In fact, I is the free affine symmetric monoidal category over the

one object, one arrow category.

Our notion of separation in I is based on comparisons between the maps from

the bound variables of the coend defining separation products to the containing

resource. Thus separation is determined by how the sub-resources fit together lo-

cally, rather than by a global predicate as was the case with Resource Categories.

Definition 4.3.7 Two arrows with common codomain, f1 : a1 → x and f2 :

a2 → x, in I are separate, f1#f2 if the ranges of f1 and f2 are disjoint.

Lemma 4.3.8 Some properties of separation:

1. If f1#f2 then f2#f1;

2. If f1#f2, then for all f : x→ y, (f1; f)#(f2; f);

3. If f1#f2, then for all f : a′2 → a2, f1#(f ; f2).

Proof Property 1 is trivial. Property 2 follows from the injectivity of f .

Property 3 follows because pre-composition does not affect the range of f2. �

4.3. Instances of Proseparation Categories 121

Definition 4.3.9 Given a finite collection of arrows 〈fi : ai → x〉1≤i≤n, form

the combination of them:
⊔

i fi, equal to the union of the ranges of all the fi.

Each of the arrows fi factors through
⊔

i fi as f#
i ; inc⊔

i fi
, where f#

i is fi with

codomain restricted to its range and inc⊔
i fi

is the inclusion of
⊔

i fi in x.

We now prove a lemma detailing how the separation and combination oper-

ations interact. This is what allows us to successfully model the flattening and

unflattening structural rules.

Lemma 4.3.10 Given an arrow f : a → x, a finite collection of arrows 〈fi :

bi → x〉1≤i≤n and a separation relation S, |S| = n, such that for all i, f#fi and

for all (i, j) ∈ S, fi#fj, then f#inc⊔
i fi

and for all (i, j) ∈ S, f ′i#f
′
j.

Proof The range of inc is the union of the ranges of the fi, so if the range of

f is disjoint from all of them, it is disjoint from the union. Hence, f#inc. For

each of the f ′i , the restriction of its codomain does not change its range, so fi#fj

implies f ′i#f
′
j. �

Lemma 4.3.11 Two properties concerning the interaction of composition and

combination. In both cases assume a finite collection of arrows 〈fi : ai → x〉1≤i≤n.

1. Given an arrow h : x → x′, there is an arrow h† :
⊔

i fi →
⊔

i(fi;h) such

that inc⊔
i fi

;h = h†; inc⊔
fi;h

and for all i, f#
i ;h† = (fi;h)#.

2. Given arrows 〈gi : a′i → ai〉1≤i≤n, there is an arrow 〈gi〉† :
⊔

i(gi; fi) →
⊔

i fi

such that 〈gi〉†; inc⊔i fi
= inc⊔

i gi;fi
.

3. Given an arrow h : x → x′, there is an arrow g :
⊔

i(fi;h) → x such that

h; g = inc⊔
i fi;h and for all i, (fi;h)#; g = fi.

Proof For property 1, define h† to be the restriction of h to
⊔

i fi. For property

2, define 〈gi〉† as the inclusion. For property 3, define g(e) = h−1(e), which is

functional because h is injective, and is total because
⊔

i(fi;h) only contains

elements in the range of h. The equations in all three cases follow immediately. �

122 Chapter 4. Day’s Construction and Presheaf Models

Using our separation predicate we define the proseparation functors as:

PS(a1, ..., an, b) = {(f1 : a1 → b, ..., fn : an → b) | ∀(i, j) ∈ S.fi#fj}

The action of the functors on arrows is the obvious pre- and post-composition

operations. By Lemma 4.3.8 these preserve the separation predicates.

Unfortunately, it is not easily possible to define the structural natural transfor-

mations from abstract components as we have done in the previous examples. We

define then by working directly with our choice of coends. With this definition,

the domain of the α̂ arrows is:∫ y

PS′(
−→
b , y)× PS(−→a , y,−→c , x)

= {(y,−−−−−−→fb : b→ y,
−−−−−−−→
fa : a→ x, fy : y → x,

−−−−−−→
fc : c→ x) | S ∧ S′}/ ≈

where S and S′ represent the separation predicates required by the separation

relations and where ≈ is the least equivalence relation such that:

(y,
−→
fb ,

−→
fa , fy,

−→
fc) ≈ (y′,

−→
f ′b ,

−→
f ′a , f

′
y′ ,
−→
f ′c)

if ∃g : y → y′.
−−−−→
fa = f ′a ∧

−−−−→
fc = f ′c ∧

−−−−−−→
fb; g = f ′b ∧ g; f ′y′ = fy

Define α̂ :
∫ y
PS′(

−→
b , y)×PS(−→a , y,−→c , x) → PS{S′}(

−→a ,−→b ,−→c , x) and its inverse

as:

α̂([(y,
−→
fb ,

−→
fa , fy,

−→
fc)]) = (

−→
fa ,

−−−→
fb; fy,

−→
fc)

α̂−1(
−→
fa ,

−→
fb ,

−→
fc) = [(

⊔
i

fbi
,
−→
f#

b ,
−→
fa , inc⊔i fbi

,
−→
fc)]

Before proceeding we must check that this definition is well-defined.

Proposition 4.3.12 The families α̂ and α̂−1 so defined are functional, natural

in −→a ,
−→
b , −→c and x and are mutually inverse.

Proof Firstly, α̂ is functional: if (y,
−→
fb ,

−→
fa , fy,

−→
fc) ≈ (y′,−→gb ,−→ga , gy′ ,−→gc) then

their values under α̂ should be equal. Note that we need only check that α̂

respects classes with respect to the condition on ≈ given above, the rest follows

4.3. Instances of Proseparation Categories 123

from the definition of ≈ as the least equivalence relation. If there exists h : y → y′

such that
−−−−−−→
fb;h = gb and fy = h; gy′ then, for all fbi

:

fbi
; fy = fbi

;h; gy′ = gbi
; gy′

Hence, with the fact that
−−−−→
fa = ga and

−−−−→
fc = gc, we have:

α̂([(y,
−→
fb ,

−→
fa , fy,

−→
fc)]) = α̂([(y′,−→gb ,−→ga , gy′ ,−→gc)])

Also, α̂ preserves the separation structure by Lemma 4.3.8. Therefore, α̂ is a

well-defined function. The function α̂−1 also preserves the separation by Lemma

4.3.10.

The naturality of α̂ is clear from the definition of the functorial action of PS;

the pre- and post-composition operations are not interfered with by α̂. Naturality

for α̂−1 follows from the first two properties of Lemma 4.3.11 and the fact that

≈ is an equivalence relation.

Finally, α̂ and α̂−1 are mutually inverse:

α̂(α̂−1(
−→
fa ,

−→
fb ,

−→
fc)) = α̂([(

⊔
i

fbi
,
−→
f#

b ,
−→
fa , inc⊔i fbi

,
−→
fc)])

= (
−→
fa ,

−−−−−−−−→
f#

b ; inc⊔
i fbi

,
−→
fc)

= (
−→
fa ,

−→
fb ,

−→
fC)

where the last line follows from the factorisation property of combination noted

above. Conversely:

α̂−1(α̂([(y,
−→
fb ,

−→
fa , fy,

−→
fc)])) = α̂−1(

−→
fa ,

−−−→
fb; fy,

−→
fc)

= [(
⊔
i

(fbi
; fy),

−−−−−→
(fb; fy)#,

−→
fa , inc⊔i(fbi

;fy),
−→
fc)]

The argument and result are equal by Lemma 4.3.11, part 3, and the definition

of ≈. �

The natural isomorphisms λ̂ are just the identity. Permutation natural iso-

morphisms γ̂ just permute the tuple of arrows. By the first property in Lemma

4.3.8 the separation property is maintained. S-Weakening, ζ̂, is just the inclusion

124 Chapter 4. Day’s Construction and Presheaf Models

of sets of tuples of arrows. Weakening holds since PS(a) is a single element set.

Duplication d̂up is defined as:

d̂upa(∗) = (ida, ida)

Since there is no separation required in P[]2(a, a, a), this is well defined.

Theorem 4.3.13 The definitions above define proseparation structure on I.

Proof It remains to verify that each of the required diagrams commutes. The

two diagrams for α̂ commute since it does not matter in which order we compose

the arrows. The two diagrams for λ̂ commute because λ̂ is the identity. The

two diagrams for γ̂ commute because permutation of the arrows does not affect

their composition with other arrows. The diagrams for ζ̂ commute trivially. The

interaction diagram between γ̂ and ζ̂ also commutes directly. The five diagrams

for d̂up all commute because d̂up is defined in terms of identity arrows. �

Corollary 4.3.14 The functor category [I,Set] is separation closed.

We can relate the constructions in this section to Day’s original construction

by noting that P[1#2]2(a, b, x) ∼= I(a⊗ b, x). Therefore we have that our definition

of monoidal structure in [I,Set] by Proposition 3.2.6 is isomorphic to Day’s:∫ a,b

Aa×Bb× P[1#2]2(a, b, x) ∼=
∫ a,b

Aa×Bb× I(a⊗ b, x)

Moreover, the Yoneda embedding preserves this structure.

4.3.3.1 Pullback Preservation

We could further refine this model of separation by restricting our attention

to pullback preserving functors. This has the effect that each value e ∈ Ax

determines a least object of I that it requires (see Section 5 in [O’H93]). That

is, values determine the resources they need. Hence we can have a function supp

that gives the unique resource required by a value. In this case the definition of

separation products is very simple:

S(A1, ..., An)x = {(a1, ..., an) ∈ A1x×...×Anx | ∀(i, j) ∈ S.supp(ai)∩supp(aj) = ∅}

4.3. Instances of Proseparation Categories 125

It is also the case now that the S-Weakening arrows are monomorphisms.

We do not follow up these ideas here, except to say that the category of

pullback preserving functors I → Set is equivalent to the category of sheaves over

Iop with the atomic topology [MM92, Joh89] and also the category of nominal

sets [GP01]. Nominal sets are the objects of FM-set theory, set theory over some

collection of atoms A. This set of atoms provides the resources on which our

separation constraints can operate.

Chapter 5

Typed Computational Effects

In this chapter we develop the constructions for typed computational effects

sketched in the introduction. We will use this in the next chapter to provide

a categorical semantics for a calculus with explicit state types, and in Chapter 8

for an in-place update calculus.

We first review two existing definitions for the categorical semantics of com-

putational effects: Freyd categories and strong monads. The definition we give

for Freyd categories is different to the one in the literature [PR97, PT99], but we

prove the two equivalent and our definition will be easier to extend to the typed

computational effects case. We also give some examples of Freyd categories and

strong monads, taken from the literature, showing how they are used to model

various computational effects.

In Section 5.2, we give our definitions for typed computational effects. The

first is parameterised Freyd categories in Section 5.2.1, an extension of the defi-

nition of Freyd categories. We also define a notion of closure for parameterised

Freyd categories and give some examples of parameterised Freyd categories, mod-

elling global typed state, category actions and composable continuations. Follow-

ing this in Section 5.2.2 we give our definition of parameterised strong monads,

an extension of strong monads. In Section 5.2.3 we show that, assuming closure,

the two definitions are equivalent up to isomorphism.

We build on these definitions in Section 5.3 by extending both definitions

to deal with the lifting of typed computational effects to larger effect types. In

127

128 Chapter 5. Typed Computational Effects

the case of state, this will allow the embedding of local computations in larger

states, in the sense of Separation Logic [Rey02]. We prove that the two extended

definitions are equivalent, up to isomorphism, in Section 5.3.3.

In Section 5.4 we define two extra conditions that apply to parameterised

Freyd categories and parameterised monads and show that they extend the equiv-

alences of the previous sections. We consider the mono requirement for parame-

terised monads, copying the mono requirement for normal monads [Mog91], and

extend this to a condition equivalent to the Kleisli functor being full and faithful

for certain objects of the parameterising category. We also consider an appro-

priate notion of commutativity for double parameterised Freyd categories and

monoidal parameterised strong monads. Finally in Section 5.4 we define a second

notion of closure for double parameterised Freyd categories. We call a closed dou-

ble parameterised Freyd category with this additional form of closure a Typed

Command Category.

The original idea for parameterised monads came from a post on the haskell-

cafe mailing list by Chung-chieh Shan1. The technical definitions of parameterised

monads and the rest of the work in this chapter are the work of the author.

5.1 Computational Effects

5.1.1 Freyd Categories

As mentioned in the chapter introduction, the definition of Freyd category given

by Power and Robinson [PR97] and Power and Thielecke [PT99] is different to

ours. We give their definition in Section 5.1.1.1 and prove that it is equivalent.

The definition that follows will be easier to extend to the parameterised case in

Section 5.2.

In Power and Thielecke’s original definition they require the base category C to

have finite products. We generalise this slightly to requiring symmetric monoidal

structure. Let (C,⊗, I, α, λ, ρ, σ) be a symmetric monoidal category.

1http://haskell.org/pipermail/haskell-cafe/2004-July/006448.html

5.1. Computational Effects 129

Definition 5.1.1 Freyd category structure on C consists of a category K and

three functors:

J : C → K < : C × K → K = : K × C → K

Such that:

1. J is identity on objects;

2. The monoidal structure of C is respected: A< JB = JA= B = J(A⊗ B)

and f < Jg = Jf = g = J(f ⊗ g);

3. The family of arrows JαA,B,C is natural in the following pairs of functors:

(−1 =−2) =−3 → −1 = (−2 ⊗−3) (−1 <−2) =−3 → −1 < (−2 =−3)

(−1 ⊗−2) <−3 → −1 < (−2 <−3)

The family of arrows JσA,B is natural in the following pairs of functors:

−1 =−2 → −2 <−1 −1 <−2 → −2 =−1

The family of arrows JλA is natural in the pair of functors −= I → −, and

similarly for the right identity family, ρ.

The functors < and = are C-actions on the category K in the sense of [BCS97].

As with symmetric monoidal structure we refer to a tuple (C,K, J,<,=)

(where C itself is an abbreviation for a symmetric monoidal category) as a Freyd

category. As a shorthand we will just refer to some identity-on-objects functor

J : C → K as being a Freyd category and leave the rest of the structure as

implicit. We will refer to the two functors < and =, along with their required

properties, as premonoidal structure. This is following Power and Robinson’s

definition (see Section 5.1.1.1 below), even though in our definition they cannot

be fully defined without the functor J .

Also following Power and Robinson, we define the notion of centrality.

Definition 5.1.2 Given a Freyd category J : C → K, an arrow c : A→ A′ of K
is central if, for all arrows c′ : B → B′ of K:

c=B;A′ < c′ = A< c′; c=B′

130 Chapter 5. Typed Computational Effects

The next lemma will be useful in establishing the connection between our

definition of Freyd category and that of Power, Robinson and Thielecke (Section

5.1.1.1).

Lemma 5.1.3 Given a Freyd category J : C → K, all arrows of the form Jf

are central.

Proof For any arrows f : A→ A′ of C and c : B → B′ of K:

Jf =B;A′ < c = J(f ⊗B);A′ < c = f < c = A< c; J(f ⊗B′) = A< c; Jf =B

�

Definition 5.1.4 A Freyd category J : C → K is closed if the functor − < B

has a specified right adjoint for all objects B.

Closure is used to interpret function types and plays a crucial role in the

equivalence between Freyd categories and strong monads. We will use the no-

tation B → − for the chosen right adjoint to − < B. By Mac Lane’s Theorem

§IV.7.3 [Mac98], the adjunctions give a functor − → − : Kop × K → C. We will

use Λ for the isomorphism of homsets:

Λ : K(A⊗B,C) ∼= C(A,B → C)

and ev for the counit:

evA,B : (A→ B)⊗ A→ B

We now give some examples of Freyd categories that model some kind of com-

putational effect: global state, tracing and continuations. It is possible to model

many other kinds of computational effect with Freyd categories: see [BHM02] for

other examples in terms of strong monads such as non-determinism and interac-

tive input/output, also Moggi [Mog89b] and Stark [Sta94] give a strong monad

for dynamic allocation. By Theorem 5.2.17, these strong monad examples can be

translated into Freyd category examples.

5.1. Computational Effects 131

Example 5.1.5 (Global State) Pick an object S of a symmetric monoidal

category C. Define K(A,B) = C(A ⊗ S,B ⊗ S) and define J as identity on

objects and Jf = f ⊗ S on arrows. Composition in K is just composition in C.

Define (for f : A→ A′ and c : B → B′ in K):

f < c = α; f ⊗ c;α−1 c= f = σ ⊗ S;α; f ⊗ c;α−1;σ−1 ⊗ S

It is easy to check that this defines a Freyd category.

This Freyd category is closed when C is closed. A choice for the closure functor

is given by:

A→ B = (A⊗ S) ((B ⊗ S)

The isomorphism of homsets is derived directly from the chosen closure on C.

By construing the object S as representing possible states, we can see how

this example models global state. Pure value-only computations are modelled in

C, while arrows in K have a “hidden” state component. The functor J embeds

the value-only computations of C into K by pairing them with the identity state

arrow. The two functors < and = provide a way of lifting a computation up to

a larger context.

When C is Set, we can define store and lookup operations suitable for mod-

elling a simple imperative language. Choose some set L of locations and a set V

of values. Set S = V L and define:

store = ((l, v), s) 7→ (∗, s[l 7→ v]) ∈ K(L× V, 1)

lookup = (l, s) 7→ (s(l), s) ∈ K(L, V)

where s[l 7→ v] is the function that maps l to v and every other l′ to s(l′).

Example 5.1.6 (Tracing) Given a monoid (M, e, ·) we can define a Freyd cat-

egory J : Set → K where K(A,B) = Set(A,B ×M) and J(f) = a 7→ (f(a), e).

Composition in K is defined using the monoid operation · and premonoidal struc-

ture is defined using the finite product structure of Set. For every element m of

the monoid (M, e, ·) we have an arrow writem : 1 → 1 in K defined as ∗ 7→ (∗,m).

This Freyd category can be used to model programs that emit tracing information,

where the information is defined as the elements of the monoid and concatenation

is the monoid operation.

132 Chapter 5. Typed Computational Effects

Example 5.1.7 (Continuations) Given a cartesian closed category C with a

chosen object R, the structure of a Freyd category can be used to interpret the

order-sensitive aspect of continuations. Continuations abstract the concept of

“the next step” of a computation and first class continuations allow the program-

mer to manipulate the flow control of the program. They have been used to

provide denotational semantics of control flow features such as jumps and also

as a programming language feature in their own right. See [Rey93] for a history

of continuations and [SF89] for examples of the use of first-class continuations

in programming. The languages Scheme [CKR98] and SML/NJ (see [HDM93])

have first-class continuations.

Define K(A,B) = C(RB, RA) for a chosen object R of C, with the identity-on-

objects functor J defined as Jf = Rf . The functor < is defined as (for f : A→ A′

in C and c : B → B′ in K):

f < g = λkx.g(λb.k(f(π1x), b))(π2x)

in the internal language of C. The functor = is defined similarly. It is easy to

check that this defines a Freyd category.

Since C is closed, this Freyd category is closed. A choice for the right adjoint

is:

A→ B = RB ⇒ RA

using ⇒ and −− both to stand for the exponential functor of C. The isomorphism

of homsets is defined using the adjunction for the cartesian closure of C.

The interpretation of a programming language in this Freyd category essen-

tially does a Continuation Passing Style transform [Plo75]. This transformation

makes the current continuation available and we can use it to implement first-class

continuations.

Write cont(A) for RA, the object used to interpret the type of A continuations.

Define two operators, using the internal language of C:

call/cc : K(Γ× cont(A), A) → K(Γ, A)

call/cc = f 7→ λk.λe.fk(e, k)

5.1. Computational Effects 133

and

throwB : K(Γ, cont(A))×K(Γ, A) → K(Γ, B)

throwB = (f, g) 7→ λk.λe.g(λa.f(λk′.k′a)e)e

The call/cc operator captures the current continuation (the argument k) and

passes it to the program. A continuation may be used via the throwB opera-

tion, which discards the current continuation (hence the arbitrary return type

interpreted by B) and passes control to the provided continuation.

Thielecke [Thi97] directly defines the structure required for interpreting lan-

guages with first-class continuations by starting with the definition of a Freyd

category and adding a self-adjoint functor ¬ for interpreting continuation types.

His method has the advantage of not explicitly stating the semantics in terms of

continuation passing style. See also Selinger’s control categories [Sel01].

5.1.1.1 Power and Robinson’s Definition

In this subsection we describe Power, Robinson and Thielecke’s definition of Freyd

category [PR97, PT99]. They build up the definition in parts, concentrating on

the non-bifunctorality of the A⊗B operation on objects.

Definition 5.1.8 Binoidal structure on a category K consists of, for every ob-

ject A ∈ ObK, a pair of functors:

A<− : K → K −=A : K → K

such that A<B = A=B.

For binoidal structure (<,=), we will write the object given by A<B = A=B

as A⊗B.

Definition 5.1.9 An arrow f : A→ A′ of a category K with binoidal structure

is central if, for all arrows g : B → B′, f = B;A′ < g = A< g; f = B′. A central

natural transformation is a natural transformation with all components central.

134 Chapter 5. Typed Computational Effects

Definition 5.1.10 Symmetric Premonoidal Structure consists of a category K,

binoidal structure (<,=), an object I and four central natural isomorphisms:

αABC : (A⊗B)⊗ C → A⊗ (B ⊗ C) λA : I ⊗ A→ A ρA : A⊗ I → A

σAB : A⊗B → B ⊗ A

Naturality in this case means natural in all the possible combinations of functors

making up the objects. For example, σ is natural for the pairs of functors:

A<− → −= A −=B → B <−

As with symmetric monoidal structure and our definition of Freyd categories

above, we refer to the tuple (K,<,=, I, α, λ, ρ, σ) that satisfies Definition 5.1.10

as a symmetric premonoidal category. We will often omit everything except the

K to save space and leave the other parts of the structure as implicit.

Definition 5.1.11 A strict symmetric premonoidal functor F : C → K between

two symmetric premonoidal categories is a functor F that strictly preserves all

premonoidal structure and sends central arrows to central arrows.

Definition 5.1.12 A Freyd category is a pair of symmetric premonoidal cate-

gories C, K, where the symmetric premonoidal structure on C is given by symmet-

ric monoidal structure, and an identity-on-objects strict symmetric premonoidal

functor J : C → K.

Definition 5.1.13 A Freyd category J : C → K is closed if, for all objects

A ∈ ObC, the functor J(−× A) has a specified right adjoint.

Theorem 5.1.14 There is a bijective mapping between our Freyd category def-

inition and that of Power, Robinson and Thielecke. This bijection extends to

closed Freyd categories.

Proof The first part is a special case of the upcoming Theorem 5.3.7. For the

second part, observe that, given the definitions in the proof of that theorem, the

two definitions of closure are identical. �

5.1. Computational Effects 135

5.1.2 Strong Monads

Moggi used strong monads to provide a categorical semantics for his Computa-

tional λ-calculus, λC , [Mog89a]. The computational λ-calculus is intended to be

used as a meta-language for programming language semantics; the syntax of the

language under study is translated into λC , with some extra constants, and the

interpretation of λC in terms of strong monads provides a categorical interpreta-

tion of the original language. The distinguishing features of the source language,

such as state, input-output, continuations or dynamic allocation, are modelled

by choosing an appropriate monad. The point of using strong monads is that

all these examples have a common requirement of the separation of values and

commands and sequencing, and this is provided by strong monads.

As in the previous subsection, let (C,⊗, I, α, λ, ρ, σ) be a symmetric monoidal

category.

Definition 5.1.15 A monad on C consists of an endofunctor T : C → C, and two

natural transformations: the unit η : Id⇒ T and the multiplication µ : T 2 ⇒ T .

These must obey the diagrams:

TA T (TA) TA

TA

//TηA

��?
??

??
??

??
??

??
?

idTA

���
� �
� �
� �
� �
�

µA

oo ηTA

����
��

��
��

��
��

��

idTA

T (T (TA)) T (TA)

T (TA) TA

//µTA

��

TµA

��

µA

//µA

Given a monad (T, η, µ), Moggi interprets programs in a call-by-value pro-

gramming language as arrows A → TB. The definition of a Kleisli category

forms a category of these arrows.

Definition 5.1.16 Given a monad (T, η, µ) on C, the Kleisli category CT has:

Objects Objects of C;

Arrows A→ B Arrows A→ TB of C

Identities are defined as ηA ∈ C(A, TA) = CT (A,A) and composition of f : A→ B

and g : B → C is defined as f ;Tg;µC ∈ C(A, TC) = CT (A,C).

136 Chapter 5. Typed Computational Effects

There is an identity-on-objects functor JT : C → CT defined as JTf = f ; ηB on

arrows. When constructing the equivalence with (parameterised) Freyd categories

in Section 5.2.3, the Kleisli category will play the role of the category K in the

definition of a Freyd category.

In order to correctly model typing contexts, the monad structure must in-

teract with the symmetric monoidal structure of C. This interaction is provided

by a strength natural transformation. Moggi [Mog91] provides several other for-

mulations of strength for a monad in terms of functor categories and enriched

categories which serve to motivate the definition, but here we just use the formu-

lation in terms of a natural transformation. The definition of strength for monads

is originally due to Kock [Koc72].

Definition 5.1.17 Given a monad (T, η, µ), a strength is a natural transforma-

tion τA,B : A⊗ TB → T (A⊗B) that obeys the following diagrams:

I ⊗ TA T (I ⊗ A)

TA

//τ

$$JJJJJJJJJJJJJJ

λ

��

Tλ

(A⊗B)⊗ TC T ((A⊗B)⊗ C)

A⊗ (B ⊗ TC)

A⊗ T (B ⊗ C) T (A⊗ (B ⊗ C))

//τ

���
� �
� �
� �
�

α

���
� �
� �
� �
� �
� �
� �
� �
� �
� �
�

Tα

���
� �
� �
� �
�

A⊗τ

//τ

A⊗B

A⊗ TB T (A⊗B)
��

A⊗ηB

$$JJJJJJJJJJJJJJ

ηA⊗B

//τ

A⊗ T (TB) T (A⊗ TB)

A⊗ TB T (T (A⊗B))

T (A⊗B)

��

A⊗µB

//
τA,TB

��

Tτ

$$JJJJJJJJJJJJJJJJJ

τ

��

µA⊗B

Using the strength part of a strong monad we can define premonoidal structure

on the Kleisli category. Given a strong monad (T, η, µ, τ), define functors (for

5.1. Computational Effects 137

f : A→ A′ in C and c : B → B′ in CT):

f <T c = f ⊗ c; τA′,B′ c=T f = c⊗ f ;σ; τ ;Tσ

On objects they are both equal to ⊗. This definition, generalised to parame-

terised strong monads, will lead to the equivalence between parameterised Freyd

categories and parameterised strong monads in Section 5.2.3.

In order to interpret function types we use the definition of Kleisli exponential.

We use the premonoidal structure just defined.

Definition 5.1.18 A symmetric monoidal category C with a strong monad

(T, η, µ, τ) has Kleisli Exponentials if, for each object B, the functor − <T B :

C → CT has a specified right adjoint.

As for closed Freyd categories, we use B → − for the chosen right adjoint and

the following symbols for the natural isomorphism of homsets and the counit:

Λ : CT (A⊗B,C) ∼= C(A,B → C) evA,B : (A→ B)⊗ A→ B

We now give some examples of strong monads, matching the examples of

Freyd categories in Section 5.1.1. By the upcoming Theorem 5.2.17 we know

that this can be done for all closed Freyd categories, but we spell out the details

here to demonstrate the interpretation of computational effects in terms of strong

monads. As noted above, there are many other examples of strong monads which

model computational effects [BHM02, Mog89b, Mog91].

Example 5.1.19 (Global State) The global state Freyd category in Example

5.1.5 can be expressed as a strong monad, as long as the symmetric monoidal

category C is closed. Choose an object S of C and define TA = S ((A ⊗ S)

with unit, multiplication and strength:

ηA = Λ(idA⊗S) µA = S (evS,(A⊗S) τA,B = Λ(A⊗ evS,(B⊗S);α
−1)

where Λ is the isomorphism of homsets for the closed structure and ev is the

evaluation natural transformation. Since C is already assumed to be closed this

monad has Kleisli exponentials. The operations store and lookup can be defined

as for the Freyd category example.

138 Chapter 5. Typed Computational Effects

Example 5.1.20 (Tracing) Example 5.1.6 can also be expressed as a strong

monad. Given a monoid (M, e, ·), define T (X) = X ×M and ηA = a 7→ (a, e)

and µA = ((a,m1),m2) 7→ (a,m1 ·m2) and τA,B = (a, (b,m)) 7→ ((a, b),m).

Example 5.1.21 (Continuations) Finally, the continuations Freyd category

(Example 5.1.7) can also be expressed as a strong monad. Given a cartesian closed

category C, choose an object R and define TA = R(RA) with unit, multiplication

and strength (using the internal language of C):

ηA = λa.λk.ka µA = λf.λk.f(λk′.k′k) τA,B = λ(a, f).λk.f(λb.k(a, b))

The call-with-current-continuation and throw operators may be defined as oper-

ators on the Kleisli category in a similar way to the ones for the Freyd category.

5.2 Typed Computational Effects

5.2.1 Parameterised Freyd Categories

As described in Section 1.3.1, we extend Freyd categories J : C → K by adding

a start and end object to each arrow of the category K, this is used to interpret

computations from some start state type to some final state type. State types are

interpreted in a category S. At this point we do not require any extra conditions

on this category. Typing contexts and result types are still modelled in C, so

symmetric monoidal structure is required to model them, and premonoidal struc-

ture is required to model the lifting of a computation (interpreted as an arrow

in K) to a larger context. The functor J is now an identity-on-objects functor

C × S → K.

Our alternative definition of Freyd category is easier to extend to this new

situation than Power, Robinson and Thielecke’s definition because it is no longer

possible to define premonoidal structure directly on K and have J preserve it.

We must take into account the way that C and S are incorporated into K by J .

Let (C,⊗, I, α, λ, ρ, σ) be a symmetric monoidal category and let S be a cat-

egory.

5.2. Typed Computational Effects 139

Definition 5.2.1 Parameterised Freyd structure on C,S with respect to C con-

sists of a category K and three functors:

J : C × S → K < : C × K → K = : K × C → K

Such that:

1. J is identity-on-objects;

2. The monoidal structure of C is respected: A < J(B,X) = J(A,X) = B =

J(A⊗B,X) and f < J(g, w) = J(f, w) = g = J(f ⊗ g, w);

3. The family of arrows J(αABC , idS) must be natural in the following pairs

of functors:

(−1 =−2) =−3 → −1 = (−2 ⊗−3) (−1 <−2) =−3 → −1 < (−2 =−3)

(−1 ⊗−2) <−3 → −1 < (−2 <−3)

The family of arrows J(σAB, idS) must be natural for the following pairs of

functors:

−1 =−2 → −2 <−1 −1 <−2 → −2 =−1

The family of arrows J(λA, idX) must be natural in the pair of functors

−= I → −, and similarly for the right identity natural transformation, ρ.

As before, we term a tuple (C,S,K, J,<,=) a parameterised Freyd category

when it satisfies this definition. We will often just refer to a functor J : C×S → K
as a parameterised Freyd category and leave the rest of the structure implicit. The

definition of Freyd category (Definition 5.1.1) is a special case of this definition

when S = 1.

When verifying naturality of the structure transformations it is only necessary

to check that it holds for the K position. The naturality in the C arrows follows

automatically from the naturality of α in C:

(α, id); c= (f ⊗ g)

= (α, id); id= (f ⊗ g); c= id

140 Chapter 5. Typed Computational Effects

= (α, id); (id, id) = (f ⊗ g); c= id

= (α, id); (id⊗ (f ⊗ g), id); c= id

= ((id⊗ f)⊗ g, id); (α, id); c= id

Hence, if (α, id) is natural in the K argument it is natural in all arguments. A

similar argument applies to the other naturality conditions for associativity and

the other structure transformations.

Definition 5.2.2 A parameterised Freyd category J : C × S → K is closed if,

for all (B, S1) ∈ ObK, the functor −< (B, S1) : C → K has a right adjoint.

We will use (B, S1) → − for the chosen right adjoint. As for closed Freyd

categories and Kleisli exponentials, we use the following symbols for the natural

isomorphism of homsets and the counit:

Λ : K((A⊗B, S1), (C, S2)) ∼= C(A, (B, S1) → (C, S2))

evA,B,S1,S2 : ((A, S1) → (B, S2)⊗ A, S1) → (B, S2)

Example 5.2.3 (Pair Categories) For any two categories C and S, set K =

C × S and J to be the identity functor. If C has symmetric monoidal structure

then J is a parameterised Freyd category with f < (g, s) = (f ⊗ g, s).

The rest of our examples all generalise the examples given for Freyd categories

to take advantage of the parameterisation.

Example 5.2.4 (Typed Global State) We extend Example 5.1.5. For any

category C with symmetric monoidal structure (⊗, I, α, λ, ρ, σ) and a category S
with a functor ·̂ : S → C, define the category K as having objects: pairs of objects

of C and S; and homsets K((A, S1), (B, S2)) = C(A⊗ Ŝ1, B⊗ Ŝ2). Composition is

carried over from C and identities are given by the obvious pair of identity arrows.

Define J : C ×S → K as the identity on objects and as (f, s) 7→ f ⊗ ŝ on arrows.

Define (for f : A1 → A2 and c : (B1, S1) → (B2, S2)):

f < c = α; f ⊗ c;α−1 c= f = σ ⊗ Ŝ1;α; f ⊗ c;α−1;σ ⊗ Ŝ2

5.2. Typed Computational Effects 141

It is easy to check that these definitions satisfy the properties required in Defini-

tion 5.2.1.

When the symmetric monoidal structure of C is closed then this Freyd category

is closed. A choice for the functor is given by:

(A, S1) → (B, S2) = (A⊗ Ŝ1) ((B ⊗ Ŝ2)

the isomorphism of homsets is defined using the closed structure of C.

Given these definitions we can define typed storage and retrieval operations.

Assume that the symmetric monoidal structure on C is actually given by finite

products and that S has a terminal object I preserved by ·̂ and define:

storeS : (Ŝ, I) → (1, S)

storeS = Ŝ × 1
〈π2,π1〉−→ 1× Ŝ

retrieveS : (1, S) → (Ŝ, S)

retrieveS = 1× Ŝ
〈π2,π2〉−→ Ŝ × Ŝ

We will show in Appendix B that the parameterised monad corresponding to

this parameterised Freyd category (Example 5.2.11) arises as the parameterised

monad for the category of algebras with these operations obeying some axioms.

Example 5.2.5 (Category Actions) This example generalises Example 5.1.6

from monoids to categories. Take the category C to be Set. For any category

S with small homsets, define K as having objects: pairs of sets and objects of

S; and homsets: K((A, S1), (B, S2)) = Set(A,S(S1, S2) × B). Composition is

defined as:

A
c1−→ S(S1, S2)×B

id×c2−→ S(S1, S2)× S(S2, S3)× C
comp×id−→ S(S1, S3)× C

where comp is composition in S. Set J(f, s) = 〈!; ŝ, f〉, where ŝ : 1 → S(S1, S2)

is the function picking out the element s and ! is the unique map to the single

element set. For f : (A1, S1) → (A2, S2) and a : B1 → B2, define a < f =

a× f ; 〈π2, 〈π1, π3〉〉 and similarly for f = a.

142 Chapter 5. Typed Computational Effects

As an application of this consider the category StkPrg of very simple stack

machine programs: objects are natural numbers denoting stack depths and the

arrows are generated from the following rules:

0
[]−→ 0

i integer

0
[push.i]−→ 1 2

[add]−→ 1 1
[dup]−→ 2

a
[
−→c1]−→ b b

[
−→c2]−→ c

a
[
−→c1 ,
−→c2]−→ c

a
[
−→c]−→ b

a+ n
[
−→c]−→ a+ n

Composition of [−→c1] : a → b and [−→c2] : b → c is defined as [−→c1 ,−→c2], which is an

arrow by these rules.

Taking J : Set × |StkPrg| → K as defined above, where |StkPrg| is the

discrete category with natural numbers as objects, we can define the following

arrows in K:

pushn : (Z, n) → (1, n+ 1) = i 7→ (∗, [push.i])

addn : (1, n+ 2) → (1, n) = ∗ 7→ (∗, [add])

dupn : (1, n+ 1) → (1, n+ 2) = ∗ 7→ (∗, [dup])

where Z is the usual set of integers.

Thus, arrows in K model programs that construct stack machine programs

that do not have the possibility of stack under- or over-flow at runtime and they

do this parameterised by a “value” context. One can also envisage more complex

examples involving typed stacks and the generation of programs with (backwards)

jumps.

Since Set is cartesian closed this parameterised Freyd category is closed. A

choice for the closure functor is:

(A, S1) → (B, S2) = A⇒ (B × S(S1, S2))

where ⇒ is the set-theoretic function space. The isomorphism of homsets is

directly derived from the cartesian closure of Set.

5.2. Typed Computational Effects 143

Example 5.2.6 (Composable Continuations) Parameterised Freyd categories

provide a way to interpret Danvy and Filinski’s composable continuations [DF89].

Composable continuations provide access to evaluation contexts smaller than the

whole program, delimited at runtime by the “reset” operator. The current con-

text is made available to the program by the “shift” operator. In contrast, the

“call with current continuation” operator described in Example 5.1.7 only allows

the entire program to be treated as the current context. The following is inspired

by Wadler’s attempt to express composable continuations in terms of monads

[Wad94].

Given a symmetric monoidal closed category C, define K to have objects pairs

of objects of C and K((A1, A2), (B1, B2)) = C(B1 (B2, A1 (A2). Composition

in K is reverse composition in C. Define the functor J : C × |C| → K to be

J(f, A) = f (A, where |C| is the discrete subcategory of C.

For f : C → C ′ and g : (A1, A2) → (B1, B2) define

f < g = λkx.let (x1, x2) = x in g(λb.k(fx1, b))x2

in the internal language of C.

In terms of the type system given by Danvy and Filinski in [DF89], a judge-

ment ρ, α ` E : τ, β is interpreted as an arrow (JρK, JβK) → (JτK, JαK). The reset

operator is interpreted as a function of homsets of K:

reset : K((A,B), (X,X)) → K((A, Y), (B, Y))

reset = f 7→ λka.k(f(λx.x)a)

Thus reset calls f with the empty context, represented by the identity function,

and its input a; feeding the output to the current continuation.

The functor J is value-closed since C is closed. A choice for the right adjoint

is:

(A1, A2) → (B1, B2) = (B1 (B2) ((A1 (A2)

The isomorphism of homsets is directly definable from the closed structure of C.

With closure we can define the shift operator to complement the reset oper-

ator.

shift : K((E × (T,D) → (A,D), B), (X,X)) → K((E,B), (T,A))

144 Chapter 5. Typed Computational Effects

shift = f 7→ λke.f(λx.x)(e, λk′t.k′(kt))

See [DF89] and [Wad94] for examples of the use of shift and reset . This example

needs much more work to establish the precise categorical properties of shift

and reset , and to potentially axiomatise it without reference to an underlying

continuation passing interpretation, following the lead set by Thielecke [Thi97].

5.2.2 Strong Parameterised Monads

This subsection extends the definition of a strong monad to that of a strong

parameterised monad, where the parameterisation is over an arbitrary category S.

Strong parameterised monads, with the appropriate notion of Kleisli exponential,

will be shown to be equivalent to closed parameterised Freyd categories in the

next section.

As in the previous subsection, let (C,⊗, I, α, λ, ρ, σ) be a symmetric monoidal

category and let S be a category.

Definition 5.2.7 An S-parameterised monad on C is a triple (T, η, µ), consist-

ing of a functor T : Sop × S × C → C; a family of arrows ηS,A : A → T (S, S,A),

for each A ∈ ObC and S ∈ ObS, natural in A and dinatural in S; and a family of

arrows µS1,S2,S3,A : T (S1, S2, T (S2, S3, A)) → T (S1, S3, A), for each A ∈ ObC and

S1, S2, S3 ∈ ObS, natural in S1, S3 and A and dinatural in S2. These transforma-

tions must obey the following commuting diagrams:

T (S1, S2, T (S2, S3, T (S3, S4,−))) T (S1, S2, T (S2, S4,−))

T (S1, S3, T (S3, S4,−)) T (S1, S4)

//
T (S1,S2,µS2,S3,S4

)

���
� �
� �
� �
�

µS1,S2,S3,T (S3,S4,−)

���
� �
� �
� �
�

µS1,S2,S4

//
µS1,S3,S4

T (S1, S2,−) T (S1, S1, T (S1, S2,−))

T (S1, S2, T (S2, S2,−)) T (S1, S2,−)
''OOOOOOOOOOOOOOOOOOO

id

//
ηS1,T (S1,S2,−)

���
� �
� �
� �
� �

T (S1,S2,ηS2
)

���
� �
� �
� �
� �

µS1,S1,S2

//
µS1,S2,S2

5.2. Typed Computational Effects 145

In Appendix B we will justify the name “parameterised monad” by relating

this definition to adjunctions with parameters.

Analogously to the case for parameterised Freyd structure, when S is the one

object, one arrow category this definition is obviously equivalent to the standard

definition of a monad. We now extend the definition of Kleisli category (Definition

5.1.16) to parameterised monads.

Definition 5.2.8 Given an S-parameterised monad (T, η, µ) on C, define the

Kleisli category CT as:

Objects Pairs of objects of C and S;

Arrows CT ((A, S1), (B, S2)) = C(A, T (S1, S2, B)).

where identities are given by ηA,S : A → T (S, S,A) and composition of f :

(A, S1) → (B, S2) and g : (B, S2) → (C, S3) is given by f ;T (S1, S2, g);µS1,S2,S3,B.

The proof that this definition defines a category is almost identical to the

standard one [Mac98] §VI.5; the extra parameterisation plays almost no role.

There is also a functor JT : C × S → CT which is identity on objects and sends

arrows (f : A→ B, s : S1 → S2) to ηS1,A;T (S1, s, f). The proof that this defines

a functor is by simple calculation.

The notion of strength generalises easily to parameterised monads:

Definition 5.2.9 Given an S-parameterised monad (T, η, µ), a strength is a

natural transformation τA,S1,S2,B : A ⊗ T (S1, S2, B) → T (S1, S2, A ⊗ B) that

obeys the following commuting diagrams:

I ⊗ T (S1, S2, A) T (S1, S2, I ⊗ A)

T (S1, S2, A)

//τ

''OOOOOOOOOOOOOOOOOO

λ

���
� �
� �
� �
�

T (S1,S2,λ)

146 Chapter 5. Typed Computational Effects

(A⊗B)⊗ T (S1, S2, C) T (S1, S2, (A⊗B)⊗ C)

A⊗ (B ⊗ T (S1, S2, C))

A⊗ T (S1, S2, B ⊗ C) T (S1, S2, A⊗ (B ⊗ C))

//τ

���
� �
� �
� �

α

���
� �
� �
� �
� �
� �
� �
� �
� �

T (S1,S2,α)

���
� �
� �
� �

A⊗τ

//τ

A⊗B

A⊗ T (S, S,B) T (S, S,A⊗B)
���
� �
� �
� �
�

A⊗ηS

''OOOOOOOOOOOOOOOOO

ηS

//τ

A⊗ T (S1, S2, T (S2, S3, B)) T (S1, S2, A⊗ T (S2, S3, B))

A⊗ T (S1, S3, B) T (S1, S2, T (S2, S3, A⊗B))

T (S1, S3, A⊗B)

���
� �
� �
� �
�

A⊗µS1,S2,S3

//τ

���
� �
� �
� �
�

T (S1,S2,τ)

**TTTTTTTTTTTTTTTTTTTTTTTT

τ

���
� �
� �
� �
�

µS1,S2,S3

As with non-parameterised strong monads we can define premonoidal struc-

ture on the Kleisli category using the strength. Given a parameterised strong

monad (T, η, µ, τ), define functors (for f : A→ A′ in C and c : (B, S1) → (B′, S2)

in CT):

f <T c = f ⊗ c; τA′,S1,S2,B′

c=T f = c⊗ f ;σT (S1,S2,B′),A′ ; τA′,S1,S2,B′ ;T (S1, S2, σA′,B′)

On objects they are both equal to ⊗. The definition is part of the equivalence

between parameterised Freyd categories and parameterised strong monads de-

scribed in Section 5.2.3.

In order to interpret function types we extend the definition of Kleisli expo-

nentials to parameterised strong monads and their Kleisli categories. We use the

premonoidal functors just defined.

5.2. Typed Computational Effects 147

Definition 5.2.10 A symmetric monoidal category C with a strong monad

(T, η, µ, τ) has Kleisli exponentials when, for all objects (B, S1) ∈ ObCT , the

functor −<T (B, S1) : C → CT has a specified right adjoint.

We will use the notation (B, S1) → − for the given right adjoint. As above,

we will use the following symbols for the isomorphism of homsets and the counit:

Λ : CT (A⊗B, S1), (C, S2)) ∼= C(A, (B, S1) → (C, S2))

evA,S1,B,S2 : ((A, S1) → (B, S2)⊗ A, S1) → (B, S2)

In the remainder of this section we show how some of the examples of param-

eterised Freyd categories can also be expressed as strong parameterised monads.

Example 5.2.3, pair categories, is not expressible because it is not closed. All

of the other examples are instances of the general Theorem 5.2.17, proven in

the next subsection, relating parameterised Freyd categories and strong parame-

terised monads.

Example 5.2.11 (Typed Global State) Example 5.2.4 can be expressed as a

strong parameterised monad when the category C is closed. Let C be a symmetric

monoidal closed category and S an arbitrary category with a functor ·̂ : S → C.

Define T : Sop × S × C → C as T (S1, S2, A) = S1 ((S2 ⊗ A), where (is

the closure functor of C. Monad unit, multiplication and strength are all defined

in the obvious way from the structure of C. A choice for Kleisli exponentials is

given by A (S1 ((S2 ⊗ B). The typed store and retrieve operations given

in Example 5.2.4 can also be expressed as arrows in the Kleisli category of this

monad.

We also show in Appendix B that this monad also arises as the composite of

an adjoint pair of functors between a cartesian closed category C and a category

of typed global state algebras.

Example 5.2.12 (Category Actions) Example 5.2.5 can also be expressed as

a parameterised monad. As before, let C be Set and S be any category with small

homsets. Define the functor part of a monad as T (S1, S2, A) = A × S(S1, S2).

The unit and multiplication of the monad are defined using the identities and

148 Chapter 5. Typed Computational Effects

composition of S respectively. Strength is defined using associativity. A choice

for Kleisli exponentials is given by (A, S1) → (B, S2) = A ⇒ (B × S(S1, S2)),

using the cartesian closed structure of Set.

Example 5.2.13 (Composable Continuations) Example 5.2.6 is also express-

ible as a parameterised monad, via currying. Given a symmetric monoidal closed

category C, define the functor part of the monad T : |C|op × |C| × C → C as

T (R1, R2, A) = (A (R1) (R2, where |C| is the discrete subcategory of C and

(is the functor for the closed structure of C. Monad unit, multiplication and

strength are defined as (using the internal language of C):

ηS,A = λa.λk.ka µS1,S2,S3,A = λf.λk.f(λk′.k′k)

τA,S1,S2,B = λ(a, f).λk.f(λb.k(a, b))

Note that these are all the same as the definitions for the normal continuations

monad 5.1.21, but with more variation in the types. The shift and reset operations

of Example 5.2.6 can also be given as operators on the Kleisli category of this

monad. Kleisli exponentials can be given by using the closure C.

5.2.3 Equivalence

The aim of this subsection is to prove that the definitions of strong parameterised

monad with Kleisli exponentials and closed Freyd structure on a given C and S are

equivalent up to isomorphism. We do this by constructing a category of each and

proving that the categories are equivalent. As a special case when S = 1 this will

prove that closed Freyd structure and strong monads with Kleisli exponentials

are also equivalent up to isomorphism.

As in the previous two subsections, let (C,⊗, I, α, λ, ρ, σ) be a symmetric

monoidal category and let S be a category.

Definition 5.2.14 The category CPF(C,S) is defined as:

Objects Closed parameterised Freyd structure on C, S with respect to C;

5.2. Typed Computational Effects 149

Arrows An arrow f : (K1, J1,<1,=1,→1,Λ1) → (K2, J2,<2,=2,→2,Λ2) is a

functor f : K1 → K2 that commutes with the structure:

J1; f = J2 Id× f ; <2 = <1; f f × Id; =2 = =2; f

Identities are identity functors and composition is functor composition.

Note that this definition implies that all the functors underlying arrows in

CSF(C,S) are identity on objects.

Definition 5.2.15 The category CSPM(C,S) is defined as:

Objects Strong S-parameterised monads on C with Kleisli exponentials;

Arrows An arrow f : (T1, η1, µ1, τ1,→1,Λ1) → (T2, η2, µ2, τ2,→2,Λ2) is a natural

transformation f : T1 ⇒ T2 : Sop × S × C → C which must commute with

all the structure of the monad:

A T1(S, S,A)

T2(S, S,A)

//
η1,S,A

��?
??

??
??

??
??

??
??

η2,S,A

���
� �
� �
� �
� �
� �

fS,S,A

A⊗ T1(S1, S2, B) T (S1, S2, A⊗B)

A⊗ T2(S1, S2, B) T2(S1, S2, A⊗B)

//
τ1,A,S1,S2,B

��
A⊗fS1,S2,B

��
fS1,S2,A⊗B

//
τ2,A,S1,S2,B

T1(S1, S2, T1(S2, S3, A)) T1(S1, S3, A)

T2(S1, S2, T2(S2, S3, A)) T2(S1, S3, A)

//
µ1,S1,S2,S3,A

��

fS1,S2,T1(S2,S3,A);T2(S1,S2,fS2,S3,A)

��

fS1,S3,A

//
µ2,S1,S2,S3,A

Identities are identity natural transformations and composition is by com-

position of natural transformations.

We must show that these two definitions actually define categories. In par-

ticular, that the given identities are really arrows of the category, and that the

given composition is similarly well-defined.

Proposition 5.2.16 Definitions 5.2.14 and 5.2.15 define categories.

150 Chapter 5. Typed Computational Effects

Proof Identity functors trivially satisfy the requirements of arrows of CPF(C,S);

the three equations are trivially satisfied. Composed arrows are also well-defined:

J1; f ; g = J2; g = J3 Id× (f ; g); <3 = Id× f ; <2; g = <1; f ; g

(f ; g)× Id; =3 = f × Id; =2; g = =2; f ; g

where each sequence of equations follows from the corresponding equations for

the arrows f and g. For CSPM(C,S), it is immediate that identity natural

transformations are the identity arrows. The composition of two arrows also

obeys the three diagrams:

η1; f ; g = η2; g = η3 τ1; f ; g = A⊗ f ; τ2; g = A⊗ f ;A⊗ g; τ3

µ1; f ; g = T1f ; f ;µ2; g = T1f ; f ;T2g; g;µ3 = T1(f ; g); f ; g;µS

where each sequence of equations follows from the corresponding equations for

the arrows f and g and, in the case of µ, by naturality of these arrows. In both

cases, the fact that composition respects identities and is associative follows from

standard facts about functors and natural transformations. �

We now show that our two categories are equivalent and, as a special case,

that the non-parameterised definitions of Section 5.1 are equivalent. The bulk

of the proof, which is comprised of tedious checking of the requirements of the

definitions, is relegated to the appendix, in Section A.1.

Theorem 5.2.17 The categories CPF(C,S) and CSPM(C,S) are equivalent.

Proof We define a functor F : CSPM(C,S) → CPF(C,S) and show that it

is an equivalence. The functor F is defined as:

(T, η, µ, τ,− → −,Λ)) 7→ (CT , JT ,<T ,=T ,− → −,Λ)

f : T1 ⇒ T2 7→ (g : (A, S1) → (B, S2)) 7→ g; fS1,S2,B

where the functor Ff is necessarily always identity on objects. See Section A.1.1

for the proof that this definition is well-defined.

This functor is full and faithful. For every arrow f : F (T1) → F (T2) of

CPF(C,S), define F−1f : T1 ⇒ T2 as f(idT1(S1,S2,A)) (treating f as a function

5.3. Monoidal Typed Computational Effects 151

C(A, T1(S1, S2, B)) → C(A, T2(S1, S2, B))). See Section A.1.2 for a proof that this

is indeed an inverse operation on arrows.

This functor is also essentially surjective. Given an objectX = (K, J,<,=,− →
−,Λ) in CPF(C,S), define an object Y = (TX , ηX , µX , τX ,− →X −,ΛX) as:

TX(S1, S2, A) = (I, S1) → (A, S2)

ηX
S,A = Λ(ρA, S)

µX
S1,S2,S3,A = Λ(ev; J(ρ−1, S2); ev)

τX
A,S1,S2,B = Λ(J(α, S1);A< ev)

(A, S1) →X (B, S2) = (A, S1) → (B, S2)

(A, S1) →X f = (A, S1) → (J(ρ−1, S2); Λ−1(f))

ΛX(f) = Λ(J(ρ−1
A⊗B, S1); Λ−1(f))

where ev = Λ−1(id). See Section A.1.3 for a proof that this is an object of

CSPM(C,S) and that FY ∼= X.

Given that F is full and faithful and essentially surjective, it follows that F

is an equivalence, as required. �

5.3 Monoidal Typed Computational Effects

In this section we deal with extending the definitions in the previous section with

extra structure for embedding typed computations in larger state types. We prove

that these two definitions are equivalent in Section 5.3.3.

5.3.1 Double Parameterised Freyd categories

We extend the definition of parameterised Freyd category (Definition 5.2.1) to

allow computation in an state context by simply requiring premonoidal structure

with respect to S as well as with respect to C. The new definition is completely

symmetric in terms of C and S and it is only the definition of closure that distin-

guishes between them. We call the new definition Double Parameterised Freyd

structure.

152 Chapter 5. Typed Computational Effects

With two premonoidal structures we can define a single premonoidal structure

with respect to C×S. Using this, we show that double parameterised Freyd cate-

gories are equivalent to certain Power, Robinson and Thielecke Freyd categories,

as defined in Section 5.1.1.1.

Let (C,⊗, I, α, λ, ρ, σ) and (S,⊗, I, α, λ, ρ, σ) be symmetric monoidal cate-

gories. The two monoidal structures are distinct but we use the same notation

for both of them to maintain the connection with the definition of monoidal

structure. We hope that this does not cause too much confusion.

Definition 5.3.1 Double parameterised Freyd structure on C, S consists of a

category K and five functors:

J : C × S → K <C : C × K → K =C : K × C → K <S : S × K → K

=S : K × S → K

such that J is identity-on-objects and (J,<C,=C) and (J,<S ,=S) obey the obvi-

ous adaptations of the conditions of Definition 5.2.1.

As before, we shall refer to a tuple (C,S,K, J,<C,=C,<S ,=S), where C and

S are symmetric monoidal categories, as a double parameterised Freyd category.

We will often just abbreviate this to the functor part J : C × S → K and use the

notation in the definition for the premonoidal structure.

Example 5.3.2 Extending Example 5.2.3, Pair Categories, if S is symmetric

monoidal, then the identity functor Id : C×S → C×S can be given parameterised

symmetric premonoidal structure with respect to S in the obvious way.

Example 5.3.3 Example 5.2.4, Typed Global State, can be extended to have

parameterised symmetric premonoidal structure with respect to S when S has

symmetric monoidal structure and the functor ·̂ : S → C is strict symmetric

monoidal. Define:

s<S c = A⊗ (Ŝ1 ⊗ Ŝ2) ∼= Ŝ1 ⊗ (A⊗ Ŝ2)
s⊗c−→ Ŝ ′1 ⊗ (B ⊗ Ŝ ′2)

∼= B ⊗ (Ŝ ′1 ⊗ Ŝ ′2)

c=S s = A⊗ (Ŝ1 ⊗ Ŝ2) ∼= (A⊗ Ŝ1)⊗ Ŝ2
c⊗s−→ (B ⊗ Ŝ ′1)⊗ Ŝ ′2

∼= B ⊗ (Ŝ ′1 ⊗ Ŝ ′2)

5.3. Monoidal Typed Computational Effects 153

These operations allow us to lift stateful computations up to larger states; we

can take a computation that operates locally, taking a state S1 to a state S2, and

embed it into larger start and finish states S⊗S1 and S⊗S2. This is the basis of

the frame rule and localised reasoning in Separation Logic [Rey02]. In Chapter

7 we give a more sophisticated example of a model of type-localised state using

functor categories that captures the non-changing size of the heap as well.

Example 5.3.4 The Category Actions example, Example 5.2.5, can be given

parameterised symmetric premonoidal structure with respect to S when S is

symmetric monoidal. Define:

s<S c = A
〈!;ŝ,c〉−→ S(S ′1, S

′
2)× S(S1, S2)×B

⊗̂×B−→ S(S ′1 ⊗ S1, S
′
2 ⊗ S2)×B

c=S s = A
〈c,!;ŝ〉−→ S(S1, S2)×B × S(S ′1, S

′
2)

∼=;⊗̂×B−→ S(S1 ⊗ S ′1, S2 ⊗ S ′2)×B

Where ŝ is the arrow 1 → S(S ′1, S
′
2) picking out the arrow s, and ⊗̂ is the action

of the monoidal structure of S on arrows.

We now show that double parameterised Freyd categories are equivalent to

certain Power, Robinson and Thielecke’s Freyd categories (Section 5.1.1.1). We

will do this by defining premonoidal structure on K using the two sets of pre-

monoidal functors. Firstly, the two premonoidal structures on J commute:

Lemma 5.3.5 Given a double parameterised Freyd category J : C × S → K,

then the following equations hold for all s : S1 → S1, f : A1 → A2 and c :

(B1, S
′
1) → (B2, S

′
2).

s<S (f <C c) = f <C (s<S c) (c=C f) =S s = (c=S s) =C f

s<S (c=C f) = (s<S c) =C f f <C (c=S s) = (f <C c) =S s

Proof The first equation: s <S (f <C c) = (f ⊗ id, s ⊗ id); id <S (id <C c) =

f < (s< c). The second equation is similar.

The third equation, by the second equation and naturality:

s<S (c=C f)

= s<S (c=C f); (B2 ⊗ A2, σ;σ−1)

154 Chapter 5. Typed Computational Effects

= (B1 ⊗ A1, σ); (c=C f) =S s; (B2 ⊗ A2, σ
−1)

= (B1 ⊗ A1, σ); (c=S s) =C f ; (B2, σ
−1) = A2

= (B1 ⊗ A1, σ;σ−1); (s<S c) =C f

= (s<S c) =C f

The fourth equation is similar. �

With this we can unambiguously define parameterised symmetric premonoidal

structure with respect to C × S:

c< (f, s) = (c<C f) <S s (f, s) = c = f =C (s=S c)

It is easy to see that the structure transformations generated by the pairs of

structure natural transformations from C and S satisfy the required naturality

conditions.

Next, all arrows given by J are central in the sense of Definition 5.1.2. This

will allow us to establish that J is a strict symmetric premonoidal functor, and

hence part of the structure of a Power, Robinson, Thielecke Freyd category.

Lemma 5.3.6 Given a double parameterised Freyd category J : C × S → K,

all arrows of the form J(f, s) are central. That is, for all c : (B1, S
′
1) → (B2, S

′
2):

(A1, S1) < c; (f, s) = (B2, S
′
2) = (f, s) = (B1, S

′
1); (A2, S2) < c

Proof (A1, S1)<c; (f, s)=(B2, S
′
2) = (f, s)<c = (f, s)=(B1, S

′
1); (A2, S2)<c�

The next proposition shows that double parameterised Freyd categories are

equivalent to certain Power, Robinson, Thielecke Freyd categories. As a spe-

cial case, when S = 1, this proves Theorem 5.1.14 that our definition of Freyd

categories and the Power, Robinson, Thielecke definition are also equivalent.

Theorem 5.3.7 Given a double Freyd category J : C × S → K we can define

symmetric premonoidal structure of K, in the sense of Definition 5.1.10, such that

J is a strict premonoidal functor.

Conversely, given a symmetric premonoidal category K, in the sense of 5.1.10,

and a functor J : C×S → K which is strict symmetric premonoidal, we can define

5.3. Monoidal Typed Computational Effects 155

functors <C,=C,<S ,=S such that J : C×S → K is a double parameterised Freyd

category.

These two operations of definition are mutually inverse.

Proof Take the pointwise symmetric monoidal structure on C×S arising from

the structure on the two categories.

Binoidal structure on K is given by (A, S)<′f = A<(S<f) and f=′ (A, S) =

(f =A) = S. The natural isomorphisms for symmetric premonoidal structure on

K are given by the pairing of the morphisms of the symmetric monoidal structure

on C and S, via J . Their naturality follows from the required naturality of the

parameterised premonoidal structure and the commutativity properties of Lemma

5.3.5. By Lemma 5.3.6, every arrow of the form (f, s) in K is central. Hence

J preserves centrality and, by construction of the premonoidal structure in K,

strictly preserves premonoidal structure.

For the converse, define f <C c as the composite:

(A×B, S)
J(idA×B ,λ)−→ (A×B, I ⊗ S)

(A,I)<c−→ (A×B′, I ⊗ S ′)
J(f,idI)=(B′,S′)−→ (A′ ×B′, I ⊗ S ′)
(idA′×B′ ,λ

−1)
−→ (A′ ×B′, S ′)

The functor =C with respect to C is defined similarly. See the appendix, Section

A.2, for the proof that these definitions obey the requirements of a double pa-

rameterised Freyd category. Defining and verifying the symmetric premonoidal

structure (<S ,=S) with respect to S is almost identical.

That the two definitions are inverse can be easily seen by writing out the

definitions and comparing them. �

5.3.2 Monoidal Parameterised Monads

Extending parameterised monads to allow typed computations to be embedded in

larger state contexts is achieved by requiring two extra natural transformations on

the monad, adjoining extra state context to the left and right of the computation

156 Chapter 5. Typed Computational Effects

respectively. These will correspond directly to the premonoidal structure with

respect to S as defined for double parameterised Freyd categories in the previous

section.

Definition 5.3.8 An S-parameterised monad (T, η, µ) has monoidal multipli-

cation if there are transformations:

µ⊗S,S1,S2,A : T (S1, S2, A) → T (S1 ⊗ S, S2 ⊗ S,A)

µS⊗,S1,S2,A : T (S1, S2, A) → T (S ⊗ S1, S ⊗ S2, A)

such that they are both dinatural in S, natural in all other variables and they

obey the following commutative diagrams:

T (S1, S2, T (S2, S3, A)) T (S1 ⊗ S, S2 ⊗ S, T (S2, S3, A))

T (S1 ⊗ S, S2 ⊗ S, T (S2 ⊗ S, S3 ⊗ S,A))

T (S1, S3, A) T (S1 ⊗ S, S3 ⊗ S,A)

//
µ⊗S

���
� �
� �
� �
� �
� �
� �
� �
� �
� �
�

µ

���
� �
� �
� �
�

T (S1⊗S,S2⊗S,µ⊗S)

���
� �
� �
� �
�

µ

//
µ⊗S

T (S1, S2, T (S2, S3, A)) T (S ⊗ S1, S ⊗ S2, T (S2, S3, A))

T (S ⊗ S1, S ⊗ S2, T (S ⊗ S2, S ⊗ S3, A))

T (S1, S3, A) T (S ⊗ S1, S ⊗ S3, A)

//
µS⊗

���
� �
� �
� �
� �
� �
� �
� �
� �
� �
�

µ

���
� �
� �
� �
�

T (S⊗S1,S⊗S2,µS⊗)

���
� �
� �
� �
�

µ

//
µS⊗

A T (S, S,A)

T (S ⊗ S ′, S ⊗ S ′, A)

//
ηS,A

$$JJJJJJJJJJJJJJ

ηS⊗S′,A
��

µ⊗S′

A T (S ′, S ′, A)

T (S ⊗ S ′, S ⊗ S ′, A)

//
ηS′,A

$$JJJJJJJJJJJJJJ

ηS⊗S′,A
��

µS⊗

5.3. Monoidal Typed Computational Effects 157

Two diagrams for symmetry:

T (S1, S2, A) T (S1 ⊗ S, S2 ⊗ S,A)

T (S ⊗ S1, S ⊗ S2, A) T (S ⊗ S1, S2 ⊗ S,A)

//
µ⊗S

��

µS⊗

��

T (σ,S2⊗S,A)

//
T (S⊗S1,σ,A)

T (S1, S2, A) T (S ⊗ S1, S ⊗ S2, A)

T (S1 ⊗ S, S2 ⊗ S,A) T (S1 ⊗ S, S ⊗ S2, A)

//
µS⊗

��

µ⊗S

��

T (σ,S⊗S2,A)

//
T (S1⊗S,σ,A)

A diagram each for left and right units:

T (S1, S2, A) T (I ⊗ S1, I ⊗ S2, A)

T (I ⊗ S1, S2, A)

//
µI⊗

''OOOOOOOOOOOOOOOOOO

T (λ,S2,A)

���
� �
� �
� �
�

T (I⊗S1,λ,A)

T (S1, S2, A) T (S1 ⊗ I, S2 ⊗ I, A)

T (S1 ⊗ I, S2, A)

//
µ⊗I

''OOOOOOOOOOOOOOOOOO

T (ρ,S2,A)

���
� �
� �
� �
�

T (S1⊗I,ρ,A)

Three diagrams for associativity:

T (S1, S
′
1, A) T (S1 ⊗ (S2 ⊗ S3), S

′
1 ⊗ (S2 ⊗ S3), A)

T (S1 ⊗ S2, S
′
1 ⊗ S2, A)

T ((S1 ⊗ S2)⊗ S3, (S
′
1 ⊗ S2)⊗ S3, A) T ((S1 ⊗ S2)⊗ S3, S

′
1 ⊗ (S2 ⊗ S3), A)

//
µ⊗(S2⊗S3)

���
� �
� �
� �

µ⊗S2

���
� �
� �
� �
� �
� �
� �
� �
� �
� �

T (α,S′1⊗(S2⊗S3),A)

���
� �
� �
� �

µ⊗S3

//
T ((S1⊗S2)⊗S3,α,A)

158 Chapter 5. Typed Computational Effects

T (S2, S
′
2, A) T (S2 ⊗ S3, S

′
2 ⊗ S3, A)

T (S1 ⊗ S2, S1 ⊗ S ′2, A) T (S1 ⊗ (S2 ⊗ S3), S1 ⊗ (S ′2 ⊗ S3), A)

T ((S1 ⊗ S2)⊗ S3, (S1 ⊗ S ′2)⊗ S3, A) T ((S1 ⊗ S2)⊗ S3, S1 ⊗ (S ′2 ⊗ S3), A)

//
µ⊗S3

���
� �
� �
� �

µS1⊗

���
� �
� �
� �

µS1⊗

���
� �
� �
� �

µ⊗S3

���
� �
� �
� �

T (α,S1⊗(S′2⊗S3),A)

//
T ((S1⊗S2)⊗S3,α,A)

T (S3, S
′
3, A) T ((S1 ⊗ S2)⊗ S3, (S1 ⊗ S2)⊗ S ′3, A)

T (S2 ⊗ S3, S2 ⊗ S ′3, A)

T (S1 ⊗ (S2 ⊗ S3), S1 ⊗ (S2 ⊗ S ′3), A) T ((S1 ⊗ S2)⊗ S3, S1 ⊗ (S2 ⊗ S ′3), A)

//
µ(S1⊗S2)⊗

���
� �
� �
� �

µS2⊗

���
� �
� �
� �
� �
� �
� �
� �
� �
� �

T ((S1⊗S2)⊗S3,α,A)

���
� �
� �
� �

µS1⊗

//
T (α,S1⊗(S2⊗S′3),A)

Note that we do not have to necessarily require the two natural transforma-

tions. By the diagrams for symmetry, each can be expressed in terms of the

other.

Before we show the equivalence of this structure and double parameterised

Freyd structure we show how some of the example double parameterised Freyd

categories are expressible as monoidal parameterised monads. Note that, again,

the pair categories example (Example 5.3.2) is not expressible as a parameterised

monad because it is not closed.

Example 5.3.9 The typed local state example, Example 5.3.3, is expressible

in terms of monoidal parameterised monads. Take the strong monad defined in

Example 5.2.11 for typed global state and, assuming that S is symmetric monoidal

and the functor ·̂ : S → S is strict symmetric monoidal, define:

µS⊗ = Λ(S1 ((A⊗ S2)⊗ σ;α−1; ev ⊗ S;α;A⊗ σ) µ⊗S = Λ(α−1; ev ⊗ S;α)

Several pages of tedious calculation show that these definitions obey the axioms

above.

5.3. Monoidal Typed Computational Effects 159

Example 5.3.10 Example 5.3.4, monoidal category actions, is also expressible

as a monoidal parameterised monad. Take the definition of the strong monad

from Example 5.2.12 and define:

µS⊗ = A× S(S1, S2)
A×Ŝ⊗−→ A× S(S ⊗ S1, S ⊗ S2)

µ⊗S = A× S(S1, S2)
A×⊗̂S−→ A× S(S1 ⊗ S, S2 ⊗ S)

where Ŝ⊗ and ⊗̂S are the operations derived from the monoidal structure of S
using the identity arrow S → S.

5.3.3 Equivalence

We now extend the equivalence result of Section 5.2.3 to an equivalence between

closed double parameterised Freyd categories and strong monoidal parameterised

monads with Kleisli exponentials. As before, we define two categories of such

structures over a pair of symmetric monoidal categories C and S and show that

the two categories are equivalent. Much of the proof will be the same as for

Theorem 5.2.17; we only need to verify that the extra structure is preserved by

the equivalence.

As in the previous two sections, let (C,⊗, I, α, λ, ρ, σ) and (S,⊗, I, α, λ, ρ, σ)

be symmetric monoidal categories. The definitions of the two categories are

based on Definitions 5.2.14 and 5.2.15, extended with premonoidal structure with

respect to S and monoidal multiplication respectively. The arrows of categories

must preserve this new structure, as well as the old, in both cases.

Definition 5.3.11 The category CDPF(C,S) is defined as:

Objects Closed Double Parameterised Freyd structure on (C,S);

Arrows f : (K1, J1,<C,1,=C,1,<S,1,=S,1,→1,Λ1) → (K2, J2,<C,2,=C,2,<S,2,=S,2,→1

,Λ2) is a functor f : K1 → K2 that commutes with the structure:

J1; f = J2 Id× f ; <C,2 = <C,1; f Id× f ; =C,2 = =C,1; f

Id× f ; <S,2 = <S,1; f Id× f ; =S,2 = =S,1; f

Identities are identity functors and composition is by functor composition.

160 Chapter 5. Typed Computational Effects

Definition 5.3.12 The category CSMPM(C,S) is defined as:

Objects Strong S-parameterised monoidal monads on C with Kleisli exponen-

tials;

Arrows An arrow f :

(T1, η1, µ1, τ1, µ⊗S,1, µS⊗,1,− →1 −,Λ1)

→ (T2, η2, µ2, τ2, µ⊗S,2, µ⊗S,2,− →2 −,Λ2)

is a natural transformation f : T1 ⇒ T2 : Sop×S ×C → C which commutes

with all the structure of the monad:

A T1(S, S,A)

T2(S, S,A)

//
η1,S,A

��?
??

??
??

??
??

??
??

η2,S,A

���
� �
� �
� �
� �
� �

fS,S,A

A⊗ T1(S1, S2, B) T (S1, S2, A⊗B)

A⊗ T2(S1, S2, B) T2(S1, S2, A⊗B)

//
τ1,A,S1,S2,B

��
A⊗fS1,S2,B

��
fS1,S2,A⊗B

//
τ2,A,S1,S2,B

T1(S1, S2, T1(S2, S3, A)) T1(S1, S3, A)

T2(S1, S2, T2(S2, S3, A)) T2(S1, S3, A)

//
µ1,S1,S2,S3,A

��

fS1,S2,T1(S2,S3,A);T2(S1,S2,fS2,S3,A)

��

fS1,S3,A

//
µ2,S1,S2,S3,A

T1(S1, S2, A) T1(S1 ⊗ S, S2 ⊗ S,A)

T2(S1, S2, A) T2(S1 ⊗ S, S2 ⊗ S,A)

//
µ⊗S,1

���
� �
� �
� �
� �

fS1,S2,A

���
� �
� �
� �
� �

fS1⊗S,S2⊗S,A

//
µ⊗S,2

T1(S1, S2, A) T1(S ⊗ S1, S ⊗ S2, A)

T2(S1, S2, A) T2(S ⊗ S1, S ⊗ S2, A)

//
µS⊗,1

���
� �
� �
� �
� �

fS1,S2,A

���
� �
� �
� �
� �

fS⊗S1,S⊗S1,A

//
µS⊗,2

Identities are identity natural transformations and composition is by natural

transformation composition.

5.3. Monoidal Typed Computational Effects 161

Proposition 5.3.13 Definitions 5.3.11 and 5.3.12 define categories.

Proof Essentially the same as the proof of Proposition 5.2.16. �

Theorem 5.3.14 The categories CDPF(C,S) and CSMPM(C,S) are equiv-

alent.

Proof We use the same structure as the proof of Theorem 5.2.17, defining

a functor F : CDPF(C,S) → CSMPM(C,S) and showing that it is full and

faithful and essentially surjective. Define F as:

(T, η, µ, τ, µ⊗S, µS⊗,− → −,Λ) 7→ (CT , JT ,<T
C ,=

T
C ,<

T
S ,=

T
S ,− → −,Λ)

f : T1 ⇒ T2 7→ (g : (A, S1) → (B, S2)) 7→ g; fS1,S2,B

where:

f <T
C c = f ⊗ c; τ c=T

C f = c⊗ f ;σ; τ ;T (S1, S2, σ)

s<T
S c = c;µS1⊗;T (S1 ⊗ S2, s⊗ S ′2, B) c=T

S s = c;µ⊗S2 ;T (S1 ⊗ S2, S
′
1 ⊗ c, B)

See the appendix, Section A.3.1, for the proof that this definition actually gives a

functor. The proof builds on the first part of the proof of Theorem 5.2.17 (Section

A.1.1). Moreover, F is full and faithful: see Section A.3.2.

This functor is also essentially surjective. Given an object

X = (K, J,<C,=C,<S ,=S ,− → −,Λ)

of CDPF(C,S), define an object Y = (TX , ηX , µX , τX , µX
S⊗, µ

X
⊗S,− → −,Λ) as:

TX(S1, S2, A) = (I, S1) → (A, S2)

ηX
S,A = Λ(ρA, S)

µX
S1,S2,S3,A = Λ(ev; J(ρ−1, S2); ev)

τX
A,S1,S2,B = Λ(J(α, S1);A< ev)

µX
S⊗ = Λ(S <S ev)

µX
⊗S = Λ(ev =S S)

(A, S1) →X (B, S2) = (A, S1) → (B, S2)

(A, S1) →X f = (A, S1) → (J(ρ−1, S2); Λ−1(f))

ΛX(f) = Λ(J(ρ−1
A⊗B, S1); Λ−1(f))

162 Chapter 5. Typed Computational Effects

See Section A.3.3 for the proof that this is an object of CSMPM(C,S) and that

FX ∼= Y .

Given that F is full and faithful and essentially surjective, it follows that F

is an equivalence, as required. �

5.4 Refinements of the Definitions

In this section we present several extra refinements that one might apply to the

definitions above for certain situations. Each one is motivated by the monoidal

state example, Example 5.3.3. This example does not actually satisfy all the

conditions stated here, in particular the fullness property, but the model we give

in Chapter 7 based on functor categories does.

Firstly, we consider the mono requirement for parameterised monads, taken

from the mono requirement for normal monads [Mog91], and show that it implies

that, for the induced parameterised Freyd category JT : C × S → K, the functor

JT (−, S) is faithful for all S, and vice versa. We then extend the requirement

to the unit ηA,S having a right inverse for some fixed S. This is equivalent to

the functor J(−, S) being full. In the case of S = I this says that commands

that operate on the empty state are equivalent to pure values. We will use this

condition for the semantics of λinplc in Chapter 8.

The second extra condition we consider is commutativity. Commutativity

for double parameterised Freyd categories and monoidal strong parameterised

monads refers to the situation when, given two commands (A, S1) → (A′, S ′1)

and (B, S2) → (B′, S ′2), it does not matter in which order we execute them. The

motivation for this is that the two commands are operating on distinct pieces of

state and thus do not interfere with one another. The definition given here is

not a generalisation of commutativity for strong monads [Koc72] since it relies

on the parameterisation category S. Tracking the side-effects via objects of S
means that we can model state in a commutative double parameterised Freyd

category, unlike the case for commutative Freyd categories. We will make use of

commutative double parameterised Freyd categories in Chapter 8 for modelling

5.4. Refinements of the Definitions 163

λinplc.

The final extension we consider is closure on the category K for a double

parameterised Freyd category J : C × S → K with respect to the premonoidal

structure defined with respect to C × S. We will use this in the next chapter

to interpret function types that may close over pieces of state, rather than those

which have no state component, modelled by the closure defined above.

5.4.1 The Mono Requirement

The mono requirement for a monad states that all components of the unit of the

monad are monomorphic. In terms of computations, the requirement states that

values are included in the set of computations. Thus, if two computations con-

structed from pure values are equal, the pure values are equal. The parameterised

Freyd category counterpart is to require that the functor J(−, S) is faithful for

all S.

With double parameterised Freyd categories, we intend that the type of the

empty state is modelled by the monoidal unit object I in S. Computations

(A, I) → (B, I) operating on the empty state should therefore be in bijection

with arrows in A → B in C. That is, the functor J(−, I) is full. The monad

counterpart is to require that the arrow ηI,A have a right inverse for all A.

Proposition 5.4.1 Under the constructions of Definition 5.2.8 and Theorems

5.2.17 and 5.3.14, the mono requirement and J(−, S) being faithful are equivalent.

The additional requirements of J(−, I) being full and ηI,A having a right inverse

are also equivalent.

Proof JT (f, S) = JT (g, S) implies f ; ηS,B = g; ηS,B. By η mono, this implies

f = g, as required. For the converse, the unit of the induced monad is Λ(J(ρ, S)).

By naturality g; Λ(J(ρ, S)) = Λ(J(ρ; g, S)). If Λ(J(ρ; g, s)) = Λ(J(ρ;h, S)) then

ρ; g = ρ;h by the fact that Λ is an isomorphism and the faithfulness of J . Then

g = h since ρ has an inverse. Hence Λ(J(ρ, S)) is mono. Suppose additionally

that ηI,A has a right inverse η′I,A. Given an arrow f : A→ T (I, I, B) then f ; η′I,A :

A→ B is such that JT (f ; η′I,S, I) = f . For the converse, define the right inverse

164 Chapter 5. Typed Computational Effects

to Λ(J(ρ, I)) as the inverse image of J(ρ−1, I); ev : ((1, I) → (A, I), I) → (A, I).

Using the faithfulness of J(−, I) it is easy to see this is as required. �

5.4.2 Commutativity

Definition 5.4.2 A double parameterised Freyd category J : C × S → K is

commutative if all arrows of K are central (Definition 5.1.2).

Proposition 5.4.3 If a double parameterised Freyd category J : C × S → K is

commutative then K is symmetric monoidal.

Proof Centrality means we can unambiguously define c1 ⊗ c2 = (c1 =C B) =S

S2;S
′
1 <S (A′ <C c2). The natural isomorphisms are all given by the images under

J of the symmetric monoidal structure on C × S. �

Definition 5.4.4 A monoidal strong parameterised monad (T, η, µ, τ, µ⊗S, µS⊗)

is commutative if, for all arrows c1 : A→ T (S1, S
′
1, A

′) and c2 : B → T (S2, S
′
2, B

′),

the following two composed arrows are equal:

A⊗B

c1⊗c2−→ T (S1, S
′
1, A

′)⊗ T (S2, S
′
2, B

′)

τ−→ T (S2, S
′
2, T (S1, S

′
1, A

′)⊗B′)
T (S2,S′2,σ;τ)
−→ T (S2, S

′
2, T (S1, S

′
1, A

′ ⊗B′))
µS1⊗−→ T (S1 ⊗ S2, S1 ⊗ S ′2, T (S1, S

′
1, A

′ ⊗B′))
T (S1⊗S2,S1⊗S′2,µ⊗S′2

)

−→ T (S1 ⊗ S2, S1 ⊗ S ′2, T (S1 ⊗ S ′2, S
′
1 ⊗ S ′2, A

′ ⊗B′))
µ−→ T (S1 ⊗ S2, S

′
1 ⊗ S ′2, A

′ ⊗B′)

and

A⊗B

c1⊗c2−→ T (S1, S
′
1, A

′)⊗ T (S2, S
′
2, B

′)
σ;τ−→ T (S1, S

′
1, T (S2, S

′
2, B

′)⊗ A′)
T (S1,S′1,σ;τ)
−→ T (S1, S

′
1, T (S2, S

′
2, A

′ ⊗B′))

5.4. Refinements of the Definitions 165

µ⊗S2−→ T (S1 ⊗ S2, S
′
1 ⊗ S2, T (S2, S

′
2, A

′ ⊗B′))
T (S1⊗S2,S′1⊗S2,µS′1⊗

)

−→ T (S1 ⊗ S2, S
′
1 ⊗ S2, T (S ′1 ⊗ S2, S

′
1 ⊗ S ′2, A

′ ⊗B′))
µ−→ T (S1 ⊗ S2, S

′
1 ⊗ S ′2, A

′ ⊗B′)

Proposition 5.4.5 If a double parameterised Freyd category J : C × S →
K is commutative, then the induced monoidal strong parameterised monad is.

Conversely, if a monoidal strong parameterised monad (T, η, µ, τ, µ⊗S, µS⊗) is

commutative then the induced double parameterised Freyd category JT : C×S →
CT is commutative.

Proof By long tedious calculation. �

5.4.3 K-Closure and Typed Command Categories

Definition 5.4.6 A double parameterised Freyd category J : C × S → K is

K-closed if, for all objects A ∈ ObC and S ∈ ObS, the functor (−=C A) =S S has

a specified right adjoint.

We will write the right adjoint as (A, S1) (−. Note that this definition also

works for monoidal strong parameterised monads by requiring the adjoint on the

Kleisli Category.

Since each object in K is actually a pair of objects in C and S, the object

(A, S1) ((B, S2) must be represented by a pair of objects. However, we will

write it as a single object in its own right. This is motivated by the examples

below: in the pair categories example, both components are dependent on the

exact function space we are describing; but in the typed monoidal state example,

the S component is always I.

For discussing K-closure it is useful to have a notation of monoidal structure

on objects in K. We define (A, S1)⊗(B, S2) = (A×B, S1⊗S2). Note that, unless

all arrows in K are central, there is no corresponding structure on arrows.

Using this notation, we write the counit of this adjunction as:

ev(
A,S1,B,S2

: (A, S1) ((B, S2)⊗ (A, S1) → (B, S2)

166 Chapter 5. Typed Computational Effects

Example 5.4.7 (Pair categories) In the case of Example 5.3.2, the parame-

terised premonoidal category J : C × S → C × S is K-closed when C and S are

symmetric monoidal closed. Take the functor to be (A, S1) ((B, S2) = (A (

B, S1 (S2). The isomorphism of homsets is derived directly from the closed

structure on C and S.

Example 5.4.8 (Typed Monoidal State) The monoidal state example, Ex-

ample 5.3.3, is K-closed when C is closed. A suitable choice for the right adjoint

is:

(A, S1) ((B, S2) = (A× Ŝ1 → B × Ŝ2, I)

The isomorphism of homsets is given by the closed structure of C.

Proposition 5.4.9 If J : C × S → K is commutative and K-closed then it is

symmetric monoidal closed.

Proof Follows directly from the definitions. �

We gather the definition of closed double parameterised Freyd category with

K-closure into a single definition, Typed Command Category.

Definition 5.4.10 (Typed Command Category) A Typed Command Cate-

gory is a double parameterised Freyd category with K-closure such that symmet-

ric monoidal structure on C is given by finite products.

Chapter 6

Typed Command Calculus

In this chapter we define a substructural typed λ-calculus that is sound and

complete for the Typed Command Categories of the previous chapter.

In Section 6.1, we describe the design of the calculus, based on the fine-

grain call-by-value calculus of Levy, Power and Thielecke [LPT03]. The basic

structure is that there are three calculi, one for each of the categories in a Double

Parameterised Freyd-category J : C × S → K. We describe the state calculus,

modelled by the category S, in Section 6.2.1. The value and command calculi,

modelled by C and K respectively, are described in Section 6.2.2. They must

be described together since the definition of value closure requires that the two

calculi be mutually defined. In Section 6.2.3 we define Typed Command Theories

and the equational judgements they generate.

We describe the interpretation in Section 6.3. Since the state calculus is inde-

pendent, we give its interpretation in isolation in a symmetric monoidal category

in Section 6.3.1. We describe the modelling of the whole calculus in Typed Com-

mand Categories in Section 6.3.2. We define models of Typed Command Theories

in Section 6.3.3 and prove that they are sound and complete.

6.1 Design of the Calculus

The design of the Typed Command calculus is inspired by the fine-grain call-by-

value calculus of Levy, Power and Thielecke. [LPT03]. They define a calculus

167

168 Chapter 6. Typed Command Calculus

designed to be modelled in closed Freyd categories that syntactically distinguishes

a set of terms that are “values”, modelled by arrows of the domain category, from

“producers” that are modelled in the codomain category. They have two type

judgements, Γ `v V : A and Γ `p M : A, for values and producers respectively.

Values are included into the set of producers by the rule:

Γ `v V : A

Γ `p produce V : A

Two producers are sequenced by a binding construct:

Γ `p M : A Γ, x : A `p N : B

Γ `p M to x.N : B

Following this idea of separate type judgements for terms that are interpreted

separately in the model we construct three calculi, one for each of the three

categories involved in a closed parameterised Freyd-category J : C × S → K.

Because of the adjunction defining the closure relating the categories C and K,

the calculi corresponding to these categories will be mutually defined. The three

judgements have the form:

Γ ` e : A ∆ ` s : S Γ; ∆ ` c : A;S

for the judgements corresponding to C, S and K respectively. We will call the

three judgements “value”, “state” and “command” judgements, and similarly for

the calculi they type. We include the value and state terms into the command

calculus by the rule C-V-S:

Γ ` e : A ∆ ` s : S

Γ; ∆ ` (e; s) : A;S

This rule will be interpreted by the functor J . We now describe each of the three

calculi in turn.

Corresponding to the category S of state descriptions and manipulations will

be a basic substructural calculus, the state calculus. We formally describe this

6.1. Design of the Calculus 169

calculus in Section 6.2.1. The types S of the state calculus will be used to describe

the states of the store at the beginning and end of each command. The terms

of the state calculus are intended to describe manipulations of these descriptions

that do not alter or update the store. For example, we can rearrange store de-

scriptions by associativity and exchange and eliminate/introduce descriptions of

the empty store. The calculus has one type operator: S1 ⊗ S2, representing the

store made of two disjoint parts described by the descriptions S1 and S2, and one

type constant I, representing the empty store. As with the other substructural

calculi in this thesis, we control the rules governing the S1 ⊗ S2 by controlling

the structural rules. Hence, the state calculus is a basic substructural type sys-

tem with only exchange, associativity and unit elimination structural rules. The

state calculus is the same as the basic substructural calculus described in the

introduction, Section 1.1.

The finite product category C is used to model the value calculus. This calculus

has the standard constructs for unit and product types, interpreted by the finite

product structure of C. Contexts Γ are used in an intuitionistic manner; weak-

ening, contraction and exchange are all admissible rules. The only non-standard

part of this calculus is the rule V-→I for introducing λ-abstracted commands

with no free state variables:

Γ, x : A; z : S1 ` c : B;S2

Γ ` λ(x; z) : (A;S1).c : (A;S1) → (B;S2)

where the premise of the rule is a judgement of the command calculus.

The typing rules of the command calculus serve three broad purposes: the

integration of the value and state calculi, corresponding to the action of the func-

tor J ; the sequencing of commands, corresponding to the premonoidal structure

of J ; and the rules dealing with function types.

The integration of the value and state judgements into the command calculus

is accomplished by the rule C-V-S above which incorporates pairs of the value

and state terms into the command calculus.

Sequencing of commands in context, semantically modelled by the premonoidal

structure, is via a “let” construct. We are following Moggi’s syntax for the com-

170 Chapter 6. Typed Command Calculus

putational λ-calculus rather than Levy et al ’s “to” notation. We have a unary

C-Let expression:

Γ; ∆1 ` c1 : A;S1 Γ, x : A; ∆2, z : S1 ` c2 : B;S2

Γ; ∆2 on ∆1 ` let (x; z) ⇐ c1 in c2 : B;S2

(the on operator merges two contexts while not allowing duplicates). Due to the

substructural nature of the state calculus we must also provide a way to eliminate

state pair types S1 ⊗ S2 in the command calculus, while preserving sequencing:

Γ; ∆1 ` c1 : A;S1 ⊗ S2 Γ, x : A; ∆2, z1 : S1, z2 : S2 ` c2 : B;S3

Γ; ∆2 on ∆1 ` let (x; z1, z2) ⇐ c1 in c2 : B;S3

(C-Let-⊗)

To see why this expression is required, consider a program involving these three

commands:

allocatePair : (1, I) → (1, cell⊗ cell)

storeInt : (Int, cell) → (1, cell[Int])

storeBool : (Bool, cell) → (1, cell[Bool])

We can use allocatePair:

let (x; z) ⇐ allocatePair(∗1, ∗I) in . . .

However, without C-Let-⊗ there would be no way to decompose the variable z

bound in the body of this expression so we could use the two sides in two different

commands. Using C-Let-⊗ allows us to do this:

let (x; z1, z2) ⇐ allocatePair(∗1; ∗I) in

let (x; z′1) ⇐ storeInt(42; z1) in

let (x; z′2) ⇐ storeBool(true; z2) in

(∗1; (z′1, z
′
2))

There is also a complimentary rule C-Let-I for eliminating variables of state type

I.

6.2. Typed Command Calculus 171

Finally, there is a rule for eliminating closed commands, C-→E:

Γ ` e : (A;S1) → (B;S2) Γ; ∆ ` c : A;S1

Γ; ∆ ` e@→c : B;S2

There are also introduction and elimination rules for functions which may contain

free state variables: C-(I and C-(E. The value and command calculi are defined

in Section 6.2.2.

6.2 Typed Command Calculus

A Typed Command System (TV , TS,ΦV ,ΦS,ΦC) consists of a set of primitive value

types TV ; a set of primitive state types TS; a set of primitive value operations

(f : A → B) ∈ ΦV , where A and B are value types generated by the grammar

below; a set of primitive state operations (p : S1 → S2) ∈ ΦS, where S1 and S2 are

state types generated by the grammar below; and a set of primitive commands

(p : (A;S1) → (B;S2)) ∈ ΦC , where A and B are value types and S1 and S2 are

state types. For types A and B, we will write ΦV (A,B) for the subset of ΦV of

the form f : A→ B. Similarly for ΦS and ΦC .

Value types are generated from the primitive value types and are ranged over

by A, B, etc.

A,B ::= X ∈ TV | 1 | A×B | (A;S1) → (B;S2) | (A;S1) (V (B;S2)

where S1 and S2 are state types generated by this grammar:

S ::= X ∈ TS | I | S1 ⊗ S2 | (A;S1) (S (B;S2)

The value types are constructed from the primitive types by the unit 1 and

product× constructors, and two function types. The value function type (A;S1) →
(B;S2) is for functions with no free state variables. The semantical counterpart

of this type is the adjunction between the categories K and C. The command

procedure type (A;S1) (V (B;S2) will be interpreted by the C component of

172 Chapter 6. Typed Command Calculus

the K-closure. The state types are constructed from the primitive types, a sub-

structural unit I, substructural pairs ⊗ and the state component of command

procedures (A;S1) (S (B;S2).

Typed Command Systems also generate three sets of terms and three typing

judgements. Since the state type judgements are independent from the others we

describe them separately in the first subsection 6.2.1. The value and command

judgements are described in Section 6.2.2. In the final subsection 6.2.3 we give the

definition of a Typed Command Theory and the rules for generating equational

judgements.

6.2.1 State Calculus

A system generates state contexts ∆ by the following grammar:

∆ ::= I | ∆, z : S

As usual, no variable name may appear more than once in a context. The

notation ∆[z] is used to denote the type of the variable z in the context ∆,

assuming it is present.

Pairs of contexts are joined using the non-deterministic merging operator

∆1 on ∆2 when ∆1 and ∆2 have disjoint sets of variable names. This opera-

tor takes the place of the structural transitions of the other calculi in this thesis.

It ensures that if ∆1 on ∆2 = ∆ then ∆ has the same variables and type as-

signments as ∆1 and ∆2, merged in some order. The operator is defined by the

clauses:

I on I = I

(∆1, z : A) on ∆2 = (∆1 on ∆2), z : A

∆1 on (∆2, z : A) = (∆1 on ∆2), z : A

A system generates a set of terms by the following grammar, where f ∈ ΦS:

s ::= z | (s1, s2) | ?I | fs

6.2. Typed Command Calculus 173

| let (z1, z2) = s1 in s2

| let ?I = s1 in s2

The choice of term constructs in governed by our choice of type operators.

There are terms for introducing and eliminating pair types and for introducing

and eliminating the unit type. There are also the standard terms for primitives

and variables.

A system generates a typing judgement ∆ ` s : S by the rules in Figure

6.1. Due to the separate contexts in the rules S-⊗I, S-⊗E and S-II, contraction

is clearly not admissible. Likewise, due to the single variable in the S-Id rule,

weakening is not admissible. The only structural rule beyond the basic ones is

therefore Exchange.

x : S ` x : S
(S-Id)

∆1 ` s1 : S1 ∆2 ` s2 : S2

∆1 on ∆2 ` (s1, s2) : S1 ⊗ S2

(S-⊗I)

∆1 ` s1 : S1 ⊗ S2 ∆2, z1 : S1, z2 : S2 ` s2 : S3

∆1 on ∆2 ` let (z1, z2) = s1 in s2 : S3

(S-⊗E)
I ` ?I : I

(S-II)

∆1 ` s1 : I ∆2 ` s2 : S

∆1 on ∆2 ` let ?I = s1 in s2 : S
(S-IE)

∆ ` s : S1 (f : S1 −→ S2) ∈ ΦS

∆ ` fs : S2

(S-Prim)

Figure 6.1: Typing rules for the State Calculus

Lemma 6.2.1 (State Calculus Substitution) The following rule is admissi-

ble in any state system:

∆1 ` s1 : S1 ∆2, z : S1 ` s2 : S2

∆1 on ∆2 ` s2[s1/z] : S2

Proof By induction on the derivation of ∆2, z : S1 ` s2 : S2. �

174 Chapter 6. Typed Command Calculus

6.2.2 Value and Command Calculi

A system generates a set of value contexts, ranged over by Γ:

Γ ::= ε | Γ, x : A

A system generates two further typing judgements:

Γ ` e : A Γ; ∆ ` c : A;S

where the terms e and c are generated by the following two grammars respectively:

e ::= x | ?1 | (e1, e2) | π1e | π2e | fe | λ→(x; z) : (A;S).c

c ::= (e; s) | let (x; z) ⇐ c1 in c2 | let (x; z1, z2) ⇐ c1 in c2

| let (x; ?I) ⇐ c1 in c2 | pc | e@→c | λ((x; z) : (A;S).c | c1@(c2

We assume that the variables used in value expressions are disjoint from the

variables used in the state calculus. This will simplify the expression of the

substitution rules.

The rules for deriving typing judgements are shown in Figures 6.2 and 6.3.

The rules are as described in Section 6.1. The rules for the value system are stan-

dard for a typed calculus with only a unit type 1 and product type A1×A2. Note

that we have used a context with more than one variable in the variable intro-

duction rule V-Id, and shared contexts in the product introduction rule V-×E;

consequently, the calculus admits Weakening, Exchange and Contraction.

The rule V-→I links the two calculi by typing λ→-abstracted commands with no

free state variables as values.

The command calculus rules C-Struct and C-V-S incorporate the structural

rules of the state calculus and value and state terms into the command calculus

respectively. There are three sequencing rules: C-Let, the unary sequencing

rule; and C-Let-⊗ and C-Let-I, which sequence commands and eliminate state

products and units respectively. The C-→E eliminates abstracted commands

generated by the V-→I rule. Note that the first premise of this rule is a value

calculus typing judgement. Finally, the C-Prim rule incorporates the primitive

commands into the command calculus.

6.2. Typed Command Calculus 175

x : A ∈ Γ

Γ ` x : A
(V-Id)

Γ ` ?1 : 1
(V-1I)

Γ ` e1 : A1 Γ ` e2 : A2

Γ ` (e1, e2) : A1 × A2

(V-×I)

Γ ` e : A1 × A2

Γ ` πie : Ai

(V-×E)
Γ, x : A; z : S1 ` c : B;S2

Γ ` λ→(x; z) : (A;S1).c : (A, S1) → (B, S2)
(V-→I)

Γ ` e : A (f : A −→ B) ∈ ΦV

Γ ` fe : B
(V-Prim)

Figure 6.2: Typing rules of the Value Calculus

To prove substitution we need the following weakening lemma. The slightly

odd form of the contexts here makes it easier to apply in the proof that substi-

tution is admissible.

Lemma 6.2.2 (Weakening) The following rules are admissible, when Γ,Γ′′,Γ′

is a valid value-context.

Γ,Γ′ ` e : A

Γ,Γ′′,Γ′ ` e : A

Γ,Γ′; ∆ ` c : A;S

Γ,Γ′′,Γ′; ∆ ` c : A;S

Proof By mutual induction on the derivations of Γ,Γ′ ` e : A and Γ,Γ′; ∆ `
c : A;S. �

Lemma 6.2.3 (Substitution) For any Typed Command System, the follow-

ing rules are admissible:

Γ ` e1 : A Γ, x : A,Γ′ ` e2 : B

Γ,Γ′ ` e2[e1/x] : B

and

Γ ` e : A ∆1 ` s : S1 Γ, x : A,Γ′; ∆2, z : S1 ` c : B;S2

Γ,Γ′; ∆1 on ∆2 ` c[e/x, s/z] : B;S2

176 Chapter 6. Typed Command Calculus

Γ ` e : A ∆ ` s : S

Γ; ∆ ` (e; s) : A;S
(C-V-S)

Γ; ∆1 ` c1 : A;S1 Γ, x : A; ∆2, z : S1 ` c2 : B;S2

Γ; ∆1 on ∆2 ` let (x; z) ⇐ c1 in c2 : B;S2

(C-Let)

Γ; ∆1 ` c1 : A;S1 ⊗ S2 Γ, x : A; ∆2, z1 : S1, z2 : S2 ` c2 : B;S3

Γ; ∆1 on ∆2 ` let (x; z1, z2) ⇐ c1 in c2 : B;S3

(C-Let-⊗)

Γ; ∆1 ` c1 : A; I Γ, x : A; ∆2 ` c2 : B;S3

Γ; ∆1 on ∆2 ` let (x; ?I) ⇐ c1 in c2 : B;S3

(C-Let-I)

Γ ` e : (A;S1) → (B;S2) Γ; ∆ ` c : A;S1

Γ; ∆ ` e@→c : B;S2

(C-→E)

Γ, x : A; ∆, z : S1 ` c : B;S2

Γ; ∆ ` λ((x; z) : (A;S1).c : (A;S1) (V (B;S2); (A;S1) (S (B;S2)
(C-(I)

Γ; ∆1 ` c1 : (A;S1) (V (B;S2); (A;S1) (S (B;S2)

Γ; ∆2 ` c2 : A;S1

Γ; ∆1 on ∆2 ` c1@(c2 : B;S2

(C-(E)

Γ; ∆ ` c : A;S1 (p : (A;S1) −→ (B;S2)) ∈ ΦC

Γ; ∆ ` pc : B;S2

(C-Prim)

Figure 6.3: Typing rules of the Command Calculus

6.2. Typed Command Calculus 177

Proof We must first prove the following pair of rules admissible by mutual

induction over the derivations of Γ, x : A,Γ′ ` e1 : B and Γ, x : A,Γ′; ∆ ` c : B;S.

Γ ` e1 : A Γ, x : A,Γ′ ` e2 : B

Γ,Γ′ ` e2[e1/x] : B

Γ ` e : A Γ, x : A,Γ′; ∆ ` c : B;S

Γ,Γ′; ∆ ` c[e/x] : B;S

All the cases are straightforward, using Lemma 6.2.2 for the V-Id case. We prove

the second rule in the statement of the Lemma is admissible by induction over

the derivation of Γ, x : A,Γ′; ∆2(z : S1) ` c : B;S2. This requires the use of both

of the value-only substitution rules and Lemma 6.2.1 for substitution into state

judgements. �

6.2.3 Equational Theory

A Typed Command Theory is an 8-tuple (TV , TS,ΦV ,ΦS,ΦC ,ΣV ,ΣS,ΣC), where

(TV , TC ,ΦV ,ΦS,ΦC) is a Typed Command System; ΣV is a set of value axioms

Γ ` e1 = e2 : A; ΣS is a set of state axioms ∆ ` s1 = s2 : S; and ΣC is a set of

command axioms Γ; ∆ ` c1 = c2 : A;S, such that both sides of every axiom form

derivable typing judgements in the relevant component of the theory.

A theory generates a three equational judgements:

Γ ` e1 = e2 : A ∆ ` s1 = s2 : S Γ; ∆ ` c1 = c2 : A;S

by the rules in Figures 6.4, 6.5, 6.6 and 6.7.

The rules for the value calculus in Figure 6.5 are the standard ones for a

non-substructural calculus with unit and product types. Likewise, the rules for

the state calculus in Figure 6.4 are standard for a substructural calculus with

substructural unit and product types, using Ghani’s generalised η rule [Gha95].

The rules for the command calculus (Figures 6.6 and 6.7) require more ex-

planation. The rule Eq-C-Ax incorporates the axioms of the Typed Command

Theory into the equational judgements. The rule Eq-C-V-S lifts equational judge-

ments from the value and state calculi into the command calculus. For each of

the three “let” constructs there are β and η rules, plus a commuting conversion

rule for each. It is not possible to use Ghani’s extended η rule in the command

178 Chapter 6. Typed Command Calculus

(∆ ` s1 = s2 : S) ∈ ΣS

∆ ` s1 = s2 : S
(Eq-S-Ax)

∆1 ` s1 : S1 ∆2 ` s2 : S2 ∆3, z1 : S1, z2 : S2 ` s3 : S3

∆3 on ∆1 on ∆2 ` (let (z1, z2) = (s1, s2) in s3) = s2[s1/z1, s2/z2] : S3

(Eq-S-⊗β)

∆1 ` s1 : S1 ⊗ S2 ∆2, z : S1 ⊗ S2 ` s2 : S3

∆1 on ∆2 ` (let (z1, z2) = s1 in s2[z1 ⊗ z2/z]) = s2[s1/z] : S3

(Eq-S-⊗η)

∆(I) ` s : S

∆(I) ` (let ?I = ?I in s) = s : S
(Eq-S-Iβ)

∆1 ` s1 : I ∆2, z : I ` s2 : S

∆1 on ∆2 ` (let ?I = s1 in s2[?I/z]) = s2[s1/z] : S
(Eq-S-Iη)

Plus congruence, identity, symmetry and transitivity rules.

Figure 6.4: Equational rules for the State calculus

(Γ ` e1 = e2 : A) ∈ ΣV

Γ ` e1 = e2 : A
(Eq-V-Ax)

Γ ` (e1, e2) : A1 × A2

Γ ` πi(e1, e2) = ei : Ai

(Eq-V-×β)

Γ ` e : A1 × A2

Γ ` (π1e, π2e) = e : A1 × A2

(Eq-V-×η)
Γ ` e : 1

Γ ` e = ? : 1
(Eq-V-1)

Γ ` f : (A, S1) → (B, S2)

Γ ` (λ→(x, z).f@→(x; z)) = f : (A, S1) → (B, S2)
(Eq-V-η)

Figure 6.5: Value Equational Rules

6.2. Typed Command Calculus 179

(Γ;S1 ` c1 = c2 : A;S2) ∈ ΣC

Γ;S1 ` c1 = c2 : A;S2

(Eq-C-Ax)

Γ ` e1 = e2 : A ∆ ` s1 = s2 : S

Γ; ∆ ` (e1; s1) = (e2; s2) : A;S
(Eq-C-V-S)

Γ ` e : A ∆1 ` s : S1 Γ, x : A; ∆2, z : S1 ` c : B;S2

Γ; ∆1 on ∆2 ` (let (x; z) ⇐ (e; s) in c) = c[e/x, s/z] : B;S2

(Eq-C-Let-β)

Γ; ∆ ` c : A;S

Γ; ∆ ` (let (x; z) ⇐ c in (x; z)) = c : A;S
(Eq-C-Let-η)

Γ ` e : A ∆1 ` s1 : S1

∆2 ` s2 : S2 Γ, x : A; ∆3, z1 : S1, z2 : S2 ` c : B;S3

Γ; ∆1 on (∆2 on ∆3) ` (let (x; z1, z2) ⇐ (e; (s1, s2)) in c) =

c[e/x, s1/z1, s2/z2]

: B;S3

(Eq-C-Let-⊗β)

Γ; ∆ ` c : A;S1 ⊗ S2

Γ; ∆ ` (let (x; z1, z2) ⇐ c in (x; (z1, z2))) = c : A;S1 ⊗ S2

(Eq-C-Let-⊗η)

Γ ` e : A Γ, x : A; ∆ ` c : B;S

Γ; ∆ ` (let (x; ?I) ⇐ (e; ?I) in c) = c[e/x] : B;S
(Eq-C-Let-Iβ)

Γ; ∆ ` c : A; I

Γ; ∆ ` (let (x; ?I) ⇐ c in (x; ?I)) = c : A; I
(Eq-C-Let-⊗η)

Γ, x : A; z : S1 ` c : B;S2 Γ; ∆ ` a : A;S1

Γ; ∆ ` (λ→(x, z).c)@→a = (let (x; z) ⇐ a in c) : B;S2

(Eq-C-→ β)

Figure 6.6: Equational Rules of the Command Calculus, Part 1

180 Chapter 6. Typed Command Calculus

Γ; ∆1 ` c1 : A;S1 Γ, x : A; ∆2, z : S1 ` C[c2] : B;S2

C[−] does not bind of contain x or z

Γ; ∆1 on ∆2 ` C[let (x; z) ⇐ c1 in c2] = let (x; z) ⇐ c1 in C[c2] : B;S2

(Eq-C-Let-CC)

Γ; ∆1 ` c1 : A;S1 ⊗ S2

Γ, x : A; ∆2, z1 : S1, z2 : S2 ` C[c2] : B;S3

C[−] does not bind of contain x, z1 or z2

Γ; ∆1 on ∆2 ` C[let (x; z1, z2) ⇐ c1 in c2] =

let (x; z1, z2) ⇐ c1 in C[c2]

: B;S3

(Eq-C-Let-CC-⊗)

Γ; ∆1 ` c1 : A; ?I Γ, x : A; ∆2 ` C[c2] : B;S2

Γ; ∆1 on ∆2 ` C[let (x; ?I) ⇐ c1 in c2] = let (x; ?I) ⇐ c1 in C[c2] : B;S
(Eq-C-Let-CC-I)

Γ ` e1 : A Γ, x : A ` e2 : B

∆1 ` s1 : S1 ⊗ S2 ∆2, z1 : S1, z2 : S2 ` s2 : S3

Γ; ∆1 on ∆1 ` let (x; z1, z2) ⇐ (e1; s1) in (e2; s2) =

(e2[e1/x]; let (z1, z2) ⇐ s1 in s2)

: B;S3

(Eq-C-Let-⊗β-2)

Γ ` e1 : A Γ, x : A ` e2 : B ∆ ` s : S

Γ; ∆ ` let (x; ?I) ⇐ (e1; ?I) in (e2; s) = (e2[e1/x]; s) : B;S
(Eq-C-Let-Iβ-2)

Γ, x : A; ∆1, z : S1 ` c : B;S2 Γ; ∆2 ` a : A;S1

Γ; ∆1 on ∆2 ` (λ((x; z).c)@(a = (let (x; z) ⇐ a in c) : B;S2

(Eq-C-(β)

Γ; ∆ ` c : (A;S1) (V (B;S2); (A;S1) (S (B;S2)

Γ; ∆ ` (λ((x; z).c@(x; z)) = c : (A;S1) (V (B;S2); (A;S1) (S (B;S2)
(Eq-C-(η)

Plus reflexivity, symmetry, transitivity and congruence rules.

Figure 6.7: Equational Rules of the Command Calculus, Part 2

6.2. Typed Command Calculus 181

calculus because it does not have its own variables, only pairs of variables from

the value and state calculi, so there is no way to refer to “holes” in terms where

the substitution may take place.

The contexts for the rules Eq-C-Let-CC, Eq-C-Let-CC-⊗ and Eq-C-Let-CC-I

are generated by the grammar:

C[−] = − | p C[−]

| let (x; z) ⇐ C[−] in c | let (x; z) ⇐ c in C[−]

| let (x; z1, z2) ⇐ C[−] in c | let (x; z1, z2) ⇐ c in C[−]

| let (x; ?I) ⇐ C[−] in c | let (x; ?I) ⇐ c in C[−]

| e@→C[−] | λ((x; z).C[−] | C[−]@(c | c@(C[−]

There are also two extra β rules for the “let” commands constructed by the

rules C-Let-⊗ and C-Let-I; they take eliminations that have been incorporated

into the command calculus and lift them into the value and state calculi. Finally,

there are βη rules for λ→-abstracted commands, Eq-C-→ β and Eq-V-→ η, and

the βη rules for λ(-abstracted commands, Eq-C-(β and Eq-C-(η.

All the equational judgements generated by a Typed Command Theory are

well-formed:

Proposition 6.2.4 The following three implications hold:

Γ ` e1 = e2 : A ⇒ Γ ` e1 : A and Γ ` e2 : A

∆ ` s1 = s2 : S ⇒ ∆ ` s1 : S and ∆ ` s2 : S

Γ; ∆ ` c1 = c2 : A;S ⇒ Γ; ∆ ` c1 : A;S and Γ; ∆ ` c2 : A;S

Proof For the state calculus we prove this by induction on the derivation of

the judgement ∆ ` s1 = s2 : S using lemma 6.2.1. For the value and command

calculi, we prove this by mutual induction over the derivations of Γ ` e1 = e2 : A

and Γ; ∆ ` c1 = c2 : A;S. The induction hypothesis and the first part of this

proposition are used for Eq-C-V-S. Lemma 6.2.3 is used for the β-rules and

Lemma 6.3.2 for the commuting conversion rules. �

182 Chapter 6. Typed Command Calculus

6.3 Categorical Models

We will interpret Typed Command Systems in Typed Command Categories. As-

sume a Typed Command Category J : C × S → K. We fix some notation. The

category C has chosen finite products (×, 〈, 〉, πi, 1, !); the category S has sym-

metric monoidal structure (⊗, I, α, λ, ρ, σ); and the category K has premonoidal

structures with respect to C and S: (<C,=C) and (<S ,=S). The closed structure

is given by a functor − → − : Kop ×K → C, an isomorphism of homsets Λ→ and

counit ev→. The K-closed structure is given by a functor (A, S) (− : K → K,

an isomorphism of homsets Λ(and counit ev(.

An interpretation of a Typed Command System (TV , TS,ΦV ,ΦS,ΦC) consists

of five functions:

IV : TV → ObC IS : TS → ObS IA,B : ΦV (A,B) → C(JAK, JBK)

IS1,S2 : ΦS(S1, S2) → S(JS1K, JS1K)

I(A;S1),(B;S2) : ΦC((A;S1), (B;S2)) → K((JAK, JS1K), (JBKS2K))

where the map J·K of value types to objects of C is defined as:

J1K = 1 JXK = IV (X) JA×BK = JAK× JBK

J(A;S1) → (B;S2)K = (JAK, JS1K) → (JBK, JS2K)

J(A;S1) (V (B;S2)K = (JAK, JS1K) (V (JAK, JS2K)

where the object (JAK, JS1K) (V (JAK, JS2K) is the C-component of the K object

(JAK, JS1K) ((JAK, JS2K). The map J·K from types to objects of S is defined as:

JIK = I JXK = IS(X) JS1 ⊗ S2K = JS1K⊗ JS2K

J(A;S1) (S (B;S2)K = (JAK, JS1K) (S (JAK, JS2K)

where the object (JAK, JS1K) (S (JAK, JS2K) is the state component of the K
object (JAK, JS1K) ((JAK, JS2K).

In the next two subsections we describe the interpretation of the type judge-

ments of the three calculi in the categorical structure. The first subsection 6.3.1

describes the modelling of the state calculus, and the following subsection 6.3.2

6.3. Categorical Models 183

Jx : S ` x : SK = idJSK

J∆1 ` s1 : S1K = s1 J∆2 ` s2 : S2K = s2

J∆1 on ∆2 ` (s1, s2) : S1 ⊗ S2K = s1 ⊗ s2

J∆1 ` s1 : S1 ⊗ S2K = s1 J∆2, z1 : S1, z2 : S2 ` s2 : S3K = s2

J∆1 on ∆2 ` let (z1, z2) = s1 in s2 : S3K = J∆2K(s1); s2

JI ` ?I : IK = idJIK

J∆1 ` s1 : IK = s1 J∆2 ` s2 : SK = s2

J∆1 on ∆2 ` let ?I = s1 in s2 : SK = J∆2K(s1); s2

J∆ ` s : S1K = s (f : S1 −→ S2) ∈ ΦS

J∆ ` fs : S2K = s; I(f)

Figure 6.8: Interpretation of State Judgements

describes the modelling of the inter-dependent value and command calculi. At the

end of each subsection we prove that the interpretation is coherent with respect

to the typing judgements.

6.3.1 State Calculus Interpretation

Contexts are interpreted as objects in S:

JIK = I J∆, z : SK = J∆K⊗ JSK

We interpret the merge operator ∆1 on ∆2 using the canonical structural maps

of the symmetric monoidal structure on S. Since this structure is known to be

coherent ([Mac98] Theorem §XI.1.1.), and the merge operator does not affect the

terms themselves (i.e. it does not rename variables) we shall ignore the effect of

the structure maps and assume that we can always rewrite an interpretation of

a context to the correct form.

Judgements Γ ` s : S are interpreted as arrows JΓK → JSK in S. The in-

terpretation is defined by induction on the derivation tree in Figure 6.8. The

184 Chapter 6. Typed Command Calculus

interpretation is given the coherence of the structure maps of the monoidal struc-

ture.

6.3.2 Value and Command Calculi Interpretation

Value contexts are interpreted as objects of C:

JεK = 1 JΓ, x : AK = JΓK× JAK

To express the interpretation of the substitution rules (Lemma 6.2.3) below,

in Lemma 6.3.1, we will need a way to interpret the tails of value contexts as

functors. We do this by the following interpretation:

J−, x : AK = −× JAK J−,Γ, x : AK = J−,ΓK× JAK

Note that (JΓK)JΓ′K = JΓ,Γ′K on objects.

Judgements Γ ` e : A are interpreted as arrows JΓK → JAK in C by induction

over their derivation, using the rules in Figure 6.9. Command calculus judgements

Γ; ∆ ` c : A;S are interpreted as arrows (JΓK, J∆K) → (JAK, JSK) in K by the rules

in Figure 6.10. Again we assume that the interpretation of state contexts can

always be rewritten to be in the appropriate form. The interpretation is coherent

by the coherence of the symmetric monoidal structure of S.

6.3.3 Typed Command Models

Given a Typed Command Theory (TV , TS,ΦV ,ΦS,ΦC ,ΣV ,ΣS,ΣC), a model of

this theory is an interpretation of the included Typed Command System with

the added condition that for each axiom in ΣV , ΣS and ΣC , the interpretations of

both sides of the axiom are equal. This subsection is devoted to proving that this

class of models is sound and complete. Firstly, we prove that the substitution

rules from Lemmas 6.2.1 and 6.2.3 have the required interpretation.

6.3. Categorical Models 185

x : A ∈ Γ

JΓ ` x : AK = πi JΓ ` ? : 1K =!JΓK

JΓ ` e1 : A1K = e1 JΓ ` e2 : A2K = e2

JΓ ` (e1, e2) : A1 × A2K = 〈e1, e2〉

JΓ ` e : A1 × A2K = e

JΓ ` πi(e) : AiK = e; πi

JΓ ` e : AK = e

JΓ ` fe : BK = e; IA,B(f)

JΓ, x : A; z : S1 ` c : B;S2K = c

JΓ ` λ→(x; z) : (A;S1).c : (A;S1) → (B;S2)K = Λ→(c)

Figure 6.9: Interpretation of the Value Calculus

Lemma 6.3.1 The admissible rules of substitution are interpreted as:

J∆1 ` s1 : S1K = s1 J∆2, z : S1 ` s2 : S2K = s2

J∆2 on ∆1 ` s2[s1/z] : S3K = J∆2K⊗ s1; s2

JΓ ` e1 : AK = e1 JΓ, x : A,Γ′ ` e2 : BK = e2

JΓ,Γ′ ` e2[e1/x] : BK = (〈JΓK, e1〉)JΓ′K; e2

JΓ ` e:AK = e J∆1 ` s : S1K = s JΓ, x : A,Γ′; ∆2(z : S1) ` c : B;S2K = c

JΓ; ∆2 on ∆1 ` c[e/x, s/z] : B;S2K = J((〈JΓK, e〉)JΓ′K, J∆2K⊗ s); c

Proof For the state calculus substitution rule, this is by induction on the

derivation of ∆1, z : S1 ` s2 : S2. For the value and command substitutions, we

186 Chapter 6. Typed Command Calculus

JΓ ` e : AK = e J∆ ` s : SK = s

JΓ; ∆ ` (e; s) : A;SK = J(e, s)

JΓ; ∆1 ` c1 : A;S1K = c1 JΓ, x : A; ∆2, z : S1 ` c2 : B;S2K = c2

JΓ; ∆1 on ∆2 ` let (x; z) ⇐ c1 in c2 : B;S2K = J(dup, J∆2 on ∆1K); JΓK <C (J∆2K <S c1); c2

JΓ; ∆1 ` c1 : A;S1 ⊗ S2K = c1 JΓ, x : A; ∆2, z1 : S1, z2 : S2 ` c2 : B;S3K = c2

JΓ; ∆2 on ∆1 ` let (x; z1, z2) ⇐ c1 in c2 : B;S2K
= J(dup, J∆2 on ∆1K); JΓK <C (J∆2K <S c1); c2

JΓ; ∆1 ` c1 : A; IK = c1 JΓ, x : A; ∆2 ` c2 : B;S3K = c2

JΓ; ∆2 on ∆1 ` let (x; ?I) ⇐ c1 in c2 : B;S2K
= J(dup, J∆2 on ∆1K); JΓK <C (J∆2K <S c1); c2

JΓ ` f : (A;S1) → (B;S2)K = f JΓ; ∆ ` a : A;S1K = a

JΓ; ∆ ` f@→a : B;S2K = J(dup, J∆K); f < a; ev

JΓ, x : A; ∆, z : S1 ` c : B;S2K = c

JΓ; ∆ ` λ((x; z) : (A;S1).c : (A;S1) (V (B;S2); (A;S1) (S (B;S2)K = Λ((c)

JΓ; ∆1 ` c1 : (A;S1) (V (B;S2); (A;S1) (S (B;S2)K = c1

JΓ; ∆2 ` c2 : A;S1K = c2

JΓ; ∆1 on ∆2 ` c1@(c2 : B;S2K =

J(dup, J∆1 on ∆2K); JΓK <C (J∆2K <S c2);

(c1 =S JS1K) =C JAK; ev(

JΓ; ∆ ` c : A;S1K = c

JΓ; ∆ ` pc : B;S2K = c; I(A;S1),(B;S2)(p)

Figure 6.10: Interpretation of the Command Calculus

6.3. Categorical Models 187

first prove the following interpretations of the two value-only substitution rules:

JΓ ` e1 : AK = e1 JΓ, x : A,Γ′ ` e2 : BK = e2

JΓ,Γ′ ` e2[e1/x] : BK = (〈JΓK, e1〉)JΓ′K; e2

JΓ ` e : AK = e JΓ, x : A,Γ′; ∆ ` c : B;SK = c

JΓ,Γ′; ∆ ` c[e/x] : B;SK = J((〈JΓK, e1〉)JΓ′K, J∆K); c

We prove these by mutual induction on the derivations of Γ, x : A,Γ′ ` e2 : B

and Γ, x : A,Γ′; ∆ ` c : B;S. We prove the second rule is admissible by induction

over the derivation of Γ, x : A,Γ′; ∆, z : S1 ` c : B;S2. This requires the use of

both value-only substitution interpretations and the state substitution rule. �

The next lemma ensures that the commuting conversion rules of the command

calculus are typable and sound. This Lemma is also used to prove Proposition

6.2.4. We omit its proof which is by induction on the structure of the term

contexts C[−].

Lemma 6.3.2 1. Given derivations of Γ, x : A; ∆2, z : S1 ` C[s2] : B;S2

and Γ; ∆1 ` c1 : A;S1 such that C[−] does not bind or contain z, then

there is a derivation of Γ; ∆2 on ∆1 ` C[let (x; z) = c1 in c2] : B;S2 with

interpretation equal to J(dup, J∆2 on ∆1K); JΓK <C (J∆2K <S Jc1K); Jc2K.

2. Given derivations of Γ, x : A; ∆2, z1 : S1, z2 : S2 ` C[s2] : B;S3 and Γ; ∆1 `
c1 : A;S1 ⊗ S2 such that C[−] does not bind or contain z1, z2, then there

is a derivation of Γ; ∆2 on ∆1 ` C[let (x; z1, z2) = c1 in c2] : B;S2 with

interpretation equal to J(dup, J∆2 on ∆2K); JΓK <C (J∆2K <S Jc1K); Jc2K.

3. Given derivations of Γ, x : A; ∆2 ` C[s2] : B;S2 and Γ; ∆1 ` c1 : A; I

such that C[−] does not bind or contain z, then there is a derivation of

Γ; ∆2 on ∆1 ` C[let (x; ?I) = c1 in c2] : B;S2 with interpretation equal to

J(dup, J∆2 on ∆1K); JΓK <C (J∆2K <S Jc1K); Jc2K.

With these two lemmas we can prove the soundness of Typed Command

Theories with respect to Typed Command Models.

188 Chapter 6. Typed Command Calculus

Theorem 6.3.3 Given a model M of a Typed Command Theory T. The fol-

lowing three implications hold:

Γ ` e1 = e2 : A ⇒ JΓ ` e1 : AK = JΓ ` e2 : AK

∆ ` s1 = s2 : S ⇒ J∆ ` s1 : SK = J∆ ` s2 : SK

Γ; ∆ ` c1 = c2 : A;S ⇒ JΓ; ∆ ` c1 : A;SK = JΓ; ∆ ` c2 : A;SK

Proof For the state calculus judgement we prove this by induction over the

derivation of ∆ ` s1 = s2 : S. Use Lemma 6.3.1 for Eq-S-⊗β. For the value

and command calculi judgements we prove this by mutual induction over the

derivations of Γ ` e1 = e2 : A and Γ; ∆ ` e1 = e2 : A;S. The induction hypothesis

and the state calculus property are used for the Eq-C-V-S case. Lemma 6.3.1 is

used for the β rules. Lemma 6.3.2 is used for the commuting conversion rules. �

We now prove that the Typed Command Models are complete, by showing

that a model can be constructed from the type judgements of a Typed Command

Theory. First we construct a Typed Command Category from a given Typed

Command Theory, then we show that there is a model in this category obeying

a property connecting the interpretation of judgements and their counterparts as

arrows of the category. This will prove completeness.

Proposition 6.3.4 (Term Category) Let T be a Typed Command Theory

(TV , TS,ΦV ,ΦS,ΦC ,ΣV ,ΣS,ΣC). This definition defines a category CT:

Objects Types generated from TV ;

Arrows A→ B Equivalence classes of terms [x : A ` e : B].

Such that CT has finite products. This definition defines a category ST with

symmetric monoidal structure:

Objects Types generated by TS;

Arrows S1 → S2 Equivalence classes of terms [z : S1 ` s : S2].

Also, this definition defines a category KT:

6.3. Categorical Models 189

Objects Pairs of types generated by TV and TS;

Arrows (A, S1) → (B, S2) Equivalence classes of terms [x : A; z : S1 ` c : b;S2].

Such that there is an identity-on-objects functor JT : CT × ST → KT that is a

Typed Command Category.

Proof The identities for CT, ST and KT are given by [x : A ` x : A], [z : S `
z : S] and [x : A; z : S ` (x; z) : A;S] respectively. Composition is defined for CT

as:

[x : A ` e1 : B]; [x : B ` e2 : C] = [x : A ` e2[e1/x] : C]

This is associative and obeys the identity laws as a consequence of the properties

of substitution. Composition is also defined for ST by substitution. Composition

is defined for KT as:

[x : A; z : S1 ` c1 : B;S2]; [x : B; z : S2 ` c2 : C;S3]

= [x : A; z : S1 ` let (x; z) ⇐ c1 in c2 : C;S3]

This obeys the identity laws by the Eq-C-Let-β and Eq-C-Let-η rules and is

associative by the Eq-C-Let-CC rule.

Finite products on CT can be defined by taking 1 as the terminal object and

A × B as the product of A and B. Symmetric monoidal structure is defined on

ST by taking I as the unit object and S1 ⊗ S2 as the operation of the functor on

objects. On arrows it is defined using the S-⊗E and S-⊗I rules. The proof that

these have the correct properties is standard [Cro94, Bar96].

Define a functor JT : CT × ST → KT as identity on objects, and on arrows as

J([x : A ` e : B], [z : S1 ` s : S2]) = [x : A; z : S1 ` (e; s) : B;S2]. This is clearly

a functor by the definition of identities in KT and the rule Eq-C-Let-β.

Define <C as:

[x : A1 ` e : A2] <C [x : B1; z : S1 ` c : B2;S2]

= [x : A1 ×B1; z : S2 ` let(y; z) = c1[π1x/x] in((e[π2x/x], y); z′) : A2 ×B2;S2]

The functor =C is defined similarly. They can be seen to obey the required

naturality constraints by writing out the induced expressions in full and using

190 Chapter 6. Typed Command Calculus

the properties of substitution and the β-reduction and commuting conversion

rules.

Define <S as (the types on the final line have been hidden to save space):

[z : S1 ` s : S2] <S [x : A; z : S ′1 ` c : B;S ′2]

= [let (x; z1, z2) = (x; z) in let (y; z′2) = c[z2/z] in (y; (s[z1/z], z
′
2))]

The functor =S is defined similarly. They can be seen to obey the required

naturality constraints in a similar way to the C premonoidal structure. The two

required adjunction properties are given by the appropriate function types and

their rules. �

Define the term interpretation of T in JT : CT × ST → KT by interpreting

each primitive type as itself, and each primitive operation as [x : A ` fx : B],

[z : S1 ` pz : S2] and [x : A; z : S1 ` c(x; z) : B;S2] for value, state and command

primitives respectively.

To establish that this is a model and hence completeness we need a connection

between terms and heir interpretation in the state model. To this end, define

the following functions from value and state contexts to value and state types

respectively:

ε = 1 Γ, x : A = Γ× A

and

I = I ∆, z : S = ∆⊗ S

Now, given a pair of value judgements Γ′ ` e1 : Γ and Γ ` e2 : A, define a term

by induction on the structure Γ:

ε, e1, e2 = e2 (Γ, x : A), e1, e2 = (Γ, π1(e1), e2)[π2(e1)/x]

It is clear by induction on the context that x : Γ ` Γ, x, e : A is always derivable.

Given a state judgement ∆ ` s : S define a new term by induction on the context:

I, z, s = let ?I = z in s (∆, z2 : S), z, s = let (z1, z2) = z in ∆, z1, s

6.3. Categorical Models 191

Again it is clear that z : ∆ ` ∆, z, s : S is derivable. Given a command judgement

Γ; ∆ ` c : A;S, define:

I, z, c = let (d; ?I) ⇐ (?1; z) in c

(∆, z2 : S), z, c = let (d; z1, z2) ⇐ (?1; z) in ∆, z1, c

by induction on the state context, and, for a value judgement Γ′ ` e : Γ:

ε, e, c = c (Γ, x : A), e, c = Γ, π1e, c[π2e/x]

by induction on the value context Γ. Again it is clear that x : Γ; z : ∆ `
∆, z,Γ, x, c : A;S is derivable. We use these definitions to state the required

property of the term model.

Lemma 6.3.5 The term interpretation above is a model of T such that:

JΓ ` e : AK = [x : Γ ` Γ, x, e : A]

J∆ ` s : SK = [z : ∆ ` ∆, z, s : S]

JΓ; ∆ ` c : A;SK = [x : Γ; z : ∆ ` ∆, z,Γ, x, c : A;S]

Proof We first prove the property of the interpretation by induction on the

derivation of ∆ ` s : S and mutual induction on the derivations of Γ ` e : A and

Γ; ∆ ` c : A;S. This then implies that the interpretation is a model. �

With this model, we can deduce completeness:

Theorem 6.3.6 Assume a theory T. If JΓ ` e1 : AK = JΓ ` e2 : AK for all

models of T then Γ ` e1 = e2 : A in T. And if J∆ ` s1 : SK = J∆ ` s2 : SK for all

models of T then ∆ ` s1 = s2 : S in T. Also, if JΓ; ∆ ` c1 : A;SK = JΓ; ∆ ` c2 :

A;SK for all models of T then Γ; ∆ ` c1 = c2 : A;S in T.

Proof We prove the contrapositive. Assume Γ ` e1 6= e2 : A, and so x : Γ `
Γ, x, e1 6= Γ, x, e2 : A. Hence JΓ ` e1 : AK 6= JΓ ` e2 : AK in the term model, i.e.

the interpretations are not equal in all models. The other completeness properties

are proven in the same way. �

192 Chapter 6. Typed Command Calculus

6.4 Comparison to Alias Types

We claim that the Typed Command Calculus is the simply typed essence of

the Alias Types system developed by Smith, Walker and Morrisett [SWM00].

Alias Types can type assembly language programs that manipulate pointers. The

basic method that Alias Types uses to maintain safety is by linearly controlling

permissions on how the memory may be accessed.

By “simply typed essence” we mean that the Typed Command Calculus cap-

tures the features of Alias Types that contribute to its type soundness with respect

to a semantics that performs in-place update that are expressible only in simple

types, i.e. without the indexed types that Alias Types has.

We do not give a formal translation of the Typed Command Calculus into

Alias Types for three reasons. Firstly, the Alias Types system types assembly

language instructions rather than λ terms and so any translation would get caught

up in matters to do with compilation rather than typing. Secondly, the Alias

Types system has a complicated system of indexed types [XP99] which we only

present informally here. Thirdly, Alias Types does not have a notion of function

type that closes over pieces of state to match the Typed Command Calculus’ (

functions.

The Alias Types system has three judgements of the form:

∆ ` C = C ′ ∆; Γ ` v : τ ∆;C; Γ ` ι

where ∆ is an indexing context containing location and constraint variables; C

and C ′ are store constraints describing the current state of the store; Γ is a value

context; v is a value term; τ is a value type and ι is a command.

Store Constraints are built from constraint variables ε, location typings {l 7→
τ} and joined constraints C ⊕ C ′. The first judgement is derivable when C and

C ′ have the same variables and location typings, possibly in a different order.

The second judgement is for deriving the well-typing of pure values that do not

perform any side-effecting operations. The third judgement types a command ι,

starting with a store satisfying constraint C and a value context Γ. It has no

result type since Alias Types uses a continuation-passing-style approach.

6.4. Comparison to Alias Types 193

We define an analogy between Alias Types and the Typed Command Calculus

by matching store constraints with state contexts and types, value contexts and

types with Typed Command Calculus value contexts and types, and commands

with Typed Command Calculus commands.

Under this analogy, the first judgement corresponds to the judgements of

the state calculus, the second to judgements of the value calculus and the third

to judgements of the command calculus. We further elaborate this analogy by

demonstrating simplified versions of two of the typing rules.

Alias Types has a primitive free operator, typed thus:

∆; Γ ` v : ptr(η) ∆ ` C = C ′ ⊕ {η 7→ τ} ∆;C ′ ⊕ {η 7→ junk}; Γ ` ι

∆;C; Γ ` free v; ι

where ptr(η) is a singleton type with the location η as its only variable. There

are three important things to note about this definition. Firstly, but the use of an

auxiliary store constraint C ′, the free operation acts locally, within the context

defined by C ′. Compare this to the “let” constructs of the Typed Command

Calculus that allow a command to be executed in a larger context. The main

point of the definitions of double parameterised Freyd category and monoidal

parameterised monad in Section 5.3 was to allow the lifting of commands to larger

state contexts. Alias Types builds this lifting directly into the typing rules.

Secondly, the use of type indexing and singleton types allows Alias Types to

separation the notions of pointer and permission. The Typed Command Calculus

cannot do this since there is no way to make sure that a value variable and state

variable are related in any way. We discuss adding indexed types to the Typed

Command Calculus in Section 9.2.

Thirdly, the continuation command ι in this rule is passed the altered con-

straint C ′⊕{η 7→ junk} and the same value context Γ. This sequence is matched

in the Typed Command Calculus by the use of shared value contexts and sepa-

rated state contexts in the C-Let rules.

Alias Types also has functions that exist only as values. The introduction

rule for them is, in simplified form (we have omitted the possibility for recursion

194 Chapter 6. Typed Command Calculus

and multiple arguments):

∆ ` ∀[∆′;C]τ → 0 ∆,∆′;C; Γ, x : τ ` ι

∆; Γ ` λ[∆′;C;x : τ].ι : ∀[∆′;C]τ → 0

The first premise ensures that the function type is well-formed in the indexing

context. Ignoring the parameter ∆′, functions in Alias Types are very similar to

→ functions in the Typed Command Calculus, both take a state component and

value component to do their work, and both are treated as values since they do

not close over pieces of the state.

Due to these similar concepts in both Alias Types and the Typed Command

Calculus and their relevance to safe in-place update we are confident that we

have identified a suitable simply typed theory that will form a basis for future

investigation of typed languages with explicit memory management.

Chapter 7

Heap bounded state model

In this chapter we describe a Typed Command Category that demonstrates how

the structure may be used to model separation and side-effects on a heap of fixed

size. Since it is a Typed Command Category it will be suitable for interpreting

the Typed Command Calculus of the previous chapter. This category will also

be suitable for modelling the λinplc calculus of Chapter 8.

We will show how to interpret data structures that occupy heap space and

give new typing rules for the Typed Command Calculus for introducing and

eliminating them in a way which respects the fact that they reside on the heap.

7.1 The Category

The three categories in the model are as follows: C is the category Set; S is

the functor category [P,Set], where P is the category of natural numbers and

permutations; and K((A, S1), (B, S2)) = [P,Set](A× S1−, B × S2−), where A×
S1− denotes the functor F (X) = A× S1X, likewise for B × S2−. The identity-

on-objects functor J : C × S → K maps (f, 〈si〉i∈ObP) to 〈f × si〉i∈ObP.

Arrows of K map an input value and store and to an output value and store.

This is a refinement of Example 5.3.3 since it now includes notions of separa-

tion, boundedness and non-duplicability by the functor category structure. These

properties all stem from the choice of functors from P to represent state types.

The reason for choosing P is that it is the free symmetric monoidal category

195

196 Chapter 7. Heap bounded state model

generated from the one object, one arrow category. Thus it provides the minimum

amount of structure needed to describe a separated heap. We think of an object

of [P,Set] as family of sets indexed by the amount of memory cells available.

The symmetric monoidal structure on objects is given by addition of natural

numbers. We will make use of Day’s construction [Day70] on the functor category

[P,Set] for interpreting composite state types. This is given by the following

coend formula (see Section 4.1 for the definition of coends):

(S1 ⊗ S2)n =

∫ n1,n2

S1n1 × S2n2 ×P(n1 + n2, n)

The empty heap is modelled by the functor I0 = {∗} and In = ∅ when n 6= 0.

By the definition of tensor product we can see that it models separated states.

Given two state types S1 and S2, this definition ensures that the combined heap

is large enough to contain both of them without sharing any memory cells. Also,

in general, there are no arrows of the form S → S ⊗ S in S by this construction,

so we may not duplicate state. Neither are there any arrows of the form S → I,

so we may not discard state.

Assuming the functors used to interpret state types are sensibly defined with

real computer memory in mind, the space occupied by the output of the compu-

tation is exactly the same as the space occupied by the input. This is in keeping

with the heap-bounded property of LFPL [Hof00].

We define symmetric premonoidal structure on J with respect to both C and

S. Define f <C c, where f : A1 → A2 and c : (B1, S1) → (B2, S2), as:

(A1×B1)×S1−
α−→ A1× (B1×S1−)

f×c−→ A2× (B2×S2−)
α−1

−→ (A2×B2)×S2−

The definition =C is similar.

Define s<S c, where s : S1 → S2 and c : (A1, S
′
1) → (A2, S

′
2), as the composite

(using Day’s notation for co-ends involving ×):

A1 × (S1n1×(S ′1n2×P(n1 + n2, n)))

∼= S1n1×((A1 × S ′1n2)×P(n1 + n2, n))
s×(c×id)
−→ S2n1×((A2 × S ′2n2)×P(n1 + n2, n))

∼= A2 × (S2n1×(S ′2n2×P(n1 + n2, n)))

7.1. The Category 197

The definition of =S is similar.

This construction is also closed in both senses defined in Chapter 5. Define:

(A, S1) → (B, S2) = [P,Set](A× S1−, B × S2−)

For K-closure, define the functor to be:

(A, S1) ((B, S2) = (1,

∫
n

A× S1n⇒ B × S2(−+ n))

where ⇒ is the exponential functor in Set.

Theorem 7.1.1 With the definitions above, J : Set× [P,Set] → K is a Typed

Command Category.

Proof The functor <C respects the monoidal structure of Set on arrows:

f <C J(g, s) = α; f × (g× s);α−1 = (f × g)× s;α;α−1 = (f × g)× s = J(f × g, s)

Similarly for =C. Naturality for the structure transformations is also easy to

check. For example, the naturality in the third argument for J(α, id):

J(α, id);A< (B < c) = α× id;α; id× (α; id× c;α−1);α−1

= α;α; id× (id× c); id× α−1;α−1

= α; id× c;α; id× α−1;α−1

= α; id× c;α−1;α× id

= (A⊗B) < c; J(α, id)

where the inner steps follow by coherence, naturality and coherence respectively.

The other naturality properties are similar.

That the functors <S and =S preserve S’s monoidal structure on arrows

follows directly from the definition, coherence of the monoidal structure of ×
on Set and naturality. The naturality of the structure transformations under J

holds for similar reasons to the naturality of the C transformations: by coherence

and naturality.

The fact that (A, S1) → − is right adjoint to −<C (A, S1) is immediate from

the cartesian closure of [P,Set].

198 Chapter 7. Heap bounded state model

For K-closure, the isomorphism of homsets required for the adjunction is given

by:

[P,Set](A×B ×
∫ n1,n2

S1n1 × S2n2 ×P(n1 + n2,−), C × S3−)

∼=
∫

n

(A×B ×
∫ n1,n2

S1n1 × S2n2 ×P(n1 + n2, n) ⇒ C × S3n)

∼=
∫

n,n1,n2

(A×B × S1n1 × S2n2 ×P(n1 + n2, n) ⇒ C × S3n)

∼=
∫

n,n1,n2

(A× S1n1 ⇒ (B × S2n2 ×P(n1 + n2, n) ⇒ C × S3n))

∼=
∫

n1,n2

(A× S1n1 ⇒ (B × S2n2 ⇒ (

∫
n

(P(n1 + n2, n) ⇒ C × S3n))))

∼=
∫

n1,n2

(A× S1n1 ⇒ (B × S2n2 ⇒ C × S3(n1 + n2)))

∼=
∫

n1

(A× S1n1 ⇒
∫

n2

(B × S2n2 ⇒ C × S3(n1 + n2)))

∼= [P,Set](A× S1−,
∫

n2

(B × S2n2 ⇒ C × S3(−+ n2)))

where the isomorphisms are by: the presentation of sets of natural transforma-

tions by an end; preservation of colimits; currying; preservation of limits; Yoneda;

preservation of limits; and the presentation of sets of natural transformations as

ends. The sequence of isomorphisms here is an adapted case of the sequence

needed to prove that Day’s construction is closed. �

This Typed Command Category also enjoys the extra properties identified for

models of state in Section 5.4:

Proposition 7.1.2 The Typed Command Category J : Set× [P,Set] → K is

commutative, and the functor J(−, I) is full and faithful.

Proof For commutativity, it must be the case that all arrows of K are central.

Writing out the definitions of (c1 <C B) <S S2;S
′
1 =S (A′ =C c2) and S1 =S (A=C

c2); (c1 <C B
′) <S S

′
2 shows that they are both equal to:

(A×B)× (S1n1×(S2n2×P(n1 + n2, n)))

7.2. Boxed Data 199

∼= (A× S1n1)×((B × S2n2)×P(n1 + n2, n))
c1×(c2×P(n1+n2,n))

−→ (A′ × S ′1n1)×((B′ × S ′2n2)×P(n1 + n2, n))

∼= (A′ ×B′)× (S ′1n1×(S ′2n2×P(n1 + n2, n)))

thus this category is commutative. The functor J(−, I) is full and faithful because

given a natural transformation fn : A× In→ B× In, it is only non-trivial when

n = 0, and then it is equivalent to an arrow A→ B since I0 = {∗}. �

7.2 Boxed Data

We now demonstrate the interpretation of some simple datatypes that reside on

the heap. The first will be “boxed” versions of value datatypes. These will model

memory cells on the heap that contain a single value of the specified type. Thus

the state type [A] will represent memory cells that contain values of value type

A. We will also have a special type ♦ which is isomorphic to [1], representing

unused memory cells. The use of a diamond for unused memory cells is taken

from Hofmann’s LFPL [Hof00].

For each boxed type there is a pair of primitive commands in the Typed

Command Calculus for storing a value and destructively retrieving a value:

storeA : (A,♦) → (1, [A]) retrieveA : (1, [A]) → (A,♦)

The store command takes the value to be stored and a diamond representing

the memory location in which it is to be stored and returns a pointer to the

memory cell. In a real implementation this pointer would have exactly the same

value, but we return it here because its type has changed. The retrieve com-

mand performs the opposite operation, taking a pointer to a memory cell and

splitting it into its value and abstract location.

There are two axiom schemes for this pair, stating that the two operations

are inverse:

storeA(retrieveAc) = c retrieveA(storeAc) = c

200 Chapter 7. Heap bounded state model

The triviality of these axioms points to the fact that, with a functional inter-

pretation, store and retrieve are both no-ops. But the point is that we can

implement them using mutating operations on the store. It is the substructural

typing of the Typed Command Calculus that allows such simple axioms.

Given some value type A with interpretation as a set JAK, we interpret the

boxed type [A] as:

J[A]Kn =

{
JAK n = 1

∅ otherwise

A boxed value takes up exactly one cell of memory space. The diamond

type also takes up one cell of memory space, but does not contain any useful

information:

J♦Kn =

{
{∗} n = 1

∅ otherwise

The interpretations of storeA and retrieveA are simple:

storeA[1](a, ∗) = (∗, a) retrieveA[1](∗, a) = (a, ∗)

we do not need to specify them at heap sizes other than 1 by the definitions of

J[A]K and J♦K. These two operations are obviously inverse, and hence satisfy the

axioms.

7.3 Singly-Linked Lists

A more complex data type is provided by singly linked lists that reside in the

store. We will not represent the links in the semantics, since we have no notion

of locations and hence no notion of pointers to do the linking. For each value

type A, we assume a state type L(A), representing lists in the store. There are

two ways to introduce states containing lists:

nilA : (1, I) → (1, L(A)) consA : (A,♦⊗ L(A)) → (1, L(A))

The nil command works on an empty store (represented by I) since, opera-

tionally, the empty list will be represented by a null pointer. The cons command

7.3. Singly-Linked Lists 201

takes an unused piece of the store, represented by the ♦ argument, and uses this

to create a new cons cell containing the value and “pointing” to the rest of the

list.

Lists are eliminated by means of an fold operator1:

Γ; ∆1 ` c1 : B;S

Γ, x : B, y : A; z1 : ♦, z2 : S ` c2 : B;S Γ; ∆2 ` c3 : (1, L(A))

Γ; ∆1,∆2 ` listfoldA,B,S(c1, (x, y; z1, z2)c2, c3) : B;S

where the value variables x and y and the state variables z1 and z2 are bound in

the command c2.

The intended meaning is that listfold executes the command c3 to obtain a

list, it then executes the command c1 and then iterates up the list, using a second

command c2 for each of the nodes. Hence, this is an in-place version of the

standard foldr operation. At each node, the memory used by the node is made

available for use by c2 via its ♦ argument. Thus, listfold destroys the list, making

it available for reuse as it traverses it. Note the use of a “loop invariant” S that

is initialised by c1 and preserved by c2.

There are two axioms schemes for lists, for when the two possible pairs of

introduction and elimination terms meet:

listfoldA,B,S(c1, (x, y; z1, z2)c2, nilA(?1; ?I)) = c1

listfoldA,B,S(c1, (x1, x2; z1, z2)c2, consA(x; (d, xs)))

=

let (a, s) = listfoldA,B,S(c1, (x, x2; z1, z2)c2, (?1;xs))

in c2[a/x1, x/x2, s/z1, d/z2]

Apart from the typing and the ♦ arguments, these axioms are very similar to

what we would expect in a pure functional programming language with a “fold”

operator.

1Note that, due to presence of function types in the Typed Command Calculus, we could
present this new syntax as a primitive command. However, this would make the presenta-
tion of the example programs more unwieldy, even though we have to re-prove soundness and
substitution.

202 Chapter 7. Heap bounded state model

Using these primitives we can write simple programs that exploit the use of

in-place update. Here is a variant of the standard map function that updates the

list in-place:

mapA,B = λ→(f ; z) : ((A, I) → (B, I);L(A)).

listfold(nil(?1; ?I),

(a : A, y : 1; r : L(B), d : ♦)let(b; ?I) = f@→(a, ?I) in cons(b; (r, d)),

(?1; l))

The loop invariant in this application of listfold is of the type L(B), the piece of

state represented being the new list constructed in the memory of the old one.

Here is a short function that appends a list to another in place; the loop

invariant is again the list that is being constructed from the old ones:

appendA = λ→(q; z) : (1;L(A)⊗ L(A)).

let (q; z1, z2) = (q; z) in

listfold((?1; z2), (x : A, y : 1; r : L(A), d : ♦)cons(x; (r, d)), (?1; z1))

We now turn to the interpretation of the syntax for lists. We adapt the initial

algebra semantics for inductive types to our situation. For more information on

using initial algebras to interpret inductive types, see [Pit00]. At the level of

Typed Command Categories, we interpret the nil and cons primitives by arrows

in K:

nil JAK : (1, I) → (1, JL(A)K) consJAK : (JAK, J♦K⊗ JL(A)K) → (1, JL(A)K)

The fold operator is interpreted via a function of homsets, natural in X:

listfold : K((X × JAK×B, J♦K⊗ S), (B, S)) → K((X ×B, S ⊗ JL(A)K), (B, S))

With just this basic structure, we can now interpret the typing rule for listfold:

JΓ; ∆1 ` c1 : B;SK = c1

JΓ, x : B, y : A; z1 : ♦, z2 : S ` c2 : B;SK = c2 JΓ; ∆2 ` c3 : (1, L(A))K = c3

JΓ; ∆1,∆2 ` listfoldA,B,S(c1, (x, y; z1, z2)c2, c3) : B;SK
= (〈id, id〉, id); (JΓK, J∆1K) < c3; c1 = (1, JL(A)K); listfold(c2)

The, extended calculus, with this interpretation still has the substitution prop-

erty of the unextended calculus (Lemmas 6.2.3 and 6.3.1):

7.3. Singly-Linked Lists 203

Lemma 7.3.1 (Substitution) In the extended calculus, the following rules are

admissible and have the given interpretation:

JΓ ` e1 : AK = e1 JΓ, x : A,Γ′ ` e2 : BK = e2

JΓ,Γ′ ` e2[e1/x] : BK = (〈JΓK, e1〉)JΓ′K; e2

JΓ ` e : AK = e

J∆1 ` s : S1K = s JΓ, x : A,Γ′; ∆2(z : S1) ` c : B;S2K = c

JΓ,Γ′; ∆2(∆1) ` c[e/x, s/z] : B;S2K = ((〈id, e〉)JΓ′K, J∆2K(s)); c

Proof As before, we prove two value-only substitution rules admissible and

with the correct interpretation by mutual induction on the derivations. The

naturality of listfold in X is crucial. This is then used to prove the second

substitution rule. �

For this interpretation to be a model, we must impose two requirements on the

nil and cons arrows and the listfold operator, corresponding to the two axioms.

The following two diagrams must commute:

(X ×B, S) (X ×B × 1, S ⊗ I)

(B, S) (X ×B, S ⊗ JL(A)K)
���
� �
� �
� �
�

J(π2,S)

//
J(ρ−1,ρ−1)

���
� �
� �
� �
�

(X×B,S)<nil

oo
listfold(c)

(X ×B × JAK, S ⊗ J♦K⊗ JL(A)K) (X ×B, S ⊗ JL(A)K)

(X × JAK×X ×B, J♦K⊗ S ⊗ JL(A)K)

(X × JAK×B, J♦K⊗ S) (B, S)

//
J(X×B,S)<cons

��
J(∼=,∼=)

��

listfold(c)

��
(X×JAK,J♦K)<listfold(c)

//c

Soundness holds for the extended calculus, extending Theorem 6.3.3. It is

proven by induction on the equational judgements:

Theorem 7.3.2 (Soundness) In the extended calculus, if Γ ` e1 = e2 : A then

Γ ` e1 : A and Γ ` e2 : A are derivable, and JΓ ` e1 : AK = JΓ ` e2 : AK. Likewise

204 Chapter 7. Heap bounded state model

if Γ; ∆ ` c1 = c2 : A;S then Γ; ∆ ` c1 : A;S and Γ; ∆ ` c2 : A;S are derivable

and JΓ; ∆ ` c1 : A;SK = JΓ; ∆ ` c2 : A;SK.

Moving back to our concrete model, we interpret the type of lists as the set

of finite lists of elements of JAK, the indexing by P determines the exact size of

the list.

JL(A)Kn =

{
{∗} n = 0

JL(A)K(n− 1)× JAK n ≥ 1

The definition of JL(A)K(f : n→ n) is just the identity.

We need only define the component of the nil operation when n = 0, since

I(n) = ∅ if n 6= 0:

nilA[0](∗, ∗ ∈ I0) = (∗ ∈ 1, ∗ ∈ L(A)0)

The resulting family is clearly natural in n. We define the cons operation by

making use of the universal property of co-ends. The arrow cons is induced from

the arrows:

consn
n1,n2,A : JAK× J♦Kn1 × JL(A)Kn2 ×P(n1 + n2, n) → JL(A)Kn

consn
n1,n2,A = (a, ∗, 〈a1, ..., an2〉, f) 7→ 〈a1, ..., an2 , a〉

It is easy to check that this is dinatural in n1 and n2 and natural in n. Therefore,

by Day’s Lemma 2.2 [Day70], there is a transformation, natural in n:

consn
A : JAK×

∫ n1,n2

J♦Kn1 × JL(A)Kn2 ×P(n1 + n2, n) → JL(A)Kn

as required.

The listfold operator is also defined using the universal property. For any

natural transformation cn : X × JAK × B ×
∫ n1,n2 ♦n1 × Sn2 × P(n1 + n2, n) →

B × Sn, there is a family of wedges:

cnn1,n2
: X × JAK×B × ♦n1 × Sn2 ×P(n1 + n2, n) → B × Sn

7.3. Singly-Linked Lists 205

which is dinatural in n1 and n2 and natural in n. Now define listfold(c)n
n1,n2

:

X ×B × Sn1 × JL(A)Kn2 ×P(n1 + n2, n) → B × Sn as:

(x, b, s, 〈a1, ..., an2〉, f) 7→


let (b1, s1) = cn1+1

1,n1
(x, a1, b, ∗, s, id) in

...

let (bn2 , sn2) = cn1+n2
1,n1+n2−1(x, an2 , bn2−1, ∗, sn2−1, id) in

(bn2 , Sfsn2)


Note how, as each of the elements of the list is being processed, the memory space

allocated to the list, n2, is being transferred to the values of S(n1+i). This family

of arrows is clearly natural in n and is dinatural in n1 and n2 by the naturality

and dinaturality properties of the family cnn1,n2
. Therefore, by Day’s Lemma 2.2,

we have a natural transformation:

listfold(c) : X ×B ×
∫ n1,n2

Sn1 × JL(A)Kn2 ×P(n1 + n2, n) → B × Sn

as required.

It remains to verify the required diagrams for these operations. For the dia-

gram involving nil , consider the following diagram, where the inner square is the

diagram we require to commute:

X ×B × Sn× (1× I0)×P(n + 0, n)

qn,0

��

∼=

tt

X ×B × Sn

〈id,!;〈id,îd〉〉
33hhhhhhhhhhhhhhhhhhhh

//

〈π2,π3〉
��

X ×B × (Sn1×(1× In2)×P(n1 + n2, n))

X×B(Sn1×nil×P(n1+n2,n))

��
B × Sn X ×B × (Sn1×JL(A)Kn2×P(n1 + n2, n))

listfold(c)
oo

X ×B × Sn× JL(A)K0×P(n + 0, n)
listfold(c)n

n,0

kkVVVVVVVVVVVVVVVVVVVVV
qn,0

OO

The top and bottom triangles and the right-hand quadrilateral all commute

by Lemma 4.1.11 and the definition of nil . The outer perimeter commutes by

inspection of the definition of listfold(c)n
n1,n2

. Hence the inner diagram commutes,

as required. The required diagram for cons may also be seen to hold by a sim-

ilar, but larger diagram, relying on the universal property and the definition of

listfold(c)n
n1,n2

.

206 Chapter 7. Heap bounded state model

One could also provide semantics for other (non-circular) linked data struc-

tures in this manner.

Chapter 8

An In-place Update Calculus

In the previous chapter we presented a calculus directly related to Typed Com-

mand Categories. In this chapter we present a calculus, λinplc, that is a reformu-

lation in our framework of the linear type system with non-linear types proposed

by Wadler [Wad90, Wad91], without the let! construct. A similar system has

been published by Hofmann [Hof00] for heap-bounded in-place update. More

advanced systems based on it include Walker and Watkin’s system for combin-

ing linear typing and regions [WW01] and Morrisett, Ahmed and Fluet’s Linear

Language with Locations for pointer programs [MAF05].

We will show that commutative Typed Command Categories that obey the

fullness property of Section 5.4 coherently and soundly model the calculus. We

also give a direct categorical semantics for the calculus, of which commutative

Typed Command Categories with the fullness property are an instance.

As in the Typed Command Calculus, λinplc regards values of certain types as

“permissions” to access parts of the state. Some types have no state component,

and hence confer no permission, these are termed state-free types. Whereas the

Typed Command Calculus had a strict distinction between value types and state

types, λinplc mixes the two. This in turn means that λinplc has a single context

and result type, and looks more like a normal typed λ-calculus.

Most of the typing rules (Figure 8.2) make no distinction between state-free

and non-state-free types. The distinction arises in two places. There are struc-

tural transitions only available to state-free context members and not available to

207

208 Chapter 8. An In-place Update Calculus

non-state-free members; context members of state-free type may be contracted

and weakened, but context members of non-state-free type may not. This is

justified by the reading of non-state-free types as carriers of permissions, which

must not be duplicated or discarded. The distinction is also used in the two

function types of the calculus. There is a state-free function type, whose values

may not close over non-state-free variables, and a non-state-free function type,

whose values may closed over non-state-free variables.

In Section 8.1 we introduce the syntax of types and contexts for λinplc, and

describe the distinction between state-free and non-state-free types. We then

describe the valid structural transitions of the calculus, paying careful attention

to the distinction between state-free and non-state-free types, and the different

structural rules that apply. Substitution in λinplc requires a more careful analysis

to formulate a restricted rule, which we do in Section 8.2. To gain insight into

the restricted form of the substitution rule that we must adopt, we sketch an

interpretation of the calculus in a commutative TCC. We will see that the problem

with substitution arises from an implicit notion of value in λinplc induced by

the distinction between stateful and state-free types. Section 8.3 sets out the

equational rules of λinplc theories.

The remainder of the chapter deals with direct categorical models of the cal-

culus. Section 8.4 describes the categorical structure required to directly model

λinplc: In-place Update Categories and proves that they are coherent, sound and

complete class of models. Finally, Section 8.5 returns to Typed Command Cat-

egories and shows that they are an instance of In-place Update Categories. We

translate the constructions of Chapter 7 for boxed data types and lists into λinplc.

8.1 In-place Update Systems

Assume a set of primitive types T and a disjoint set of state-free primitive types

Tsf . The set of types is generated by the following grammar:

A ::= X ∈ T ∪ Tsf | A1 ⊗ A2 | I | A1 → A2 | A1 (A2

8.1. In-place Update Systems 209

The predicate sf(A) determines a subset of all types which are state-free. Values

of these types will not contain any state information at runtime and so can be

treated as pure values.

sf(X) ⇔ X ∈ Tsf

sf(A1 ⊗ A2) ⇔ sf(A1) ∧ sf(A2)

sf(I) ⇔ always

sf(A1 → A2) ⇔ always

sf(A1 (A2) ⇔ never

The state-free predicate is derived from the set of state-free types. The intuitive

semantics of state-free types is that they do not refer to the state, and do not

confer any permissions to alter any state. A pair type A1 ⊗ A2 is state free iff

both sides are state-free; this is because values of a pair type are pairs of values

of the constituent types, if neither part refers to the state, then the whole does

not. The two function types are always and never state-free respectively; this is

due to the fact that functions of type A1 → A2 may only close over state-free

variables, and functions of type A1 (A2 may close over any variables.

Contexts are generated by the following grammar, where no variable x may

appear more than once in any given context:

Γ,∆ ::= I | x : A | Γ1,Γ2

For any variable x in a context Γ the notation Γ[x] denotes the type assigned to

that variable, and v(Γ) denotes the list of variables in Γ given by a depth-first,

left-to-right traversal. The state-free predicate is extended to contexts:

sf(I) ⇔ always

sf(x : A) ⇔ sf(A)

sf(Γ1,Γ2) ⇔ sf(Γ1) ∧ sf(Γ2)

We also consider contexts with holes by adding the following production to

the grammar:

Γ,∆ ::= . . . | −a

210 Chapter 8. An In-place Update Calculus

where a is a name for the hole, and no hole name may appear more than once in

a context. We will write a context with a hole as Γ(−)a, explicitly naming the

hole, or as Γ(−) when it does not matter what the hole is named. The notation

Γ(Γ′) denotes a context with a hole with the hole filled in with the context Γ′, i.e.

the position of the hole in the tree is replaced by the context Γ′. This operation

is only well-defined when the two contexts have disjoint variable and hole names.

Since we do not know whether holes will be filled in with state-free contexts or

not, we take the conservative route with the extension of the state-free predicate

to contexts with holes:

sf(−a) ⇔ never

A structural transition is a triple Γ
ρ⇒ ∆, where Γ and ∆ are contexts and ρ

is a mapping of variables in ∆ to variables in Γ. The rules in Figure 8.1 define

a judgement Γ
ρ⇒ ∆ valid, which identifies a subset of the structural transitions

which are valid for λinplc.

ρ(Γ′) = Γ

Γ
ρ⇒ Γ′ valid

Γ1
α⇒ Γ2 valid Γ2

β⇒ Γ3 valid

Γ1
α;β⇒ Γ3 valid

Γ1
α⇒ Γ′

1 valid Γ2
β⇒ Γ′

2 valid

Γ1,Γ2
α;β⇒ Γ′

1,Γ
′
2 valid (Γ1,Γ2),Γ3 ⇔ Γ1, (Γ2,Γ3) valid

I,Γ ⇔ Γ valid Γ, I ⇔ Γ valid Γ1,Γ2 ⇔ Γ2,Γ1 valid

sf(Γ)

Γ ⇒ I valid

sf(Γ) Γ ≡α Γ′

Γ
[v(Γ)/v(Γ′)]⇒ Γ,Γ′ valid

Figure 8.1: Valid Structural Transitions

The valid structural transitions consist of the usual identity, composition, con-

gruence, associativity, unit and exchange rules. There are also two conditional

8.1. In-place Update Systems 211

rules of weakening and contraction. These are only for use with state-free con-

texts. The justification for the special transitions for state-free contexts relies on

the reading of context members as “permissions” to perform side-effects. Non-

state-free context members represent the fact that the term e in a judgement

Γ ` e : A requires access to a piece of the state. Permission to access a piece of

the state may not be duplicated or discarded, since the first would lead to runtime

type errors and the second to memory leaks. State-free context members, as the

name suggests, only represent pure values and so they may be duplicated and

discarded at will, by these two structural transitions.

Structural transitions between contexts with holes Γ
−−→
(−)a

ρ⇒ ∆
−−→
(−)b are maps

ρ that map variables in ∆ to variables in Γ and hole names in ∆ to hole names

in Γ. Valid such structural transitions are included in the rules of Figure 8.1 by

the identity/renaming rule.

To ease reasoning involving valid structural transitions, we have the following

lemma, which characterises valid structural transitions. With this lemma we will

be able to reason about valid structural extensions abstractly rather than worry

about the exact derivation of validity. This will be useful for proving coherence

and soundness.

Lemma 8.1.1 A structural transition Γ
ρ⇒ ∆ is valid iff:

1. ∀y. |{x : ρ(x) = y}| 6= 1 implies sf(Γ[y]);

2. ∆[x] = Γ[ρ(x)].

The same characterisation extends to contexts with holes.

Proof The forward direction is by induction on the derivation of validity. It

is easy to see that all the rules preserve the types of the variables. All of the

basic transitions apart from weakening and contraction perform no renaming,

and so they maintain the first property. Weakening and contraction also preserve

property 1 since they only work on state-free contexts, whose components, by

definition are all state-free.

For the reverse direction, given a structural transition Γ
ρ⇒ ∆ obeying the

two properties, we construct a canonical derivation tree for it. For each variable

212 Chapter 8. An In-place Update Calculus

x in Γ with state-free type A there is a set ρ−1(x) of variables in ∆ that are

mapped to it. Say for a given x that the variables are y1, ..., yn. Construct a valid

structural transition x : A
[x/y1,...,x/yn]⇒ (...(I, y1 : A), ..., yn : An) = ∆x by using

weakening and contraction. This is possible since A is state free. For each non-

state-free variable z, use the renaming rule to generate a structural transition

z : A
[z′ 7→z]⇒ z′ : A = ∆z. Likewise, for each hole a use the hole renaming

rule generate the appropriate structural extension. Use the congruence rule to

combine all these to get a single valid structural transition Γ
ρ⇒ Γ′, where Γ′ is Γ

with each state-free variable x replaced by ∆x. The contexts Γ′ and ∆ have the

same variables with the same types, so it is now possible to use the associativity,

unit and exchange rules to generate a valid structural transition Γ′ ⇒ ∆ which

does no renaming. Combining these using the composition rule shows that Γ
ρ⇒ ∆

is a valid structural transition. �

An In-place Update System (T , Tsf ,Φ) consists of a set of primitive types, a

disjoint set of primitive state-free types and a set of primitive operations Φ of the

form p : A1 → A2, where A1 and A2 are types generated by the grammar above.

Along with types, contexts and valid structural transitions, a system generates a

set of terms:

e ::= x | let x = e1 in e2 | pe

| ?I | let ?I = e1 in e2

| (e1, e2) | let (x, y) = e1 in e2

| λ→x : A.e | e1@→e2

| λ(x : A.e | e1@(e2

and a typing judgement Γ ` e : A by the rules in Figure 8.2.

For a given system (T , Tsf ,Φ), and two types A1 and A2 generated by it, we

will write Φ(A1, A2) for the subset of Φ of the form p : A1 → A2.

We describe each of the typing rules in turn. The Struct rule incorporates the

valid structural transitions into the calculus. The special transitions for state-free

contexts mean that the behaviour of the pair introduction (⊗I) and elimination

(⊗E) rules depends on the types of the components. When both components of

8.1. In-place Update Systems 213

x : A ` x : A
(Id)

Γ′ ` e : A Γ
ρ⇒ Γ′ valid

Γ ` ρ(e) : A
(Struct)

I ` ?I : I
(II)

Γ1 ` e1 : I Γ2(I) ` e2 : A

Γ2(Γ1) ` let ?I = e1 in e2 : A
(IE)

Γ1 ` e1 : A1 Γ2 ` e2 : A2

Γ1,Γ2 ` (e1, e2) : A1 ⊗ A2

(⊗I)

Γ1 ` e1 : A1 ⊗ A2 Γ2(x : A1, y : A2) ` e2 : B

Γ2(Γ1) ` let (x, y) = e1 in e2 : B
(⊗E)

Γ, x : A ` e : B sf(Γ)

Γ ` λ→x.e : A→ B
(→I)

Γ1 ` e1 : A→ B Γ2 ` e2 : A

Γ1,Γ2 ` e1@→e2 : B
(→E)

Γ, x : A ` e : B

Γ ` λ(x.e : A (B
((I)

Γ1 ` e1 : A (B Γ2 ` e2 : A

Γ1,Γ2 ` e1@(e2 : B
((E)

Γ ` e : A (p : A→ B) ∈ Φ

Γ ` pe : B
(Prim)

Γ1 ` e1 : A Γ2(x : A) ` e2 : B

Γ2(Γ1) ` let x = e1 in e2 : B
(Let)

Figure 8.2: In-place-update Typing Rules

214 Chapter 8. An In-place Update Calculus

a pair are state-free the type acts as a normal product type. The rules II and IE

are the usual introduction and elimination rules for the unit type.

There are two function types in λinplc, similar to the two function types of

λlocal. State-free functions, A → B, do not close over any non-state-free context

members (the sf(Γ) premise) and so are state-free themselves; permissions to any

state that the body of the function operates on must be provided as an argument.

Non-state-free functions, A (B, may close over state and so are regarded as

non-state-free and thus may not be discarded or duplicated, since this would

imply that the permissions they contain be duplicated or discarded. Note that,

due to the single context in λinplc, the differences between the two function types

boil down to differences in their state-free status, and in the introduction rules.

The elimination rules for both function types are identical.

The Prim rule incorporates the primitive operations from Φ into the set of

typed terms.

8.2 Substitution

The λinplc calculus does not admit the full substitution rule. The conditional

structural rules of contraction and weakening and the A → B introduction rule

mean that an attempt to substitute a term typed in a non-state-free context for

a state-free variable may be ill-typed. For example, consider the judgement:

x : Int ` (x, x) : Int⊗ Int

This judgement is valid if we assume that Int is state-free. Now consider another

judgement:

d : Cell ` location(d) : Int

where the type Cell is not state-free. An attempt to substitute the term loc(d)

for x in the first judgement would result in an ill-typed term:

(location(d), location(d))

8.2. Substitution 215

The variable d appears twice in the term, but since d is of a non-state-free type the

term is not typable. The problem also arises when the variable to be substituted

for occurs inside a λ→ term.

It is only safe to substitute a term with a non-state-free context for a variable

when it has not been acted upon by a typing rule that assumes state-freeness.

We term such occurrences of variables non-linear occurrences:

Definition 8.2.1 A variable x occurs non-linearly in a term e if its number of

occurrences is not equal to one, or it appears free inside a λ→ term.

For a variable to occur any number of times other that one it must have been

acted upon by Weakening or Contraction, and so must be state-free. Also, for

it to have appeared free in a λ→ term it must have been state-free. Therefore,

any variable that occurs non-linearly in state-free.

With this definition we can state a restricted substitution rule suitable for

λinplc:

Lemma 8.2.2 (Restricted Substitution) The following rule of restricted sub-

stitution is admissible:

−−−−−−→
∆ ` e : A Γ

−−−−→
(x : A) ` e′ : B x non-linear in e′ implies sf(∆)

Γ
−−→
(∆) ` e′[−→e/x] : B

In order to prove this we will need the following lemma which states how

substitution interacts with structural transitions:

Lemma 8.2.3 Assume:

• Typed variables x1 : A1, ..., xn : An and contexts ∆1, ...,∆n;

• For each xi, zero or more variables yi
1, ..., y

i
ki

, such that if ki 6= 1 then ∆1 is

state free;

• A valid structural transition Γ1(x1 : A1)...(xn : An)
α⇒ Γ2

−−−−−→
(y1 : A1)...

−−−−−−→
(yn : An),

such that for all i, j, α(yi
j) = xi.

216 Chapter 8. An In-place Update Calculus

For each yi
j generate a new context from ∆i, called ∆i

j, by renaming the variables.

I.e. there is a valid structural transition ∆i

ρi
j⇒ ∆i

j such that ρi
j is bijective. Then

there is a valid structural transition Γ1(∆1)...(∆n)
β⇒ Γ2

−−→
(∆1)...

−−→
(∆n), such that

for all i, j and z ∈ v(∆1
j), β(z) = ρi(z) and for all z ∈ v(Γ2(−)), β(z) = α(z).

Proof Simply define β to have the same action as α on variables in Γ2(−) and

the action of ρi
j for variables in ∆i

j. The fact that ki 6= 1 implies sf(∆i) means

that this is a valid structural transition. �

Proof (of Lemma 8.2.2) By induction on the derivation of Γ2(x : A) ` e2 : B.

Most cases are simple and follow just by applying the induction hypothesis and

then applying the appropriate typing rule and relying on the fact that substitution

of free variables commutes with all our term constructors. The only difficult case

is Struct, which is handled by Lemma 8.2.3 in the same way as for λsep in the

proof of Lemma 2.2.4. �

8.2.1 Interpretation in a Typed Command Category

This restricted substitution rule is all very well, but is there a deeper reason for the

restriction of substitutable-for variables? In this subsection we attempt to answer

this by sketching an interpretation of λinplc in a Typed Command Category.

Assume a commutative Typed Command Category J : C × S → K such that

the functor J(−, I) is full and faithful.

Following the intuitive idea presented in the chapter introduction that the

types of λinplc are composed of a stateful part and a state-free part, we interpret

types as objects of K. The stateful part is represented by the S component, and

the state-free part is represented by the C component. State-free types of λinplc

are interpreted as objects of K whose state component is I.

Contexts are interpreted as functors Kn → K, where n is the number of holes

in the context. We define the interpretation by induction on the structure of the

context:

J−aK = Id : K → K Jx : AK = ? 7→ JAK : 1 → K JIK = ? 7→ (I, I) : 1 → K

JΓ1,Γ2K = (JΓ1K× JΓ2K);⊗ : Kn1+n2 → K

8.2. Substitution 217

where n1 and n2 are the number of holes in Γ1 and Γ2 respectively, and ⊗ is the

symmetric monoidal product on K defined in Proposition 5.4.3.

Valid structural transitions are interpreted as natural transformations. In

the case of stateful contexts, all the necessary natural transformations are given

by the symmetric monoidal structure of K. When a context is heap free then

its state component is isomorphic to I by the interpretation of state-free types.

Therefore, we can use the finite product structure in C to interpret the conditional

Contraction and Weakening rules.

The interpretation of typing judgements is defined by induction over the typ-

ing derivation. Most of the cases are straightforward. However, we give the cases

for the two function introductions:

JΓ, x : A ` e : BK = e sf(Γ)

JΓ ` λ→x : A.e : A→ BK = J(id,∼=1); J(Λ→(J(id,∼=2); e), I)

JΓ, x : A ` e : BK = e

JΓ ` λ(x : A.e : A→ BK = Λ((e)

where the isomorphisms ∼=1 and ∼=2 are the canonical ones taking multiple copies

of I to a single copy and back again.

We now examine the restriction to non-linear occurrences in Lemma 8.2.2.

As noted above, for a variable to occur non-linearly it must have state-free type.

The restricted substitution rule then requires that the term to be substituted in

must have a state-free context.

By the fullness property of J(−, I) and the interpretation of value types,

it is the case that terms with state-free context and result type are actually

interpreted as values in commutative Typed Command Categories. The fact

that we can always substitute in terms of this form confirms the explanation

presented in the introduction that λinplc implicitly forces a call-by-value scheme

by the construction of its type system.

It is still permissible to substitute in arbitrary well-typed terms for linearly

occurring variables. This is explained by the restriction to commutative Typed

Command Categories. Since the order of side-effects on the state is controlled by

218 Chapter 8. An In-place Update Calculus

the typing, not the actual ordering of commands, we can re-order the commands

by substitution as long as the typing is preserved. Any more liberal substitution

policy would however violate the non-sharing property of the monoidal product

on S and so is not allowed.

8.3 Equational Theory

An In-place Update Theory (T , Tsf ,Φ,Σ) is an In-place Update System (T , Tsf ,Φ)

plus a set Σ of axioms of the form Γ ` e1 = e2 : A where Γ ` e1 : A and Γ ` e2 : A

are derivable. A theory induces an equational judgement defined by the rules in

Figures 8.3, 8.4 and 8.5.

(Γ ` e1 = e2 : A) ∈ Σ

Γ ` e1 = e2 : A
(Eq-Ax)

Γ ` e1 = e2 : A Γ
ρ⇒ Γ′ valid

Γ′ ` ρ(e1) = ρ(e2) : A
(Eq-Struct)

Γ1 ` e1 : A

Γ2(z : A) ` e2 : B z occurs non-linearly in e2 implies sf(Γ1)

Γ2(Γ1) ` (let x = e1 in e2[x/z]) = e2[e1/z] : B
(Eq-Let)

Plus: reflexivity, symmetry, transitivity and congruence rules.

Figure 8.3: In-place Update Equational Rules: Basics

The rules in Figure 8.3 cover the basic rules for axioms, the equality preser-

vation of the Struct rule and the rules for the Let construct. The rule for Let

subsumes the usual β, η and commuting conversion rules. It is restricted by the

side-condition to ensure that the substitutions are always valid. The system also

includes the standard rules for reflexivity, symmetry, transitivity and congruence.

8.3. Equational Theory 219

Γ(I) ` e : A

Γ(I) ` (let ?I = ?I in e) = e : A
(Eq-β-I)

Γ1 ` e1 : I

Γ2(z : I) ` e2 : A z occurs non-linearly in e2 implies sf(Γ1)

Γ2(Γ1) ` (let ?I = e1 in e2[?I/z]) = e2[e1/z] : A
(Eq-η-I)

Γ1 ` e1 : A1 Γ2 ` e2 : A2 Γ3(x : A1, y : A2) ` e3 : A3

Γ3(Γ1,Γ2) ` (let (x, y) = (e1, e2) in e3) = (let x = e1 in let y = e2 in e3) : A3

(Eq-β-⊗)

Γ1 ` e1 : A⊗B

Γ2(z : A⊗B) ` e2 : C z occurs non-linearly in e2 implies sf(Γ1)

Γ2(Γ1) ` (let (x, y) = e1 in e2[(x, y)/z]) = e2[e1/z] : C
(Eq-η-⊗)

Figure 8.4: In-place Update Equational Rules: Pairs

220 Chapter 8. An In-place Update Calculus

Figure 8.4 contains the equational rules for units and pairs. The β rule for

pairs is standard albeit with the use of a unary let in the β rule for pairs to

overcome the problem with substitution. We also have Ghani’s extended η rule

[Gha95] for units and tensor products which subsumes the commuting conversion

rules. As with λsep, the extensionality rules for units and state-free products are

derivable from these rules.

Γ, x : A ` e1 : B Γ′ ` e2 : A sf(Γ)

Γ,Γ′ ` (λ→x.e1)@→e2 = let x = e2 in e1 : B
(Eq-β-→)

Γ ` e : A→ B

Γ ` (λ→x.e@→x) = e : A→ B
(Eq-η-→)

Γ, x : A ` e1 : B Γ′ ` e2 : A

Γ,Γ′ ` (λ(x.e1)@(e2 = let x = e2 in e1 : B
(Eq-β-()

Γ ` e : A (B

Γ ` (λ(x.e@(x) = e : A (B
(Eq-η-()

Figure 8.5: In-place Update Equational Rules: Functions

The final group of equational rules is shown in Figure 8.5. Both function types

have the normal β and η rules, albeit using a unary let instead of substitution for

the β rules. Note that both functions have identical equation rules; the function

types only differ in the way they interact with the structural rules via the state-

free-ness predicate.

Proposition 8.3.1 If Γ ` e1 = e2 : A is derivable, then Γ ` e1 : A and

Γ ` e2 : A are derivable.

Proof By induction over the derivation of Γ ` e1 = e2 : A. The case for

Eq-Ax follows from the definition of a theory. All the other cases follow from the

substitution lemma, Lemma 8.2.2. �

8.4. Categorical Semantics 221

8.4 Categorical Semantics

In this section, we give the categorical structure for interpreting λinplc directly,

and show that λinplc is sound and complete for the class of models with this

structure. In the next section we will show that certain commutative closed

double parameterised Freyd-categories form an instance of this structure.

Definition 8.4.1 An In-place Update Category consists of a symmetric monoidal

closed category K, with a finite product sub-category C, such that the inclusion

functor J : C → K is full as well as faithful and strong symmetric monoidal and

that, for all objects A of K the functor J(−) ⊗ A has a specified right adjoint,

written as A→ −.

As implied in the definition we will use ⊗ as the symbol for the functor part of

the monoidal structure on K, and × for the product structure on C. Recall that

a strong symmetric monoidal functor is one for which there is an isomorphism

mA,B : JA ⊗ JB ∼= J(A × B) and an isomorphism mI : I ∼= J1 which commute

with the associativity, unit and symmetry natural isomorphisms. For the two

closures we will use Λ→ and Λ(for the two homset isomorphisms:

Λ→ : K(J(A)⊗B,C) ∼= C(A,B → C) Λ(: K(A⊗B,C) ∼= C(A,B (C)

We will use ev→ and ev(for the two counits, both of which have their components

in K:

ev→A,B : J(A→ B)⊗ A→ B ev(
A,B : (A (B)⊗ A→ B

An interpretation of an In-place Update System (T , Tsf ,Φ) in an In-place

Update Category J : C → K consists of three functions: J·K0 : T → ObK;

J·K0 : Tsf → ObC; and J·K0 : Φ(A,B) → K(JAK, JBK). An interpretation induces a

222 Chapter 8. An In-place Update Calculus

mapping from types to objects of K:

JX ∈ T K = JXK0

JX ∈ TsfK = J(JXK0)

JA1 ⊗ A2K = JA1K⊗ JA2K

JIK = I

JA→ BK = J(JAK → JBK)

JA (BK = JAK (JBK

And a mapping of contexts to functors Kn → K where n is the number of holes

in the context:

Jx : AK = ? 7→ JAK : 1 → K JIK = ? 7→ I

JΓ1,Γ2K = (JΓ1K× JΓ2K);⊗ : Kn1+n2 → K J−aK = Id : C → C

For types and contexts that are state-free, define by induction on the structure

the following alternative interpretations in the category C:

JX ∈ TsfKsf = JXK0

JA1 ⊗ A2Ksf = JA1Ksf × JA2Ksf

JIKsf = 1

JA→ BKsf = JAK → JBK

Jx : AKsf = ? 7→ JAKsf

JIKsf = ? 7→ 1

JΓ1,Γ2Ksf = (JΓ1K× JΓ2K);×
J−aK = Id

Since the inclusion functor J is strong symmetric monoidal, there are induced

isomorphisms mA : JAK ∼= J(JAKsf) and mΓ : JΓK ∼= J(JΓKsf) for state-free types

A and state-free contexts Γ, defined by induction.

An interpretation also induces two mappings to arrows in K, again both writ-

ten as J·K, from derivations of valid structural transitions (Figure 8.6); and from

derivations of typing judgements (Figure 8.7).

8.4.1 Coherence

As with all the substructural systems in this thesis we need to prove the coherence

of this interpretation. As usual, we do this in two steps, proving coherence of the

interpretation of valid structural transitions with respect to structural morphisms;

and then proving the coherence of the interpretation of typing derivations.

8.4. Categorical Semantics 223

ρ(Γ′) = Γ

JΓ ρ⇒ Γ validK = idJΓK

JΓ1
α⇒ Γ2 validK = a JΓ2

β⇒ Γ3 validK = b

JΓ1
α;β⇒ Γ3 validK = a; b

JΓ1
α⇒ Γ′

1 validK = a JΓ2
β⇒ Γ′

2 validK = b

JΓ1,Γ2
α;β⇒ Γ′

1,Γ
′
2 validK = a⊗ b

J(Γ1,Γ2),Γ3 ⇔ Γ1, (Γ2,Γ3) validK = α JI,Γ ⇔ Γ validK = λ

JΓ, I ⇔ Γ validK = ρ JΓ1,Γ2 ⇔ Γ2,Γ1 validK = σ

sf(Γ)

JΓ ⇒ I validK = mΓ; J(!JΓK)

sf(Γ) Γ ≡α Γ′

JΓ
[v(Γ)/v(Γ′)]⇒ Γ,Γ′ validK = mΓ; J(〈JΓK, JΓK〉);m−1

Γ,Γ′

Figure 8.6: Interpretation of Basic Structural Transitions

224 Chapter 8. An In-place Update Calculus

Jx : A ` x : AK = idJAK

JΓ′ ` e : AK = e JΓ ρ⇒ Γ′ validK = s

JΓ ` ρ(e) : AK = s; e

JI ` ?I : IK = idI

JΓ1 ` e1 : IK = e1 JΓ2(I) ` e2 : AK = e2

JΓ2(Γ1) ` let ?I = e1 in e2 : AK = JΓ2K(e1); e2

JΓ1 ` e1 : A1K = e1 JΓ2 ` e2 : A2K = e2

JΓ1,Γ2 ` (e1, e2) : A1 ⊗ A2K = e1 ⊗ e2

JΓ1 ` e1 : A1 ⊗ A2K = e1 JΓ2(x : A1, y : A2) ` e2 : BK = e2

JΓ2(Γ1) ` let (x, y) = e1 in e2 : BK = JΓ2K(e1); e2

JΓ1 ` e1 : AK = e1 JΓ2(x : A) ` e2 : BK = e2

JΓ2(Γ1) ` let x = e1 in e2 : BK = JΓ2K(e1); e2

JΓ, x : A ` e : BK = e sf(Γ)

JΓ ` λ→x.e : A→ BK = mΓ; Λ→(m−1
Γ ⊗ JAK; e)

JΓ1 ` e1 : A→ BK = e1 JΓ2 ` e2 : AK = e2

JΓ1,Γ2 ` e1@→e2 : BK = e1 ⊗ e2; ev→

JΓ, x : A ` e : BK = e

JΓ ` λ(x.e : A (BK = Λ((e)

JΓ1 ` e1 : A (BK = e1 JΓ2 ` e2 : AK = e2

JΓ1,Γ2 ` e1@(e2 : BK = e1 ⊗ e2; ev(

JΓ ` e : AK = e (p : A→ B) ∈ Φ

JΓ ` pe : BK = e; JpK

Figure 8.7: Interpretation of In-place Update Calculus

8.4. Categorical Semantics 225

Lemma 8.4.2 If π1 and π2 are derivations of some valid structural transition

Γ
ρ⇒ Γ′ then Jπ1K = Jπ2K.

Proof Similar to Theorem 3.2.20, by showing that the interpretation of a

transition is equal to the interpretation of the canonical transition derived from

the corresponding morphism. We rewrite the derivation of the transition to a

sequence of basic transitions-in-context. This rewriting preserves the categorical

interpretation. We then show it has the same interpretation as the canonical

transitions by induction over the length: the properties required in Definition

3.2.18 for commuting weakenings and duplications with context constructors hold

automatically for finite product structure so we can commute the weakening and

duplication arrows to the start of the expression, then using the fact that the

interpretations of weakening and duplication form a comonoid gives coherence for

the initial phase, and coherence of symmetric monoidal structure gives coherence

of the second stage. The result then follows. �

The proof of coherence of the interpretation of typing judgements proceeds in

a similar manner to the proof for λsep (Theorem 3.3.4). We omit the details since

they are similar to the λsep proof, but we recap the procedure. First we must

prove two “factorisation” lemmas for valid structural transitions that describe

how valid structural transitions below a rule application can be factored into

parts that appear above the rule application and the part that remains below,

thus rewriting the derivation tree to a canonical form. Then we strengthen the

result to include trailing structural transitions and proceed by induction on the

height of the derivation. The factorisation property is used to rewrite the syntax-

free structural rules and Lemma 8.4.2 means that we preserve the interpretation.

Theorem 8.4.3 (Coherence) If π1 and π2 are derivations of some typing judge-

ment Γ ` e : A then Jπ1K = Jπ2K.

8.4.2 Soundness and Completeness

A model of an In-place Update Theory (T , Tsf ,Φ,Σ) is an interpretation J·K0 of

the system (T , Tsf ,Φ) such that for all axioms (Γ ` e1 = e2 : A) ∈ Σ, JΓ ` e1 :

226 Chapter 8. An In-place Update Calculus

AK = JΓ ` e2 : AK. We now prove that this definition of a model of an In-place

Update Theory is sound and complete. First we prove that the interpretation of

substitution is as expected.

Lemma 8.4.4 The restricted substitution rule has the following interpretation:

JΓ1 ` e1 : A1K = e1

JΓ2(x : A1) ` e2 : A2K = e2 x occurs non-linearly in e2 implies sf(Γ2)

JΓ2(Γ1) ` e2[e1/x] : A2K = JΓ2K(e1); e2

Proof First strengthen the statement to multiple simultaneous substitutions

as in Lemma 8.2.2. Then proceed by induction on the derivation of Γ2(x : A1) `
e2 : A2. The only difficult case is for the rule Struct, which is handled by

considering the categorical counterpart of Lemma 8.2.3 via Lemma 8.4.2. �

The soundness of the equational theory follows straightforwardly from this

lemma.

Theorem 8.4.5 (Soundness) If Γ ` e1 = e2 : A then JΓ ` e1 : AK = JΓ ` e2 :

AK.

Proof By induction on the derivation of Γ ` e1 = e2 : A. �

We now show that the class of models defined is complete for a given In-place

Update Theory. First we show that the syntax of a theory generates an In-place

Update category:

Theorem 8.4.6 (Term Category) Given an In-place Update Theory T =

(T , Tsf ,Φ), there is an In-place Update Category, defined as follows: a category

KT:

Objects Types generated from T;

Arrows Equivalence classes of typed expressions [x : A1 ` e : A2].

and a full sub-category CT:

Objects State-free types generated by T;

8.4. Categorical Semantics 227

Arrows Equivalence classes of typed expressions [x : A1 ` e : A2].

Proof First we establish that KT and CT are categories. In both cases KT the

identities are defined as [x : A ` x : A] and composition of [x : A ` e1 : B] and

[x : B ` e2 : C] is defined as [x : A ` let x = e1 in e2 : C]. It is easy to check that

these obey the required properties to make them categories.

The inclusion functor J : CT → KT is defined as J(A) = A and J([x : A ` e :

B]) = [x : A ` e : B]. This clearly defines a functor. It is obviously faithful since

no more equalities are imposed on arrows in KT than in CT. It is also full.

Symmetric monoidal structure is defined in both categories on objects A and

B just as the type A ⊗ B. The proof that this defines symmetric monoidal

structure is standard [Bar96]. Given this definitions, it is clear that J is strict

symmetric monoidal.

The monoidal structure on CT is also the categorical product. Define the

isomorphism of homsets φ : CT(A,B ⊗ C) ∼= CT(A,B)× CT(A,C) as:

φ([e]) = ([let (x1, x2) = e in x1], [let (x1, x2) = e in x2])

φ−1([e1], [e2]) = [(e1, e2)]

where we have elided the contexts and result types to save space. These are

inverse:

φ−1(φ([e]))

= φ−1([let (x1, x2) = e in x1], [let (x1, x2) = e in x2])

= [(let (x1, x2) = e in x1, let (x1, x2) = e in x2)]

= [let x = e in (let (x1, x2) = x in x1, let (x1, x2) = x in x2)]

= [let x = e in x]

= [e]

where the crucial steps follow from the Eq-β-Let and Eq-η-2-⊗ rules which are

only valid when the types are state-free, as they are in CT. In the opposite

direction:

φ(φ−1([e1], [e2]))

228 Chapter 8. An In-place Update Calculus

= φ([(e1, e2)])

= ([let (x1, x2) = (e1, e2) in x1], [let (x1, x2) = (e1, e2) in x2])

= ([e1], [e2])

where we again rely on the ability to substitute when the types are state-free.

It is easy to check that the isomorphism of homsets above is natural, so TT has

categorical products. Moreover, the type I is a terminal object in CT by the

Eq-η-2-I rule, and so CT has all finite products.

The functor A → − is defined on objects just as the type A → B, and on

arrows [g] as [λ→y.let x = x@→y in g]. Define the isomorphism of homsets as:

Λ→([e]) = [λ→y.let x = (x, y) in e] Λ→−1([e]) = [let (x, y) = x in e@→y]

It is easy to check that these two are inverse and natural. Symmetric monoidal

closure in KT is defined and proven suitable similarly. �

We will give a model of a theory T in the In-place Update category JT : CT →
KT by mapping types to their corresponding objects and primitive operations p

to the terms [x : A ` px : B]. To use this model to prove completeness we must

also have an equality between the interpretation of a judgement Γ ` e : A and an

arrow of JT : CT → KT derived from this judgement. To this end, for a context

Γ, define the corresponding type Γ by induction:

I = I x : A = A Γ1,Γ2 = Γ1 ⊗ Γ2

And given a term Γ ` e : A, then x : Γ ` Γ, x, e2 : A is derivable, where:

I, x, e = let ?I = x in e y : A, x, e = e[y/x]

(Γ1,Γ2), x, e = let (x1, x2) = x in Γ1, x1,Γ2, x2, e

This interpretation described above has the property that the interpretation

of each judgement is equal to these translated judgements, and so is a model

Proposition 8.4.7 (Term Model) The interpretation of a theory T in the In-

place Update Category defined in Theorem 8.4.6 is a model such that: JΓ ` e :

AK = [x : Γ ` Γ, x, e : A].

8.5. Commutative Typed Command Categories 229

Proof The property is proven by induction on the derivation of Γ ` e : A and

examining the interpretation. From this, and the construction of arrows of the

term category as equivalence classes, it follows that we have defined a model. �

This term model is used to prove completeness:

Theorem 8.4.8 (Completeness) If JΓ ` e1 : AK = JΓ ` e2 : AK for all models

then Γ ` e1 = e2 : A.

Proof We prove the contrapositive. Assume Γ ` e1 6= e2 : A. It is obviously

the case that this implies that x : Γ ` Γ, x, e1 6= Γ, x, e2 : A, since the context Γ

is the same in both cases. Hence JΓ ` e1 : AK 6= JΓ ` e2 : AK in the term model,

i.e. the interpretations are not equal in all models. �

8.5 Commutative Typed Command Categories

In this final section, we show that the Commutative Typed Command Categories

with the fullness property are an instance of In-place Update categories. This

will imply that the heap bounded state model of Chapter 7 is a model of λinplc.

We finish the chapter by translating the constructions for boxed data types and

singly linked lists into λinplc

Proposition 8.5.1 Given a commutative Typed Command Category J : C ×
S → K such that the functor J(−, I) : C → K is full and faithful, then it is the

case that J(−, I) : C → K is an In-place Update Category.

Proof We only need to check that we can make J(−, I) a strong symmetric

monoidal functor; the rest of the structure is taken directly from the structure of

J . Define the isomorphisms as:

mA,B : J(A, I)⊗J(B, I) = J(A×B, I⊗ I) ∼= J(A×B, I) o : J(1, I) = J(1, I)

These define J(−, I) as a strong monoidal functor by the coherence of the sym-

metric monoidal structure on S. �

230 Chapter 8. An In-place Update Calculus

By Theorem 5.3.14 and Propositions 5.4.1 and 5.4.5 we have the following

corollary:

Corollary 8.5.2 Given a finite product category C and a symmetric monoidal

category S, commutative S-parameterised monoidal strong monads on C that

have the right inverse property and both types of closure also give In-place Update

Categories.

This connection between linear types and (extended) monads improves on

previous connections established by Benton and Wadler [BW96] and Chen and

Hudak [CH97]. In comparison to Benton and Wadler’s relationship between com-

mutative monads and models of intuitionistic linear logic, we also require com-

mutativity, but due to the generalised definition of monad we can model state.

However, it does not appear that all In-place Update categories are expressible as

instances of the above parameterised monad structure, since it is not clear what

to choose for the category S. We have also improved on the construction of Chen

and Hudak since they only deal with a single linear type, whereas we may have

many.

By Theorem 7.1.1 and Proposition 7.1.2, the heap bounded state model of

Chapter 7 can interpret λinplc. We translate the extensions to the Typed Com-

mand Calculus presented in Chapter 7 to λinplc. Firstly, boxed data types. For

every state-free type A there is a boxed counterpart [A] that is stateful. There is

also a type ♦, representing unused memory cells. There are two operations:

storeA : ♦⊗ A→ [A] retrieveA : [A] → ♦⊗ [A]

The types and operations are interpreted as for the corresponding types and

operations in Chapter 7. The operations satisfy the axiom schemes:

storeA(retrieveAe) = e retrieveA(storeAe) = e

The singly linked list constructors are translated into λinplc as:

nilA : I → L(A) consA : A⊗ ♦⊗ L(A) → L(A)

8.5. Commutative Typed Command Categories 231

where A is a state-free type and L(A) is a new stateful type and we have assumed

syntactic sugar for n-ary products. The listfold syntax is translated into the

typing rule:

Γ1 ` c1 : B Γ2, x : B, y : A, d : ♦ ` c2 : B Γ3 ` c3 : L(A) sf(Γ2)

Γ1,Γ2,Γ3 ` listfoldA,B(c1, (x, y, d)c2, c3) : B

where the type B is the loop invariant. The context Γ2 must be state-free because

it used many times in the loop. These satisfy the following axioms:

listfoldA,B(c1, (x, y, d)c2, nilA?I) = c1

listfoldA,B(c1, (x, y
′, d′)c2, consA(y, d, xs)

=

let b = listfoldA,B(c1, (x, y
′, d′)c2, xs)

in c2[b/x, y/y
′, d/d′]

The expression of these constructs is much simpler in λinplc due to the mixing of

stateful and state-free types. As an example, consider the in-place map operation,

a translation of one of the examples of Chapter 7:

mapA,B = λ→f : A→ B.λ→l : L(A).

listfold(nil(?I), (l : L(B), a : A, d : ♦)cons(f@→a, d, l), l)

Chapter 9

Conclusions

We summarise the contributions of this thesis as follows:

• Formulation of λsep, an extension of the αλ-calculus that allows the flexible

expression of the separation relationships between members of the context;

along with a careful proof of the well-formedness of the equational theory

and a type-checking algorithm.

• A categorical semantics for λsep, for which the calculus is coherent, sound

and complete. The semantics is an extension of the Doubly Closed Cate-

gories used for the interpretation of the αλ-calculus.

• An extension of Day’s construction of closed symmetric monoidal categories

on pre-sheaf categories to the construction of our separation products. This

construction allows the embedding of any non-closed separation category in

one which is closed. We also presented two examples of this construction

that demonstrated how λsep can be used to model resources and separation

“globally” and “locally”.

• The definition of Parameterised Freyd categories, a categorical model of

typed localised side-effecting computation and their closed variant Typed

Command Categories. We also defined the appropriate generalisation of

the definition of a strong monad that is equivalent to parameterised Freyd

categories.

233

234 Chapter 9. Conclusions

• The definition of the Typed Command Calculus, a typed λ-calculus that

is coherently, soundly and completely modelled by Typed Command Cat-

egories. This calculus is the simply typed essence of other type systems in

the literature for typed memory management.

• We have given a concrete Typed Command Category based on Day’s con-

struction, showing how the calculus may be given an imperative semantics

with in-place update and bounded heap.

• An equational theory for a variant of Wadler’s linear type system with non-

linear types. We have demonstrated that it can be modelled coherently and

soundly by commutative Typed Command Categories, thereby explaining

its semantics in terms of call-by-value computation and permission man-

agement. We have also given a class of models that is complete, as well as

coherent and sound.

In addition, we have developed techniques and methods of presentation for

the substructural type theories we have developed in this thesis, in particular the

use of valid structural transitions, that have proved to be useful. They should

also be useful for the metatheory of other substructural and modal type λ-calculi.

The original motivation of this thesis was to provide a foundational type

system for in-place update, and to include a description of read-only usage based

on [AH02] (see below for information on read-only usage and passivity). We

originally thought that greater expression of separation in the type system and

applying this to aliasing control would be useful. The result of this is the work

presented on λsep. We now believe that the detailed expression of separation is

not as vital as careful control of permissions to access state, as embodied in λinplc

and the Typed Command Calculus. We had originally intended to describe values

that were available for in-place update as “separate from everything else in the

program”. However, it proved to be easier to take the notion of permission as

basic and work from there. We have not been able to give an account of read-

only access, and we discuss this below with reference to other type systems in the

literature that allow read-only access.

9.1. Related Work 235

9.1 Related Work

We divide the themes of the thesis into three parts, as we did in the introduction

chapter, and discuss related and future work. First we cover the concept of

substructural type theories that applies to all the systems we have investigated

in this thesis. We also refer to other work on substructural type theories that does

not directly relate to this thesis. Then we discuss the expression of separation in

a type theory and work related to our work on λsep, and then others’ work related

to λinplc and in-place update.

9.1.1 Substructural Typing

The name “Substructural Logics” was apparently first used in Došen’s historical

survey of such logics [Dos93] to describe logics that do not have a full complement

of structural rules. Došen identifies intuitionistic logic as the earliest substructural

logic since, from the point of view of Gentzen’s sequent calculus [Gen35, Sza69],

it is a restriction on the contexts of classical logic. Orlov [Orl28] was an early

pioneer who axiomatised a logic without Weakening, now called relevant logic.

Gentzen’s sequent calculus makes the structural rules explicit and separate from

the rules for the connectives, and it is this presentation that substructural type

theories take their inspiration from. Substructural Logics and their algebraic and

possible world semantics are described in detail in Restall’s book [Res00].

Church’s original formulation of the λ-calculus [Chu41] also included a variant

called λI that did not allow the abstraction of a variable x over a term that did

not contain it. By the Curry-Howard isomorphism [How80], we can see that a

typed version of this is isomorphic to relevant logic; logic without Weakening.

Lambek [Lam58] defined an extremely basic substructural logic without the

rules of Contraction, Exchange or Weakening. He applied this to the study

of natural language grammars in linguistics. Type systems without Exchange

have been investigated by Polakow and Pfenning [PP99] and applied to ordered

memory layout by Petersen et al [PHCP03] and to ordered resource usage by

Igarashi and Kobayashi [IK02].

236 Chapter 9. Conclusions

Ideas from substructural logics have also been used in elsewhere in computer

science to construct spatial logics and type systems that directly express spatial

relationships such as the layout of mobile processes [CG03, VCHP04] or memory

hierarchies [AJW03]. Hybrid logics lift aspects of the possible worlds structure

used to interpret spatial logics into the logic itself [AB01].

Possible worlds semantics for intuitionistic and modal logics was originally

developed by Kripke [Kri63c, Kri63b, Kri65, Kri63a], and has also been used

to give semantics to substructural logics, see Restall’s book for details [Res00].

Possible world semantics have been generalised categorically to (pre-)sheaves and

used to give models of higher-order logic [LS88, MM92]. Reynolds and Oles used

functor categories (a generalisation of presheaves) to give a semantics to the block

structure of Idealised Algol [Rey81, Ole82, Ole85, Ole97]. Day’s construction

[Day70], that we extended to λsep in Chapter 4 and used in Chapter 7, is a

categorical generalisation of the constructions given for substructural logics in

[Res00]. It has also been used to give functor category semantics of Reynolds’

Syntactic Control of Interference by O’Hearn and others [O’H93, OPTT99]. Pym,

O’Hearn and Yang gave several possible worlds semantics of BI based on Day’s

construction [POY04].

9.1.2 Separation Typing

We split the related work in this area into several (overlapping) themes and

discuss each separately.

Bunched Implications and the αλ-calculus Pym and O’Hearn describe the

Logic of Bunched Implications in [OP99] and Pym goes into more detail in

his monograph [Pym02]. The primary innovations of BI are the bunched

contexts and the combination of substructural A –∗ B and intuitionistic

A → B implications. These enable BI to model some aspects of resource

separation and have been used in Separation Logic [Rey02] as a language

for assertions about programs that manipulate pointers.

The αλ-calculus is the typed λ-calculus derived from BI via the Curry-

9.1. Related Work 237

Howard isomorphism. It is described in Pym’s book [Pym02] and by O’Hearn

in [O’H03].

We have already stated that our calculus λsep is an strict extension of the

αλ-calculus. We have given a translation from the αλ-calculus to λsep in

Section 2.4.1 that preserves typing and equality. To go further we would like

to be able to prove whether or not λsep is conservative over the αλ-calculus.

We conjecture that it is, but we do not currently have any way of proving

it. Possible ways forward are semantic approaches based on embedding a

model of the αλ-calculus in a model of λsep and using a categorical gluing

construction [Cro94]. The construction of a model of λsep in Section 4.3.3

from the free symmetric monoidal affine category may provide a way of

constructing the embedding. Another approach may be to consider first-

order αλ-calculus terms as separation graph inclusions and use the result

of [BdGR97] in some way.

Collinson, Pym and Robinson [CPR05] have defined a polymorphic version

of the αλ-calculus. They have extended the calculus with the type abstrac-

tion operators ∀X and ∃X of System F [Gir72, Rey74] (see also [GLT89]),

as well as new quantifiers ∀∗X and ∃∗X that only quantify over types sepa-

rated from the rest of the (type variable) context. They give a PER (Partial

Equivalence Relation) semantics of their new system. We describe possible

future work on a polymorphic extension of λsep below in Section 9.2.

POMset Logic The idea of augmenting contexts with a relation on the mem-

bers has also been used in Retoré’s POMset Logic [Ret97], an extension of

linear logic. POMset (Partially Ordered Multiset) logic extends linear logic

by adding a “before” connective A < B, such that A⊗B ` A < B ` A℘B.

This is interpreted, via proof nets, as being possible uni-directional com-

munication, with ⊗ as no communication and ℘ as possible bi-directional

communication. Retoré gives a coherence space semantics and a sequent

calculus, but does not define n-ary tuple or implication formulae, nor does

he consider nesting as a way of managing contexts. He proves that his exten-

sion of proof nets is complete for the coherence space semantics. We believe

238 Chapter 9. Conclusions

that Retoré’s coherence space semantics also works for a cut down variant

of λsep with non-symmetric relations, but without contraction, weakening

or function types. The “before” connective has also been considered by

Reddy [Red93], da S. Corrêa, Haeusler and de Paiva [dSCHdP96] as a way

of modelling temporal ordering in languages with state. The paper by da

S. Corrêa et al also describe a semantics based on Dialectica Categories.

Reddy’s model in [Red94] is the basis for our model of λsep without function

types in Section 3.2.5.

Syntactic Control of Interference and Passivity Reynolds introduced Syn-

tactic Control of Interference in [Rey78, Rey89]. It is essentially the call-by-

name imperative language Idealised Algol (IA) [Rey81] with a substructural

type system to prohibit interference. Interference in a imperative language

such as IA happens when two program phrases interact with a shared piece

of store. Programs which work correctly when passed non-interfering argu-

ments may fail when passed arguments that interfere. For example, consider

the procedure:

reverse = λx, y : integer array.

for i := 0 to 49 do

y[49− i] := x[i]

If called as reverse z z, then the procedure will not work as advertised; it

will leave in z two copies of the original first half, the first one in order and

the second reversed. Reynolds’ solution to this problem was to restrict the

rule of Contraction so that the variable z could not have been used twice,

and hence the above bad invocation of reverse would be untypable.

In [O’H03], O’Hearn describes an extended version of SCI, SCI+, which uses

the more powerful type system of the αλ-calculus to express the separation

required. This fixes some problems with expressing recursive procedures in

SCI.

It seems straightforward to extend O’Hearn’s SCI+ to use λsep and thus

increase further the flexibility of the type system. However, it is unclear

9.1. Related Work 239

to us if the extra flexibility is useful in anyway when one is programming

in an idiomatic style. The extra flexibility of SCI+ fixes a problem with

recursive function definitions, but to our knowledge no-one has demanded

the extra flexibility in separation given by SCI+.

Another important part of SCI is the concept of passivity. The restriction

of all uses of Contraction is often unnecessary when dealing with program

phrases that do not write to the store. For example, consider the invocation

of reverse like so:

let x′ = 〈λi.x[i], λi, v.x[i] := if v < l then v else l〉
let y′ = 〈λi.y[i], λi, v.y[i] := if v < l then v else l〉
reverse x′ y′

The variables x′ and y′ are bound to arrays using Reynolds’ decomposition

of imperative variables as pairs of retrieval and update commands [Rey81].

The two identifiers do not write to shared storage – assuming that x and

y do not interfere – but they both read from l. The shared l is harmless;

it will not cause the operation of reverse to be incorrect. Reynolds terms

the use of l as “passive” and states that passively used identifiers do not

interfere.

The concept of passivity was first described in [Rey78], and he noted some

difficulties in integrating it into the type system. In particular the appar-

ently simplest way gives a system which does not enjoy the subject reduction

property. This was fixed in a complicated way involving intersection types

in [Rey89] and fixed in a simpler way using split contexts in [OPTT99].

O’Hearn discusses the connections between passivity and the “!” modal op-

erator of linear logic in [O’H91]. We believe that passivity in SCI is linked

to the investigation of read-only types in linear type systems discussed in

the next section. The type system of [OPTT99] should provide inspiration

for developing a foundational linear type system with read-only types.

240 Chapter 9. Conclusions

9.1.3 In-place Update and Typed Command Categories

We again divide up related work in this area into several different (overlapping)

themes and describe each separately.

Notions of Computation Moggi introduced Computational Monads [Mog91,

Mog89a] in order to provide a uniform categorical semantics and metalan-

guage for programming languages with computational effects. Computa-

tional Monads abstract out the common factors of the difference between

pure and effectful computations and the sequencing of computations in

context common to all computational effects. Power and Robinson [PR97]

introduced premonoidal categories as an alternative to monads, as well as

κ-categories, an indexed category structure for modelling effectful languages

[PT99, PT97, Pow00b].

Monads have also proven extremely useful for incorporating imperative side-

effects into pure lazy functional languages such as Haskell [JW93].

Linear Logic Girard [Gir87] introduced Linear Logic, a substructural logic with

only the rule of Exchange. This logic has a negation that is self inverse,

so that A⊥⊥ ≡ A, but retains a straightforward constructive reading, un-

like classical logic. Linear Logic also introduces a modality “!” that brings

back the missing structural rules in a controlled manner. So the sequents

!A `!A⊗!A and !A ` I are derivable. The inclusion of both linear and

non-linear types in a single system was responsible for the large amount

of interest in using systems based on Linear Logic for memory manage-

ment. We cover this in the section on work related to λinplc below. See also

[Wad93b, Tro93] for further introductions to Linear Logic. The categorical

structure of classical linear logic, with the linear negation, had already been

investigated by Barr several years before [Bar79].

Abramsky [Abr93] gave operational semantics for calculi based on intuition-

istic and classical Linear Logic. Seely [See89] gave a categorical semantics

for Linear Logic. The calculus and semantics did not quite match, and this

precipitated a large amount of work on good calculi and semantics for linear

9.1. Related Work 241

logic [Wad93a, Wad92, BBdPH93b, Ben95, BBdPH92, BBdPH93a, Bar96].

In particular the ! modality was a source of problems for constructing a

term calculus closed under substitution. Ambler [Amb92] has investigated

the categorical semantics of first-order linear logic.

Linear Logic has also proven useful for structuring the semantics of pro-

gramming languages. The categories used in Domain theory [Plo93, BPR00]

have some of the structure of intuitionistic linear logic as does the structure

of Game Semantics [AMJ94, AM96], due to Linear Logic’s number-of-uses

interpretation.

Type systems based on linear logic have also been used for strictness analysis

in compilers for lazy functional languages [WJ99].

Linear Logic, Memory Management and Side-effects Lafont [Laf88] noted

that a language derived from linear logic has a useful “single-pointer” prop-

erty that means that an implementation of such a language does not require

a garbage collector since re-use of memory may be statically determined by

the compiler. The static reuse of memory had already been considered

by people such as Darlington and Burstall [DB76], but Linear Logic gave

an apparent solid theoretical justification for such optimisations. Baker

[Bak92, Bak95] followed this up with Linear Lisp, a language that allowed

no aliasing and so had no need of a garbage collector.

Lafont and Baker considered a use of the contraction rule of !’d variables in

Linear Logic to be operationally interpreted as copying. Chirimar, Gunter

and Riecke [CGR96] presented a different interpretation, based on refer-

ence counting. Turner and Wadler [TW99] compare the two approaches.

Mackie [Mac94] and Lincoln and Mitchell [LM92] also presented operational

interpretations of linear logic with useful memory management properties.

The use of the ! modality for introducing non-linear types was investigated

by Wadler [Wad91] and found to be a cause of problems for obtaining good

memory management invariants. The use of the dereliction rule means that,

at run-time, values of linear and non-linear types can become confused.

242 Chapter 9. Conclusions

Wadler’s system presented in [Wad90] split linear and non-linear types and

is the main inspiration for the system we presented in Chapter 8, as well

as most practical substructural type systems developed subsequently. See

[Wal05] and [AFM05] for examples.

The system presented in [Wad90] allows explicit use of side-effects in a

functional language via in-place update, as well as implicit static mem-

ory management. This was exploited by Hofmann [Hof00] to do program-

mer controlled explicit memory management. Guzmán and Hudak [GH90]

also developed a system for in-place update, called the Single Threaded

λ-calculus.

The pure functional programming language Concurrent Clean [NSvEP91]

has included a linear-inspired system called Uniqueness types for incorpo-

rating side-effects [BS93]. This system appears to be slightly different to

Wadler’s system that we have investigated in this thesis, due to the possi-

bility of a call-by-name interpretation. Harrington [Har01] has developed

a logic and categorical semantics for Uniqueness types, which should allow

comparisons between the two systems. The logic programming language

Mercury also uses uniqueness assertions to control side-effects [Ove03].

The connection between linear typing and the monadic expression of side-

effects has been investigated by Benton and Wadler [BHM02] and Chen and

Hudak [CH97]. The presentation of a linear type system in terms of param-

eterised monads in this thesis gives a better connection since, even though it

also requires commutativity as Benton and Wadler do, it widens the range

of commutative monads to include state monads, as well as allowing more

than the one linear type as allowed by Chen and Hudak’s construction.

Chen and Hudak’s construction of monads from algebras appears to pre-

figure the construction of computational monads from algebras by Plotkin

and Power [PP02]. See below for more information on this subject.

Read-only Types Despite the incorporation of non-linear types in linear type

systems, the systems have proven to be much too restrictive in practise. The

9.1. Related Work 243

primary reason identified by many authors has been that read-only uses

of variables have been counted as destructive, meaning that the aliasing

control is far too strong when one only wishes to have multiple readers on a

variable. Wadler [Wad90] identified this in his first paper on linear typing

by introducing a special let! expression that allowed a linear value to be

aliased in a sub-expression as long as it was only read from.

The idea of read-only variables has been followed up by many others. As-

pinall and Hofmann use it in their Aspect-typing system to make the type

system of LFPL more flexible [AH02]. Odersky defines observable linear

types that also provide a similar flexibility [Ode92] and Kobayashi defines

Quasi-linear types to do a similar thing [Kob99]. Walker and Watkins

[WW01] use a variant of Wadler’s construct for non linear access to regions

in their calculus. Fähndrich and DeLine [FD02] describe the solution in the

Vault programming language for providing temporary unrestricted access

to linear variables.

We consider a good explanation of read-only types essential for a good

foundational in-place update type theory and we wish to extend λinplc to

incorporate some form of read-only types based on the insights of the above

authors. We believe that read-only types are related to passivity for SCI.

This connection has already been investigated in part by O’Hearn [O’H91].

Other approaches to statically controlling side-effects There have been many

other approaches to statically controlling side-effects. We mention some of

the more influential ones here. Effect Systems [LG88] augment traditional

type systems with information about the side-effects caused by a program’s

execution. Wadler [Wad99] has presented a connection between effect sys-

tems and monads indexed by effect types. The difference between the in-

dexed monads presented by Wadler and our parameterised monads is that

the indexed monads are indexed by one variable representing the effects

encapsulated by that monad, whereas our parameterisation represents the

start and finish states of the effectful computation.

244 Chapter 9. Conclusions

Another approach to static memory management is that of Tofte and Talpin’s

region calculus [TT97]. This statically allocates dynamic program data into

a stack of lexically scoped regions. Since the lifetime of a region is deter-

mined by the structure of the program code it does not require a garbage

collector. Walker and Watkins [WW01] have used linear typing to remove

the lexical scoping limitation by using the unique pointer property to al-

low safe deallocation of regions. Memory management by regions has been

integrated into the Cyclone language [JMG+02, GMJ+02].

There have also been many other type systems more loosely based on Lin-

ear Logic than the ones described above, including Alias Types [WM00,

SWM00], the Capability Calculus [WCM00] and Stateful Views [XZL05].

We describe possible connections to the work in this thesis below in Section

9.2

Moving from type systems to program logics, Separation Logic [Rey02,

IO01] is a logic based on Hoare logic [Hoa69, Flo67] that uses BI to make

assertions about heaps with pointers. The main feature of Separation Logic

that makes it useful for reasoning about programs that manipulate the heap

is the Frame rule:
{P}C{Q}

{P ∗R}C{Q ∗R}

whereR does not mention any of the variables modified by C. This allows an

assertion about a program C to be placed within a larger separate context.

Therefore, one can reason about C locally and then insert it into a proof for

a larger program and not have to worry about aliasing. Given our semantics

in Chapter 7, we believe that there is a close connection between this rule

and the definition of premonoidal structure with respect to S that we gave

in Chapter 5.

Separation Logic has been successfully used to verify complex programs

involving pointers [BTSR04] and has recently been extended to concur-

rent programs [O’H05]. Birkedal, Torp-Smith and Yang [BTSY05] have de-

scribed a type system for Idealised Algol based on Separation Logic and the

9.2. Some Directions for Future Work 245

structure of the semantics theyx describe seems very close to our monoidal

parameterised monads in Chapter 5.

Algebras and Notions of Computation The inspiration for the results pre-

sented in Appendix B was the work of Plotkin and Power on determining

monads from computationally natural systems of operations and equations

[PP04, PP02]. With Hyland, they have applied this to the problem of

combining monads [HPP02] and building up descriptions of programming

languages in a modular fashion.

Plotkin and Power’s method has been used by Stark [Sta05] to reconstruct

previously known fully abstract semantics of the finite π-calculus. Also,

the basic idea seems similar to that of Chen and Hudak’s construction of

monads from operations and axioms for linear datatypes [CH97].

9.2 Some Directions for Future Work

Finally, we discuss some directions for future work that we would like to follow

up.

Generalisations of λsep We consider non-symmetric relations as a variation of

λsep. Right from the start we have assumed that the separation relations

S used in λsep are symmetric. In fact, the results we have proven also go

through for non-symmetric relations as well. The existing structural tran-

sitions remain the same, and there is an option of adding a new structural

transition Transitive, where TC(S) is the transitive closure of S:

S′ ⊆ TC(S)

S(
−→
Γ) ⇒ S′(

−→
Γ)

(Transitive)

The categorical semantics can be extended by adding an additional natural

transformation with the appropriate coherence requirements.

The trickier part comes with trying to thinking of a use for non-symmetric

relations. In [Atk04] we attempted to use it for describing allowable in-

formation flow, in the context of a security type system [SM03], but this

246 Chapter 9. Conclusions

does not quite work, because there is no notion of control flow in λsep.

Other possible uses may derive from the game semantics sketched below, or

other substructural type systems that currently record orderings on context

members by restricting the use of the exchange rule.

Categorical approaches to presenting substructural type theories In this

thesis we have used a generalised presentation of substructural type theories,

specialised to our needs. The presentation of contexts and valid structural

transitions, and their interpretation as functors and natural transforma-

tions, is obviously related in some way to the presentation of structures

on categories as 2-monads on 2-categories. We note the work of Lüth and

Ghani on categorical rewriting systems [LG97] and the work of Power, Kelly

and others on 2-monads, algebras and their application to substructural

type systems and coherence [Pow95, PT05, Rob02, KP93, Pow89].

Polymorphic and Dependent λsep Extending λsep to the polymorphism de-

scribed in [CPR05] would presumably include type quantifiers ∀SX1, ..., Xn

and ∃SX1, ..., Xn, where S is a separation relation of size n+ 1. This would

match the n-ary function types that λsep has. Another possible direction

of extension for λsep would be to consider polymorphism over separation

relations. For instance, a program may be typable as:

∀S.S(A1, A2)
[]2−→ []2(A1, A2)

This kind of polymorphism may also require some kind of bounded quan-

tification, such as that found in System F<: [CMMS94]. It may also be for-

mally similar to the polymorphism over linear and non-linear types found

in [WJ99].

To provide a semantics for such a polymorphic calculus, we consider a pos-

sible PER semantics. We could take the usual definition of a total combi-

natory algebra (A, ·, k, s) [Lon95] and require a symmetric relation of sep-

aration on A, written x#y, such that if a#c and b#c then (a · b)#c. The

intuition is that the members of A represent computational objects that

9.2. Some Directions for Future Work 247

carry resources, the separation of which is described by #. We can now use

the usual construction to generate the category PER(A) of partial equiv-

alence relations over A and realisable functions, with the slight alteration

that an element f of A used to realise an arrow must be resource-free, in

the sense that ∀a.f#a. This stops arrows from leaving more resources in

the result than were in the input. We can define Separation Products on

PER(A):

x(S(A1, ..., An))y

⇔ ∀i.(πi · x)Ai(πi · y) ∧ (∀(i, j) ∈ S.(πi · x)#(πj · x) ∧ (πi · y)#(πj · y))

where πi denotes the appropriate projection combinator in A. Separation

functions may be defined similarly. For a concrete example of this kind

of structure take β-equivalence classes of untyped λ-terms over some set

of constants R. The resources contained within each equivalence class is

defined as the intersection of all the sets of constants from R used by the

members of the equivalence class. Two equivalence classes are separate if

the intersection of their resources is empty.

Going further, we would also like to investigate dependently typed variants

of λsep, following the Bunched Dependent Type Theory of Stark and Schöpp

[SS04].

Distinguishing Reference and Permissions A primary limitation of the sys-

tems discussed in Chapters 6 and 8 is that they conflate the notions of

reference and permission to access that reference. Successful formalisms

for reasoning about and safely using complex imperative concepts such as

pointers have often separated the notions of reference and permission. Ex-

amples include Separation Logic [Rey02] (see in particular [OYR04]), Alias

Types [WM00, SWM00], the Capability Calculus [WCM00] and Stateful

Views [XZL05].

Following Xi et al ’s work on Stateful Views, we propose future work based

on Xi and Pfenning’s Dependent ML [XP99], extending the Typed Com-

mand Calculus of Chapter 6. Indexing types by location variables in the

248 Chapter 9. Conclusions

style of Alias Types means that we can connect pure value types contain-

ing references to state types representing permissions. Judgements would

therefore look like:

Θ; Γ; ∆ ` e : A;S

where Γ, ∆, A and S all depend on the location context Θ. Pointers would

be represented as singleton value types ptr(l), as in Alias Types, and per-

missions by state types [l 7→ int], representing the type stored in location l.

Storage and retrieval operations would be typed thus:

store : Πl.(ptr(l)× Int, [l 7→ ♦]) → (1, [l 7→ Int])

retrieve : Πl.(ptr(l), [l 7→ Int]) → (Int, [l 7→ Int])

where Πl... denotes a dependent product over a location variable. Note that

these are types in the value calculus.

We expect that the main advantage of such a system, apart from its flexi-

bility, is that we can extract a traditional imperative program by forgetting

all the state parts since pointers are no longer represented by values of state

type, as they are in the Typed Command Calculus. Thus the typing es-

sentially is equivalent to a proof in a logic similar to Separation Logic that

verifies the safety of the extracted imperative program.

We can foresee one main potential disadvantage of the direct addition of

indexed types to the Typed Command Calculus: the expression of existen-

tial types. Dependent product types, as used in the store and retrieve

operations above, can be useful just over pure value functions, but it would

be very useful for existential packages of value and state to be constructed.

One useful instance is an allocation primitive that allocates some memory

and returns a pointer to it and a permission. Without existential types

we would have to incorporate such an operation as a construct in the lan-

guage, or in a continuation passing style. Alias Types [SWM00] gets around

this problem by building continuation passing style directly into the typing

rules.

9.2. Some Directions for Future Work 249

We expect that such a calculus should be soundly and completely modelled

categorical by an application of Lawvere’s hyperdoctrines [Law70], using a

category of location contexts for indexing. Using the connection between

the Typed Command Calculus and λinplc described in this thesis, we expect

that we should also be able to derive a categorical semantics for the lan-

guage L3 [MAF05], a language with linear types that separates reference

and permission, albeit possibly without L3’s existential types.

Better semantics The concrete model of in-place update presented in Chapter

7 is suitable for a simple model of LFPL [Hof00]. However, it misses several

important aspects of real programming languages, such as allocation and

deallocation and recursion. In addition, it does not seem suitable for models

of the indexed type theory discussed above. Also, we have not related it

in any way to the operational semantics of programming languages, which

are usually taken as “the” semantics for proving type safety. Ahmed’s step

indexed models of mutable state [Ahm04], as used in [Ben05] and [MAF05]

may provide a good semantics with the required properties.

Algebras and Parameterised Monads We believe it would be worthwhile to

follow the work of Plotkin and Power [PP04, PP02] and develop a theory of

algebras for parameterised monads suitable for modelling in-place update,

extending the preliminary work presented in Appendix B. A crucial first

step would be to find a suitable notion of “parameterised” Lawvere theory

and prove a similar result to that for non-parameterised enriched Lawvere

theories and finitary enriched monads by Power [Pow00a]. An interesting

extra twist is provided by the monoidal structure possible on parameterised

monads, and it remains to be seen how this would affect a definition of

parameterised Lawvere theory.

Appendix A

Proofs for Chapter 5

A.1 Proofs for Theorem 5.2.17

Theorem 5.2.17 states that the categories CPF(C,S) and CSPM(C,S) are equiv-

alent. To show this equivalence we define a functor FCSPM(C,S) → CPF(C,S):

(T, η, µ, τ,− → −,Λ)) 7→ (CT , JT , [f, c 7→ f ⊗ c; τ], [c, f 7→ c⊗ f ; τ ′],− → −,Λ)

f : T1 ⇒ T2 7→ (g : (A, S1) → (B, S2)) 7→ g; fS1,S2,B

where τ ′ is the co-strength defined as σ; τ ;T (S1, S2, σ) and the functor Ff is

necessarily always identity on objects.

A.1.1 The functor F is well-defined

We verify that this definition is well-defined on objects by checking each of the

required conditions of Definition 5.2.1. We know from the discussion after Defi-

nition 5.2.8 that CT is a category and JT is a functor. The mappings of arrows <

and = are also functors. On identities:

idA < idB,S = id⊗ η; τ = η = id(A×B,S) idA,S = idB =

η ⊗ id;σ; τ ;T (S, S, σ) = σ; id⊗ η; τ ;T (S, S, σ) = σ; η;T (S, S, σ) = η = id(A×B,S)

On composition, for <:

(f ; g) < (c1; c2)

251

252 Appendix A. Proofs for Chapter 5

= (f ; g)⊗ (c1;T (S1, S2, c2);µ); τ

= f ⊗ c1; g ⊗ T (S1, S2, c2);A3 ⊗ µ; τ

= f ⊗ c1; g ⊗ T (S1, S2, c2); τ ;T (S1, S2, τ);µ

= f ⊗ c1; τ ;T (S1, S2, g ⊗ c2; τ);µ

= f < c1; g < c2

and for =:

(c1; c2) = (f ; g)

= (c1;T (S1, S2, c2);µ)⊗ (f ; g);σ; τ ;T (S1, S3, σ)

= c1 ⊗ g;T (S1, S2, c2)⊗ g;σ;A3 ⊗ µ; τ ;T (S1, S3, σ)

= c1 ⊗ g;T (S1, S2, c2)⊗ g;σ; τ ;T (S1, S2, τ);µ;T (S1, S3, σ)

= c1 ⊗ g;σ; τ ;T (S1, S2, g ⊗ c2; τ);µ;T (S1, S3, σ)

= c1 ⊗ g;σ; τ ;T (S1, S2, g ⊗ c2; τ ;T (S2, S3, σ));µ

= c1 ⊗ g;σ; τ ;T (S1, S2, σ;σ; g ⊗ c2; tau;T (S2, S3, σ));µ

= c1 ⊗ g;σ; τ ;T (S1, S2, σ);T (S1, S2, c2 ⊗ g;σ; tau;T (S2, S3, σ));µ

= c1 = g; c2 = g

The functors JT , < and = obviously respect the monoidal structure of C on ob-

jects. On arrows, this follows from the naturality of strength and the interaction

between the strength and the monad unit:

f < JT (g, s) = f ⊗ (η;T (S1, s, g)); τ

= A1 ⊗ η; τ ;T (S1, s, f ⊗ g)

= η;T (S1, s, f ⊗ g)

= JT (f ⊗ g, s)

The case for = can be verified in a similar way, using the naturality of the sym-

metry isomorphisms.

Naturality of JT (σ,−) in the first position:

A< c; JT (σ, S2)

A.1. Proofs for Theorem 5.2.17 253

= A⊗ c; τ ;T (S1, S2, η;T (S2, S2, σ));µ

= A⊗ c; τ ;T (S1, S2, σ)

= σ;σ;A⊗ c; τ ;T (S1, S2, σ)

= σ; c⊗ A;σ; τ ;T (S1, S2, σ)

= η;T (S1, S1, σ);T (S1, S1, c⊗ A;σ; τ ;T (S1, S2, σ));µ

= JT (σ, S1); c= A

Naturality of JT (σ,−) in the second position:

c= A; JT (σ, S2)

= c⊗ A;σ; τ ;T (S1, S2, σ);T (S1, S2, η;T (S2, S2, σ));µ

= σ;A⊗ c; τ ;T (S1, S2, σ);T (S1, S2, σ)

= σ;A⊗ c; τ

= η;T (S1, S1, σ);T (S1, S1, A⊗ c; τ);µ

= JT (σ, S1);A< c

Naturality of JT (λ,−):

I < c; JT (λ, S2)

= I ⊗ c; τ ;T (S1, S2, η;T (S2, S2, λ));µ

= I ⊗ c; τ ;T (S1, S2, λ)

= I ⊗ c;λ

= λ; c

= η;T (S1, S1, λ);T (S1, S1, c);µ

= JT (λ, S1); c

Naturality of JT (ρ,−):

c= I; JT (ρ, S1)

= c⊗ I;σ; τ ;T (S1, S2, σ);T (S1, S2, η;T (S2, S2, ρ));µ

= c⊗ I;σ; τ ;T (S1, S2, σ; ρ)

= c⊗ I;σ; τ ;T (S1, S2, λ)

254 Appendix A. Proofs for Chapter 5

= c⊗ I;σ;λ

= c⊗ I; ρ

= ρ; c

= η;T (S1, S1, ρ);T (S1, S1, c);µ

= JT (ρ, S1); c

Naturality of JT (α,−) in the first command position:

(c=B) = C; JT (α, id)

= (c⊗B)⊗ C; (σ; τ ;T (S1, S2, σ))⊗ C;σ; τ ;T (S1, S2, σ);T (S1, S2, η;T (S2, S2, α));µ

= (c⊗B)⊗ C; (σ; τ ;T (S1, S2, σ))⊗ C;σ; τ ;T (S1, S2, σ;α)

= (c⊗B)⊗ C;σ ⊗ C;σ;C ⊗ τ ; τ ;T (S1, S2, C ⊗ σ;σ;α)

= (c⊗B)⊗ C;σ ⊗ C;σ;C ⊗ τ ; τ ;T (S1, S2, α
−1;σ ⊗ A;σ)

= (c⊗B)⊗ C;σ ⊗ C;σ;α−1; τ ;T (S1, S2, σ ⊗ A;σ)

= (c⊗B)⊗ C;α;A⊗ σ;σ; τ ;T (S1, S2, σ ⊗ A;σ)

= α; c⊗ (B ⊗ C);A⊗ σ;σ; τ ;T (S1, S2, σ ⊗ A;σ)

= α; c⊗ (B ⊗ C);σ; τ ;T (S1, S2, σ)

= η;T (S1, S1, α);T (S1, S2, c⊗ (B ⊗ C);σ; τ ;T (S1, S2, σ));µ

= JT (α, S1); c= (B ⊗ C)

In the third command position:

(A⊗B) < c; JT (α, S2)

= (A⊗B)⊗ c; τ ;T (S1, S2, η;T (S2, S2, α));µ

= (A⊗B)⊗ c; τ ;T (S1, S2, α)

= (A⊗B)⊗ c;α;A⊗ τ ; τ

= α;A⊗ (B ⊗ c);A⊗ τ ; τ

= η;T (S1, S1, α);T (S1, S1, A⊗ (B ⊗ c);A⊗ τ ; τ);µ

= JT (α, S1);A< (B < c)

In the second command position, using the coherence of the symmetric monoidal

A.1. Proofs for Theorem 5.2.17 255

structure of C, and the other naturality properties of JT (α,−) and JT (σ,−):

(A< c) = C; JT (α, S2)

= (A< c) = C; JT (σ ⊗ C;α;σ−1;α;A⊗ σ, S2)

= JT (σ ⊗ C;α;σ−1;α;A⊗ σ, S1);A< (c= C)

= JT (α, S1);A< (c= C)

Next, we verify that F is well-defined on arrows. Given f : T1 ⇒ T2, an arrow

of CSPM(C,S), then Ff is a functor, preserving identities (η1,S,A; fS,S,A = η2,S,A)

and composition:

g;T1h;µS1,S2,S3,C ; fS1,S3,C

= g;T1h; fS1,S2,T (S2,S3,C);T2(S1, S2, fS2,S3,C);µ2,S1,S2,S3,C

= g; fS1,S2,B;T2(S1, S2, h; fS2,S3,C);µ2,S1,S2,S3,C

Moreover, it is an arrow of CPF(C,S). Firstly, it commutes with JT :

Ff(JT1g) = Ff(g; η1,S,B) = g; η1,S,B; fS,S,B = g; η2,S,B = JT2g

It commutes with <:

<2(g, Ffc)

= <2(g, c; fS1,S2,B′)

= g ⊗ (c; fS1,S2,B′); τ2,A′,S1,S2,B′

= g ⊗ c; τ1,A′,S1,S2,B′ ; fS1,S2,B′

= Ff(g <1 c)

The steps to verify that it commutes with = are similar. Finally, we verify that

F itself is a functor. Preservation of identities of CSPM(C,S):

F (id)c = c; id = Id(c)

and the composition of CSPM(C,S):

F (f ; g)c = c; f ; g = Fg(c; f) = Ff(Fg(c)) = (Ff ;Fg)c

So F is a functor.

256 Appendix A. Proofs for Chapter 5

A.1.2 The functor F is full and faithful

We first prove a simple lemma about functors between Kleisli categories that will

be useful for the calculations below.

Lemma A.1.1 (Fact about functors between Kleisli categories) If f : CT1 →
CT2 is a functor such that JT1 ; f = JT2 then g; f(id) = f(g)

Proof By calculation:

g; f(id)

= g; η2;T2(S1, S1, f(id));µ2

= f(g; η1);T2(S1, S1, f(id));µ2

= f(g; η1;µ1)

= f(g)

�

Recall that we have defined the supposed inverse to the arrow f : F (T1) →
F (T2) as the family of arrows (F−1f)S1,S2,A = f(idT1(S1,S2,A)). We must show

that this family is an arrow of CSPM(C,S). Firstly, naturality in S2 and A, for

s : S2 → S ′2 and g : A→ B:

f(id);T2(S1, s, g)

= f(id);T2(S1, s, g);T2(S1, S
′
2, η2);µ2

= f(id);T2(S1, S2, η2;T2(S2, s, g));µ2

= f(id);T2(S1, S1, f(η1;T1(S2, s, g)));µ2

= f(T1(S1, S2, η1;T1(S2, s, g));µ1)

= f(T1(S1, s, g; η1);µ1)

= f(T1(S1, s, g))

= T1(S1, s, g); f(id)

Naturality in S1, for s : S1 → S ′1:

f(id);T2(s, S2, A)

A.1. Proofs for Theorem 5.2.17 257

= f(id);T2(s, S2, A); η2;µ2

= η2;T2(S1, S1, f(id));T2(S1, S1, T2(s, S2, A));µ2

= η2;T2(S1, S1, f(id));T2(S1, s, T2(S
′
1, S2, A));µ2

= η2;T2(S1, s, T1(S
′
1, S2, A));T2(S1, S

′
1, f(id));µ2

= f(η1;T1(S1, s, T1(S
′
1, S2, A)));T2(S1, S

′
1, f(id));µ2

= f(η1;T1(S1, s, T1(S
′
1, S2, A));µ1)

= f(η1;T1(S1, S1, T1(s, S2, A));µ1)

= f(T1(s, S2, A); η1;µ1)

= f(T1(s, S2, A))

= T1(s, S2, A); f(id)

Now we must verify that the defined natural transformation commutes with all

the structure of the parameterised monad. Firstly, it commutes with η:

η1; f(id) = f(η1) = η2

It commutes with µ:

µ1; f(id)

= f(µ1)

= f(id);T2(S1, S2, f(id));µ2

Finally, it commutes with τ :

τ1; f(id)

= f(τ1)

= f(A⊗ T1(S1, S2, B); τ1)

= A⊗ f(id); τ2

The last remaining task is to show that the two operations are mutually

inverse. The following two calculations show this, where the second equality

follows from Lemma A.1.1.

F−1(Ff) = F−1(g 7→ g; f) = f

F (F−1f) = F (f(id)) = g 7→ g; f(id) = g 7→ f(g) = f

258 Appendix A. Proofs for Chapter 5

Hence F is full and faithful, as required.

A.1.3 The functor F is essentially surjective

Recall that, given an object X = (K, J,<,=,− → −,Λ) of CPF(C,S) we have

defined the object Y = (TX , ηX , µX , τX ,− →X −,ΛX) as:

TX(S1, S2, A) = (I, S1) → (A, S2)

ηX
S,A = Λ(ρA, S)

µX
S1,S2,S3,A = Λ(ev; J(ρ−1, S2); ev)

τX
A,S1,S2,B = Λ(J(α, S1);A< ev)

(A, S1) →X (B, S2) = (A, S1) → (B, S2)

(A, S1) →X f = (A, S1) → (J(ρ−1, S2); Λ−1(f))

ΛX(f) = Λ(J(ρ−1
A⊗B, S1); Λ−1(f))

We must first show that this really is an object of CSPM(C,S). The func-

torality of TX follows directly from the functorality of − → −. We check all the

(di)naturality conditions of the defined families of arrows. Firstly, naturality of

the family ηX
S,A in A, for f : A→ A′:

f ; ηX
S,A′ = f ; Λ(ρA′ , S)

= Λ((f ⊗ I; ρA′ , S))

= Λ((ρA′ , S); (f, S))

= Λ(ρA′ , S); (I, S) → (f, S)

= ηX
S,A;TX(S, S, f)

Dinaturality of the family ηX
S,A in S, for s : S1 → S2:

ηX
A,S1

;TX(S1, s, A) = Λ(ρA, S1); (I, S1) → (A, s)

= Λ((ρA, S1); (A, s))

= Λ((A⊗ I, s); (ρA, S2))

= Λ(ρA, S2); (I, s) → (A, S2)

= ηX
A,S2

;TX(s, S2, A)

A.1. Proofs for Theorem 5.2.17 259

Naturality of the family µX
S1,S2,S3,A in S1, S3 and A, for s1 : S1 → S ′1, s3 :

S3 → S ′3 and f : A → B: (we elide the subscripts on the ev and ρ natural

transformations to conserve space)

TX(s1, S2, T
X(S2, s3, f));µX

S1,S2,S′3,B

= (I, s1) → ((I, S2) → (f, s3), S2); Λ(ev; (ρ−1, S2); ev)

= Λ(((I, s1) → ((I, S2) → (f, s3), S2)⊗ I, S1); ev; (ρ−1, S2); ev)

= Λ(((I, S ′1) → ((I, S2) → (f, s3), S2)⊗ I, s1); ev; (ρ−1, S2); ev)

= Λ(((I, S ′1) → ((I, S2) → (f, s3), S2)⊗ I, S1); ev; (ρ−1
, S2); ev); (I, s1) → (B, S ′3)

= Λ(ev; (ρ−1, S2); ev; (f, s3)); (I, s1) → (B, S ′3)

= Λ(ev; (ρ−1, S2); ev); (I, s1) → (f, s3)

= µX
S′1,S2,S3,A;TX(s1, s3, f)

Dinaturality of the family µX
S1,S2,S3,A in S2, for s2 : S2 → S ′2: (again we elide the

subscripts on ev and ρ)

TX(S1, s2, T
X(S ′2, S3, A));µX

S1,S′2,S3,A

= (I, S1) → ((I, S ′2) → (A, S3), s2); Λ(ev; (ρ−1, S ′2); ev)

= Λ(((I, S1) → ((I, S ′2) → (A, S3), s2)⊗ I, S1); ev; (ρ−1, S ′2); ev)

= Λ(ev; (ρ−1, S2); ((I, S ′2) → (A, S3)⊗ I, s2); ev)

= Λ(ev; (ρ−1, S2); ((I, s2) → (A, S3)⊗ I, S2); ev)

= Λ(((I, S1) → ((I, s2) → (A, S3), S2)⊗ I, S1); ev; (ρ−1, S2); ev)

= (I, S1) → ((I, s2) → (A, S3), S2); Λ(ev; (ρ−1, S2); ev)

= TX(S1, S2, T
X(s2, S3, A));µX

S1,S2,S3,A

Naturality of the family τX
A,S1,S2,B in all variables, for f : A→ A′, s1 : S1 → S ′1,

s2 : S2 → S ′2 and g : B → B′:

f ⊗ T (s1, s2, g); τA′,S1,S′2,B′

= f ⊗ (I, s1) → (g, s2); Λ((α, S1);A
′ < ev)

= Λ(((f ⊗ (I, s1) → (g, s2))⊗ I, S1); (α, S1);A
′ < ev)

260 Appendix A. Proofs for Chapter 5

= Λ((α, S1); (f ⊗ ((I, s1) → (g, s2)⊗ I), S1);A
′ < ev)

= Λ((α, S1); (A⊗ ((I, s1) → (B, S2)⊗ I), S1);A< ev; (f ⊗ g, s2))

= Λ((α, S1); (A⊗ ((I, S ′1) → (B, S2)⊗ I), s1);A< ev); (f ⊗ g, s2))

= Λ(((A⊗ (I, S ′1) → (B, S2))⊗ I, s1); (α, S1);A< ev); (f ⊗ g, s2))

= Λ((α, S1);A< ev); (I, s1) → (f ⊗ g, s2)

= τX
A,S′1,S2,B;T (s1, s2, f ⊗ g)

Now we verify the required axioms of monad structure hold. The first unit

property for ηX and µX :

ηX
S1,T (S1,S2,A);µS1,S2,S3,A

= Λ(ρ, S1); Λ(ev; (ρ−1, S1); ev)

= Λ((Λ(ρ, S1)⊗ I, S1); ev; (ρ−1, S1); ev)

= Λ(Λ−1(Λ(ρ, S1)); (ρ−1, S1); ev)

= Λ((ρ, S1); (ρ−1, S1); ev)

= idT X(S1,S2,A)

The second unit property for ηX and µX :

TX(S1, S2, ηS2,A);µX
S1,S2,S2,A

= (I, S1) → (Λ(ρ, S2), S2); Λ(ev; (ρ−1, S2); ev)

= Λ(((I, S1) → (Λ(ρ, S2), S2)⊗ I); ev; (ρ−1, S2); ev)

= Λ(ev; (ρ−1, S2); (Λ(ρ, S2)⊗ I, S2); ev)

= Λ(ev; (ρ−1, S2); Λ−1(Λ(ρ, S2)))

= Λ(ev)

= idT X(S1,S2,A)

The associativity property for µX :

TX(S1, S2, µS2,S3,S4,A);µX
S1,S2,S4,A

= (I, S1) → (Λ(ev; (ρ−1, S3); ev), S2); Λ(ev; (ρ−1, S2); ev)

= Λ(((I, S1) → (Λ(ev; (ρ−1, S3); ev), S2)⊗ I, S1); ev; (ρ−1, S2); ev)

A.1. Proofs for Theorem 5.2.17 261

= Λ(ev; (ρ−1, S2); (Λ(ev; (ρ−1, S3); ev)⊗ I, S2); ev)

= Λ(ev; (ρ−1, S2); ev; (ρ−1, S3); ev)

= Λ(Λ(ev; (ρ−1, S2); ev); ev; (ρ−1, S3); ev)

= Λ(ev; (ρ−1, S2); ev); Λ(ev; (ρ−1, S3); ev)

= µX
S1,S2,S3,T (S3,S4,A);µ

X
S1,S3,S4,A

The interaction of τX and λ:

τX
I,S1,S2,A;TX(S1, S2, λA)

= Λ((α, S1); I < ev); (I, S1) → (λA, S2)

= Λ((α, S1); I < ev; (λA, S2))

= Λ((α, S1); (λ, S1); ev)

= Λ((λ⊗ I, S1); ev)

= λ; Λ(ev)

= λ

The interaction of τX and α:

αA,B,T X(S1,S2,C);A⊗ τX
B,S1,S2,C ; τX

A,S1,S2,B⊗C

= α;A⊗ Λ((α, S1);B < ev); Λ((α, S1);A< ev)

= α; Λ(((A⊗ Λ((α, S1);B < ev))⊗ I, S1); (α, S1);A< ev)

= α; Λ((α, S1); (A⊗ (Λ((α, S1);B < ev)⊗ I), S1);A< ev)

= α; Λ((α, S1); (A⊗ α, S1);A< (B < ev))

= Λ((α⊗ I, S1); (α, S1); (A⊗ α, S1);A< (B < ev))

= Λ((α, S1); (α, S1);A< (B < ev))

= Λ((α, S1); (A⊗B) < ev; (α, S2))

= Λ((α, S1); (A⊗B) < ev); (I, S1) → (α, S2)

= τX
A⊗B,S1,S2,C ;TX(S1, S2, αA,B,C)

The interaction of τX and ηX :

A⊗ ηX
S,B; τX

A,S,S,B

262 Appendix A. Proofs for Chapter 5

= A⊗ Λ((ρ, S)); Λ((α, S);A< ev)

= Λ(((A⊗ Λ(ρ, S))⊗ I, S); (α, S);A< ev)

= Λ((α, S); (A⊗ (Λ(ρ, S)⊗ I), S);A< ev)

= Λ((α, S); (A⊗ ρ, S))

= Λ((ρ, S))

= ηX
S,A⊗B

The interaction of τX and µX :

τX
A,S1,S2,T X(S2,S3,B);T

X(S1, S2, τ
X
A,S2,S3,B);µX

S1,S2,S3,A⊗B

= Λ((α, S1);A< ev); (I, S1) → (Λ((α, S2);A< ev), S2); Λ(ev; (ρ−1, S2); ev)

= Λ((α, S1);A< ev; (Λ((α, S2);A< ev), S2)); Λ(ev; (ρ−1, S2); ev)

= Λ((Λ((α, S1);A< ev; (Λ((α, S2);A< ev), S2))⊗ I, S1); ev; (ρ−1, S2); ev)

= Λ((α, S1);A< ev; (Λ((α, S2);A< ev), S2); (ρ−1, S2); ev)

= Λ((α, S1);A< ev; (ρ−1, S2); (Λ((α, S2);A< ev)⊗ I, S2); ev)

= Λ((α, S1);A< ev; (ρ−1, S2); (α, S2);A< ev)

= Λ((α, S1);A< ev; (A⊗ ρ−1, S2);A< ev)

= Λ((α, S1); (A⊗ (Λ(ev; (ρ−1, S2); ev)⊗ I), S1);A< ev)

= Λ(((A⊗ Λ(ev; (ρ−1, S2); ev))⊗ I, S1); (α, S1);A< ev)

= A⊗ Λ(ev; (ρ−1, S2); ev); Λ((α, S1);A< ev)

= A⊗ µX
S1,S2,S3,B; τX

A,S1,S3,B

Before showing that the definitions for Kleisli exponentials meeting the ax-

ioms, we note the following identity for closed parameterised Freyd categories:

Λ−1(f ;TX(S1, S2, g);µX)

= Λ−1(f ; (I, S1) → (g, S2); Λ(ev; J(ρ−1, S2); ev))

= Λ−1(f ; Λ(J((I, S1) → (g, S2)⊗ I, S1); ev; J(ρ−1, S2); ev))

= Λ−1(f ; Λ(ev; J(ρ−1, S2); J(g ⊗ I, S2); ev))

= Λ−1(f ; Λ(ev; J(ρ−1, S2); Λ−1(g))

A.1. Proofs for Theorem 5.2.17 263

= Λ−1(f ; Λ(ev)); J(ρ−1, S2); Λ−1(g))

= Λ−1(f); J(ρ−1, S2); Λ−1(g)

First we show that the functor (A, S1) →X − is well-defined. On identities we

have:

(A, S1) →X ηX

= (A, S1) → (J(ρ−1, S2); Λ−1(Λ(J(ρ, S2))))

= (A, S1) → (J(ρ−1, S2); J(ρ, S2))

= (A, S1) → id

= id

On composed arrows, by the identity shown above:

(A, S1) →X (f ;TX(S2, S
′
2, g);µX)

= (A, S1) → (J(ρ−1, S2); Λ−1(f ;TX(S2, S
′
2, g);µX))

= (A, S1) → (J(ρ−1, S2); Λ−1(f); J(ρ−1, S2); Λ−1(g))

= (A, S1) →X f ; (A, S1) →X g

The map of homsets ΛX : CT (A<T (B, S1), (C, S2)) → C(A, (B, S1) → (C, S2)) is

natural in A. For f : A⊗B → TX(S1, S2, C) and g : A′ → A:

g; ΛX(f)

= g; Λ(J(ρ−1, S1); Λ−1(f))

= Λ(J(g ⊗B; ρ−1, S1); Λ−1(f))

= Λ(J(ρ−1; g ⊗B ⊗ I, S1); Λ−1(f))

= Λ(J(ρ−1, S1); Λ−1(g ⊗B; f))

= ΛX(g ⊗B; f)

= ΛX(g ⊗B; f ; η;µ)

= ΛX(g ⊗B; η;T (S1, S1, f);µ)

= ΛX((g; η)⊗B; τ ;T (S1, S1, f);µ)

= ΛX(g <T (B, S1);T (S1, S1, f);µ)

264 Appendix A. Proofs for Chapter 5

The map ΛX is also natural in (C, S2). For g : C → TX(S2, S
′
2, C

′):

ΛX(f); (B, S1) →X g

= Λ(J(ρ−1, S1); Λ−1(f)); (B, S1) → (J(ρ−1, S2); Λ−1(g))

= Λ(J(ρ−1, S1); Λ−1(f); J(ρ−1, S2); Λ−1(g))

= Λ(J(ρ−1, S1); Λ−1(f ;TX(S1, S2, g);µX))

= ΛX(f ;TX(S1, S2, g);µX)

The map ΛX is also an isomorphism. The inverse is ΛX−1(f) = Λ(J(ρ, S); Λ−1(f)).

That these are inverse follows directly from the fact that Λ and Λ−1 are inverse

and ρ and ρ−1 are inverse.

Finally we show that FY is isomorphic to X in CPF(C,S). Define two

identity on objects functors:

K : CT X → K

Kf = J(ρ−1, S1); Λ−1(f)

L : K → CT X

Lf = Λ(J(ρ, S1); f)

It is easy to see that these are mutually inverse operations on arrows, so it only

remains to show that they are actually arrows of CPF(C,S). Firstly, they must

be functors. They clearly preserve identities and for composition:

K(f ;TX(S1, S2, g);µ)

= J(ρ−1, S1); Λ−1(f ; (I, S1) → J(g, S2); Λ(ev; J(ρ−1, S2); ev))

= J(ρ−1, S1); f < (I, S1); (I, S1) → J(g, S2) < I; ev; J(ρ−1, S2); ev

= J(ρ−1, S1); f < (I, S1); ev; J(g, S1); J(ρ−1, S2); ev

= J(ρ−1, S1); f < (I, S1); ev; J(ρ−1, S2); g < (I, S2); ev

= J(ρ−1, S1); Λ−1(f); J(ρ−1, S2); Λ−1(g)

= K(f);K(g)

Since K and L are mutually inverse on arrows this proves that L preserves com-

position as well. Now we verify that the functor K preserves the parameterised

A.2. Proof of Theorem 5.3.7 265

Freyd structure. This will also imply that L also preserves the structure since

they are mutually inverse. For K, preserving the functor from S × C:

K(JT X (s, f))

= K(ηX ;TX(S, s, f))

= K(Λ(J(ρ, S)); (I, S) → J(s, f))

= J(ρ−1, S); Λ−1(Λ(J(ρ, S)); (I, S) → J(s, f))

= J(ρ−1, S); Λ−1(Λ(J(ρ, S))); J(s, f)

= J(ρ−1, S); J(ρ, S); J(s, f)

= J(s, f)

The functor K preserves <:

K(f <T X c)

= K(f ⊗ c; τX)

= K(f ⊗ c; Λ(J(α, S1);A< ev))

= K(Λ((f ⊗ c) < (I, S1); J(α, S1);A< ev))

= K(Λ(J(α, S1); f < J(c⊗ I, S1);A< ev))

= K(Λ(J(α, S1); f < Λ−1(c))

= J(ρ−1, S1); Λ−1(Λ(J(α, S1); f < Λ−1(c))

= J(ρ−1, S1); J(α, S1); f < Λ−1(c)

= A< J(ρ−1, S1); f < Λ−1(c)

= f <Kc

The proof that it preserves = is similar, and relies on the naturality of J(σ,−).

So the functor F is essentially surjective, as required.

A.2 Proof of Theorem 5.3.7

We need to verify that the double Freyd-category structure defined from a Power,

Robinson, Thielecke Freyd-category is well-defined. We do this first for <C,=C.

266 Appendix A. Proofs for Chapter 5

Recall that we defined f <C c as the composite:

(A×B, S)
J(idA×B ,λ)−→ (A×B, I ⊗ S)

(A,I)<c−→ (A×B′, I ⊗ S ′)
J(f,idI)=(B′,S′)−→ (A′ ×B′, I ⊗ S ′)
(idA′×B′ ,λ

−1)
−→ (A′ ×B′, S ′)

Define c=C f as the composite:

(B × A, S)
J(idA×B ,ρ)−→ (B × A, S ⊗ I)

(A,I)<c−→ (A×B′, S ′ ⊗ I)
J(f,idI)=(B′,S′)−→ (A′ ×B′, S ′ ⊗ I)
J(idA′×B′ ,ρ

−1)
−→ (A′ ×B′, S ′)

The functors so defined preserve the monoidal structure on arrows:

f <C J(g, s) = J(id, λ); J(A, I) < J(g, s); J(f, id) = J(B′, S ′); J(id, λ−1)

= J(id, λ); J(f ⊗ g, id⊗ s); J(id, λ−1)

= (f ⊗ g, s); (id, λ;λ−1)

= (f ⊗ g, s)

where the second equality is by centrality and the strict premonoidal properties

of J .

Naturality of J(σ, S) in the first argument:

J(σ, S);B <C c

= J(σ, S); J(id, λ); J(B, I) < c; J(id, λ−1)

= J(id, ρ); J(σ, σ); J(B, I) < c; J(id, λ−1)

= J(id, ρ); c= J(B, I); J(σ, σ); J(id, λ−1)

= J(id, ρ); c= J(B, I); J(id, ρ−1); J(σ, S ′)

= c=C B; (σ, S ′)

Naturality in the second argument is similar.

A.3. Proofs for Theorem 5.3.14 267

Naturality of J(λ, S):

J(λ, S); 1 <C c

= J(λ, S); J(id, λ); J(1, I) < c; J(id, λ−1)

= c; J(λ, λ); J(id, λ−1)

= c; (λ, S ′)

Naturality of J(ρ, S) is similar.

Naturality of (α, S) in the middle argument:

J(α, S);A<C (c=C B)

= J(α, S); J(id, λ); J(A, I) < (J(id, ρ); c= J(B, I); J(id, ρ−1)); J(id, λ−1)

= J(α, S); J(id, λ; I ⊗ ρ); J(A, I) < (c= J(B, I)); J(id, I ⊗ ρ−1;λ−1)

= J(id, λ; ρ); J(α, α); J(A, I) < (c= J(B, I)); J(id, I ⊗ ρ−1;λ−1)

= J(id, λ; ρ); (J(A, I) < c) = J(B, I); J(α, α); J(id, I ⊗ ρ−1;λ−1)

= J(id, λ; ρ); (J(A, I) < c) = J(B, I); J(id, ρ−1;λ−1); (α, S ′)

= (A<C c) =C B; J(α, S)

The other two naturality equations are proven similarly.

A.3 Proofs for Theorem 5.3.14

A.3.1 The functor F is well-defined

We must show that the definition of F is well-defined on objects and on arrows,

and it preserves identities and composition. The bulk of the proof is identical

to the proof of the non-monoidal case in Section A.1.1. For objects we need

only verify that the defined <T
S and =T

S are well-defined and obey the required

axioms for Double Parameterised Freyd categories. Recall that we have defined

s <T
S c = c;µS1⊗;T (S1 ⊗ S2; s ⊗ S ′2, B). This is a functor. Using naturality and

the second commuting diagram for µ⊗ we obtain:

(s1; s2) <T
S (c1; c2)

268 Appendix A. Proofs for Chapter 5

= c1;T (S2, S
′
2, c2);µ;µS1⊗;T (S1 ⊗ S2, (s1; s2)⊗ S ′′2 , C)

= c1;T (S2, S
′
2, c2);µS1⊗;T (S1 ⊗ S2, S1 ⊗ S ′2, µS1⊗);µ;T (S1 ⊗ S2, (s1; s2)⊗ S ′′2 , C)

= c1;µS1⊗;T (S1 ⊗ S2, S1 ⊗ S ′2, c2;µS1⊗);µ;T (S1 ⊗ S2, (s1; s2)⊗ S ′′2 , C)

= c1;µS1⊗;T (S1 ⊗ S2, S1 ⊗ S ′2, c2;µS1⊗;T (S1 ⊗ S ′2, (s1; s2)⊗ S ′′2 , C));µ

= c1;µS1⊗;T (S1 ⊗ S2, S1 ⊗ S ′2, c2;µS′1⊗;T (s1 ⊗ S ′2, s2 ⊗ S ′′2 , C));µ

= c1;µS1⊗;T (S1 ⊗ S2, s1 ⊗ S ′2, B);T (S1 ⊗ S2, S1 ⊗ S ′2, c2;µS′1⊗;T (S ′1 ⊗ S ′2, s2 ⊗ S ′′2));µ

= s1 <T
S c1; s2 <T

S c2

as required. That <T
S respects identities is easier to show and follows directly

from the fourth commuting diagram for µS⊗:

idS1 < id(S2,A) = η;µS⊗ = ηS1⊗S2,A = id(S1⊗S2,A)

The functor <T
S also strictly preserves the monoidal structure on S. On objects

this is obvious. On arrows, it follows from the identity law for µS⊗ and naturality:

s1 <T
S JT (f, s2)

= ηS2,A;T (S2, s2, f);µS1⊗;T (S1 ⊗ S2, s1 ⊗ S ′2, B)

= ηS2,A;µS1⊗;T (S1 ⊗ S2, s1 ⊗ s2, B)

= ηS1⊗S2,A;T (S1 ⊗ S2, s1 ⊗ s2, B)

= J(s1 ⊗ s2, f)

The definition of c =T
S s as c;µ⊗S2 ;T (S1 ⊗ S2, S

′
1 ⊗ s, B) can also be seen to

be a functor respecting the monoidal structure on arrows in a similar way.

Finally, the naturality conditions. These each follow from the appropriate

diagram. We demonstrate the middle condition for α:

(s1 <T
S c) =T

S s2; J(B,α)

= (s1 <T
S c) =T

S s2;T ((S1 ⊗ S2)⊗ S3, (S
′
1 ⊗ S ′2)⊗ S ′3, η;T ((S ′1 ⊗ S ′2)⊗ S ′3, α, B));µ

= (s1 <T
S c) =T

S s2;T ((S1 ⊗ S2)⊗ S3, α, B)

=
c;µS1⊗;T (S1 ⊗ S2, s1 ⊗ S ′2, B);µ⊗S3 ;

T ((S1 ⊗ S2)⊗ S3, (S
′
1 ⊗ S ′2)⊗ s2, B);T ((S1 ⊗ S2)⊗ S3, α, B)

A.3. Proofs for Theorem 5.3.14 269

= c;µS1⊗;µ⊗S3 ;T ((S1 ⊗ S2)⊗ S3, (s1 ⊗ S ′2)⊗ s2, B);T ((S1 ⊗ S2)⊗ S3, α, B)

= c;µS1⊗;µ⊗S3 ;T ((S1 ⊗ S2)⊗ S3, α, B);T ((S1 ⊗ S2)⊗ S3, s1 ⊗ (S ′2 ⊗ s2), B)

= c;µ⊗S3 ;µS1⊗;T (α, S1 ⊗ (S ′2 ⊗ S3), B);T ((S1 ⊗ S2)⊗ S3, s1 ⊗ (S ′2 ⊗ s2), B)

=
c;µ⊗S3 ;T (S2 ⊗ S3, S

′
2 ⊗ s2, B);µS1⊗;

T (S1 ⊗ (S ′2 ⊗ S3), s1 ⊗ (S ′2 ⊗ S3), B);T (α, S ′1 ⊗ (S ′2 ⊗ S ′3), B)

= s1 <T
S (c=T

S s2);T (α, S1 ⊗ (S ′2 ⊗ S3), B)

= s1 <T
S (c=T

S s2); η;T ((S1 ⊗ S2)⊗ S3, α, T (S1 ⊗ (S2 ⊗ S3), S
′
1 ⊗ (S ′2 ⊗ S ′3), B));µ

= η;T ((S1 ⊗ S2)⊗ S3, α, s1 <T
S (c=T

S s2));µ

= J(A,α); s1 <T
S (c=T

S s2)

The other naturality conditions are proven similarly, by using the corresponding

diagram for the monoidal multiplication. Hence F is well-defined on objects.

To show that F is well-defined on arrows we can re-use the proof in Sec-

tion A.1.1; we need only verify that the functors Ff also preserve the functors

(<T
S ,=T

S). Commutativity with the <T
S :

<T2
S (s, Ffc)

= <T2
S (s, c; fS2,S′2,B)

= η2,S1,A;T2(S1, s, c; fS2,S′2,B);µ⊗,2,S1,S′1,S2,S′2,B

= η1,S1,A; fS1,S1,A;T2(S1, s, c; fS2,S′2,B);µ⊗,2,S1,S′1,S2,S′2,B

= η1,S1,A;T (S1, s, c); fS1,S′1,A;T2(S1, S
′
1, fS2,S′2,B);µ⊗,2,S1,S′1,S2,S′2,B

= η1,S1,A;T (S1, s, c);µ⊗,1,S1,S′1,S2,S′2,B; fS1⊗S2,S′1⊗S′2,B

= (s<T1
S c); fS1⊗S2,S′1⊗S′2,B

= Ff(s<T1
S c)

The steps to verify that it commutes with =T
S are similar. Hence F is a functor.

A.3.2 The functor F is full and faithful

Recall that we have defined the supposed inverse to the arrow f : F (T1) → F (T2)

as the family of arrows (F−1f)S1,S2,A = f(idT1(S1,S2,A)). We must show that this

family is an arrow of CSMPM(C,S) and that the two operations F and F−1

270 Appendix A. Proofs for Chapter 5

are inverse. The bulk of the proof is identical to the proof for the non-monoidal

case in Section A.1.2, we only need to verify that F−1f preserves the monoidal

multiplication transformations, which it does by Lemma A.1.1 and the fact that

f preserves the <T
S and =T

S functors on Kleisli categories:

µS⊗,1; f(id) = f(µS⊗,1) = f(id);µS⊗,2

The case for µ⊗S is similar. Hence F is full and faithful.

A.3.3 The functor F is essentially surjective

Recall that, given an objectX = (K, J,<C,=C,<S ,=S ,− → −,Λ) of CDPF(C,S)

we have defined the object Y = (TX , ηX , µX , τX ,− →X −,ΛX) as:

TX(S1, S2, A) = (I, S1) → (A, S2)

ηX
S,A = Λ(J(ρA, S))

µX
S1,S2,S3,A = Λ(ev; J(ρ−1, S2); ev)

τX
A,S1,S2,B = Λ(J(α, S1);A<C ev)

µX
S⊗ = Λ(S <S ev)

µX
⊗S = Λ(ev =S S)

(A, S1) →X (B, S2) = (A, S1) → (B, S2)

ΛX(f) = Λ(J(ρ−1
A⊗B, S1); Λ−1(f))

We must first show that this really is an object of CSMPM(C,S). We have

already done the bulk of the work in Section A.1.3 and it only remains to show

that µX
S⊗ and µX

⊗S are well-defined.

Firstly, the naturality of µX
S⊗:

TX(s1, s2, f);µX
S⊗,S1,S′2,B

= J(I, s1) → J(f, s2); Λ(S <S ev)

= Λ(J(J(I, s1) → J(f, s2)⊗ I, S ⊗ S1);S <S ev)

= Λ(S <S (J(J(I, s1) → J(f, s2)⊗ I, S1); ev))

= Λ(S <S (J((I, S ′1) → (A, S2)⊗ I, s1); ev; J(f, s2)))

A.3. Proofs for Theorem 5.3.14 271

= Λ(J((I, S ′1) → (A, S2)⊗ I, S ⊗ s1);S <S ev;S <S J(f, s2))

= Λ(S <S ev); J(I, S ⊗ s1) → J(f, S ⊗ s2)

= µX
S⊗,S′1,S2,A;TX(s1, s2, f)

The proof of the naturality of µX
⊗S is similar. Dinaturality of µX

S⊗:

µX
S⊗,S1,S2,A;TX(s⊗ S1, S ⊗ S2, A)

= Λ(S <S ev); J(I, s⊗ S1) → (A, S ⊗ S2)

= Λ(J((I, S1) → (A, S2), s⊗ S1);S <S ev)

= Λ(S ′ <S ev; J(A, s⊗ S2))

= Λ(S ′ <S ev); (I, S ′ ⊗ S1) → (A, s⊗ S2)

= µX
S′⊗,S1,S2,A;TX(S ′ ⊗ S1, s⊗ S2, A)

The proof of the dinaturality of µX
⊗S is similar. The defined monoidal multiplica-

tion commutes with the normal multiplication:

µX
S⊗;TX(S ⊗ S1, S ⊗ S2, µ

X
S⊗);µX

= Λ(S <S ev); (I, S ⊗ S1) → J(Λ(S <S ev), S ⊗ S2); Λ(ev; J(ρ−1, S ⊗ S2); ev)

= Λ(S <S ev; J(Λ(S <S ev), S ⊗ S2)); Λ(ev; J(ρ−1, S ⊗ S2); ev)

= Λ(S <S ev; J(Λ(S <S ev), S ⊗ S2); J(ρ−1, S ⊗ S2); ev)

= Λ(S <S ev; J(ρ−1, S ⊗ S2);S <S ev)

= Λ(J(Λ(ev; J(ρ−1, S2); ev)⊗ I, S ⊗ S1);S <S ev)

= Λ(ev; J(ρ−1, S2); ev); Λ(S <S ev)

= µX ;µX
S⊗

Again, the proof for µX
⊗S is similar. The defined monoidal multiplication also

preserves identities:

ηX
S,A;µX

S′⊗,S,S,A

= Λ(J(ρ, S)); Λ(S ′ <S ev)

= Λ(J(Λ(ρ, S)⊗ I, S ′ ⊗ S);S ′ <S ev)

= Λ(J(ρ, S ′ ⊗ S))

= ηX
S′⊗S,A

272 Appendix A. Proofs for Chapter 5

As before, the proof for µX
⊗S is similar. For this to be an object of CSMPM(C,S)

it remains to show that the symmetric monoidal structure diagrams hold. All

of these follow from the corresponding naturality condition for the symmetric

S-premonoidal structure of X. As an example we show the middle case for

associativity:

µX
⊗S3

;µX
S1⊗;TX(α, S1 ⊗ (S ′2 ⊗ S3), A)

= Λ(ev =S S3); Λ(S1 <S ev); J(I, α) → (A, S1 ⊗ (S ′2 ⊗ S3))

= Λ(Λ(ev =S S3) <C (I, S1 ⊗ (S2 ⊗ S3));S1 <S ev); J(I, α) → (A, S1 ⊗ (S ′2 ⊗ S3))

= Λ(S1 <S J(Λ(ev =S S3)⊗ I, S2 ⊗ S3);S1 <S ev); J(I, α) → (A, S1 ⊗ (S ′2 ⊗ S3))

= Λ(S1 <S (ev =S S3)); J(I, α) → (A, S1 ⊗ (S ′2 ⊗ S3))

= Λ(J(id, α);S1 <S (ev =S S3))

= Λ((S1 <S ev) =S S3; J(A,α))

= Λ((S1 <S ev) =S S3); (I, (S1 ⊗ S2)⊗ S3) → J(A,α)

= Λ(S1 <S ev); Λ(ev =S S3); (I, (S1 ⊗ S2)⊗ S3) → J(A,α)

= µX
S1⊗;µ⊗S3 ;T

X((S1 ⊗ S2)⊗ S3, α, A)

Hence Y is an object of CSMPM(C,S). To finish the proof we must show that

FY is isomorphic to X. We re-use the functors K and L defined in Section A.1.3,

so we already know that they are mutually inverse and preserve J , <C and =C.

We must show that they preserve <S and =S , noting that showing that this holds

for K implies that it holds for L since they are mutually inverse.

K(s<S,T X c)

= K(c;µX
S1⊗;TX(S1 ⊗ S2, s⊗ S ′2, B))

= K(c; Λ(S1 <S ev); (I, S1 ⊗ S2) → J(B, s⊗ S ′2))

= K(c; Λ(s<S ev))

= K(Λ(c< (I, S1 ⊗ S2); s<S ev))

= K(Λ(s<S Λ−1(c)))

= J(ρ−1, S1 ⊗ S2); Λ−1(Λ(s<S Λ−1(c)))

= J(ρ−1, S1 ⊗ S2); s<S Λ−1(c)

A.3. Proofs for Theorem 5.3.14 273

= s<S (J(ρ−1, S2); Λ−1(c))

= s<S Kc

The case for =S is similar. Hence F is essentially surjective.

Appendix B

Adjunctions and Algebras with

Parameters

In this appendix we explore the connection between parameterised monads and

parameterised adjunctions. This appendix presents very preliminary work on

the connection between parameterised monads and adjunctions, and especially

between parameterised monads and algebras.

B.1 Parameterised Adjunctions

Parameterised adjunctions are families of normal adjunctions indexed by some

category S, subject to a naturality constraint. The relationship between parame-

terised monads and parameterised adjunctions is very similar to the relationship

between monads and adjunctions. We start by defining parameterised adjunc-

tions in their own right and showing how every parameterised adjunction gives a

parameterised monad. Conversely, each parameterised monad gives two canon-

ical parameterised adjunctions which determine the monad and are initial and

terminal in the category of adjunctions determining the monad.

The terminal adjunction determined by a parameterised monad relates the

category C to a category CT of algebras for the monad. At the end of this section

we will give a category of “typed state” algebras and show that it is equivalent to

275

276 Appendix B. Adjunctions and Algebras with Parameters

the category of algebras for the typed global state monad in Example 5.2.11. This

points to the possible development of a methodology for deriving parameterised

monads for modelling computational effects from algebras in a similar manner to

Plotkin and Power’s [PP02]. Eventually we would like to have a close connection

between algebras and parameterised monads, similar to the case described for

(enriched) monads by Robinson [Rob02].

The development in this section closely follows the development of the rela-

tionship between non-parameterised monads and adjunctions in Mac Lane [Mac98]

§VI.1-5. Sometimes we have only sketched some details in the proofs where they

are similar to the case for non-parameterised monads. See also Barr and Wells

[BW83] for more information on monads (where they are called triples).

Definition B.1.1 Given categories S, C and D, an S-parameterised adjunction

from C to D is a triple 〈F,G, ψ〉 : C → D where F and G are functors:

F : S × C → D G : Sop ×D → C

and ψ is an isomorphism of homsets, natural in A, B and S:

ψ : D(F (S,A), B) ∼= C(A,G(S,B))

By Theorem §IV.7.3 in [Mac98], if we have a functor F : S × C → D such

that for every object S, F (S,−) has a right adjoint GS : D → C, then there is a

unique way to make G into a bifunctor Sop×D → C such that it is a parameterised

adjunction in the sense of this definition.

As with non-parameterised adjunctions, we can express a parameterised ad-

junction in terms of a unit and counit:

ηS,A : A→ G(S, F (S,A)) εS,A : F (S,G(S,A)) → A

such that the are both natural in A, dinatural in S and obey the standard tri-

angular identities. These are derived, as in non-parameterised adjunctions, as

ηS,A = ψ(idF (S,A)) and εS,A = ψ−1(idG(S,A)). The fact that ψ is natural in S

ensures that these are dinatural in S. Conversely, given a unit and counit we

B.1. Parameterised Adjunctions 277

can define ψf = ηS,A;G(S, f) and ψ−1f = F (S, g); εS,B. We will use the two

presentations of parameterised adjunctions interchangeably.

Our interest in parameterised adjunctions lies in the fact that they are to

parameterised monads as adjunctions are to monads. Firstly, every parameterised

adjunction gives a parameterised monad in the same manner that an adjunction

gives a monad:

Theorem B.1.2 Every S-parameterised adjunction 〈F,G, η, ε〉 : C → D gives

an S-parameterised monad on C, defined as:

T (S1, S2, A) = G(S1, F (S2, A)) ηT
S,A = ηS,A µT

S1,S2,S3,A = G(S1, εS2,F (S3,A))

Proof The naturality and dinaturality of ηT and µT follow directly from η and

ε’s properties as unit and counit of an adjunction. The associativity law for the

parameterised monad follows from the naturality of ε and the left and right unit

laws follow from the triangular identities for the adjunction. �

In the opposite direction, from monads to adjunctions, we have the same sit-

uation as for non-parameterised monads: there are two canonical adjunctions

arising from a parameterised monad, the initial and terminal objects in the cat-

egory of adjunctions that define the monad.

First we define the category of adjunctions that we are interested in.

Definition B.1.3 Given an S-parameterised monad (T, η, µ) on a category C,

the category PAdj(T) is defined as:

Objects S-parameterised adjunctions 〈F,G, η, ε〉 : C → D that define the monad

(T, η, µ);

Arrows An arrow K : (〈F,G, η, ε〉 : C → D) → (〈F ′, G′, η, ε′〉 : C → D′) is a

functor K : D → D′ such that G = Id × K;G′, F ′ = F ;K and ε′S,KA =

KεS,A.

Note that, by the condition that all the adjunctions form the same param-

eterised monad, all objects of this category have the same unit. The definition

of arrow is derived from the standard definition of a transformation of adjoints,

278 Appendix B. Adjunctions and Algebras with Parameters

extended to parameterised adjunctions and specialised to those that define the

same monad.

Theorem B.1.4 Given an S-parameterised monad (T, η, µ) on a category C,

the functor JT : S × C → CT defined in Definition 5.2.8 has a right adjoint

GT : Sop×CT → C such that (T, η, µ) is the parameterised monad determined by

the adjunction. This adjunction is initial in PAdj(T).

Proof Define GT as GT (S1, (A, S2)) = T (S1, S2, A) on objects and, for arrows

s : S1 → S ′1 and f : (A, S2) → (B, S ′2), as GT (s, f) = T (s, S2, f);µS1,S2,S′2,B on

arrows. Functorality of GT can be checked by routine calculation. It is trivially

the right adjoint to JT since:

CT (JTA,B) = CT (A,B) = C(A, TB) = C(A,GTB)

The functor part of the monad derived from this adjunction is the same as the

original monad: GT (S1, JT (S2, A)) = TA on objects and GT (s1, JT (s2, f)) =

T (s1, S2, ηS2,A;T (S2, s2, f));µS1,S2,S′2,B = T (s1, s2, f ; ηS′2,B);µS1,S′2,S′2,B = T (s1, s2, f)

by naturality, dinaturality and the unit monad laws on arrows. By the defini-

tion of identities in CT , the unit of the monad derived from the adjunction is

η, the unit of the original monad. The multiplication of the derived monad is

µ′S1,S2,S3,A = G(S1, εT,S2,F (S3,A)), where εT,S1,(A,S2) = idT (S1,S2,A), in CT , therefore

µ′ = µ by the definition of GT .

This parameterised adjunction is initial in the category PAdj(T). Given

another parameterised adjunction 〈F,G, η, ε〉 : C → D that defines the param-

eterised monad T , define a functor K : CT → D as K(A, S) = F (S,A) and

Kf = F (S1, f); εS1,F (S2,B). This is an arrow in PAdj(T):

G(S1, K(A, S2)) = G(S1, F (S2, A)) = GT (S1, (A, S2))

G(s,K(f)) = G(s, F (S2, f));G(S1, εS2,F (S′2,B)) = GT (s, f)

K(JT (S,A)) = K(A, S) = F (S,A)

K(JT (s, f)) = K(ηS1,A;T (S1, s, f)) = F (s, f ; ηS2,B);µS1,S2,S2,B = F (s, f)

K(εT,S,A) = F (S, idT (S,S,A)); εS,F (S,A) = εK(A,S)

B.1. Parameterised Adjunctions 279

Any other PAdj(T) arrow L : CT → D is equal to K. On objects L(A, S) =

LJT (A, S) = F (S,A) = K(A, S) and on arrows:

Kf = F (S1, f); εS1,F (S2,B)

= F (S1, f); εS1,L(B,S2)

= L(JT (S1, f); εT,S1,(B,S2))

= L(f ; ηS1,S1,B;µS1,S1,S2,B)

= Lf

Hence K is the unique PAdj(T) arrow CT → D and CT is initial. �

The second canonical parameterised adjunction that arises from a parame-

terised monad is the parameterised version of the Eilenberg-Moore category of

algebras for the monad. This definition is the generalisation of the standard

definition of T -algebra to the parameterised setting.

Definition B.1.5 Given an S-parameterised monad (T, η, µ) on a category C,

the Eilenberg-Moore category of algebras CT is defined as:

Objects T -algebras: 〈A : Sop → C, hS1,S2 : T (S1, S2, AS2) → AS1〉, where the

family h is natural in S1 and dinatural in S2 and satisfies these two diagrams:

T (S1, S2, T (S2, S3, AS3)) T (S1, S2, AS2)

T (S1, S3, AS3) AS1

//
T (S1,S2,hS2,S3

)

��

µS1,S2,S3

��

hS1,S2

//
hS1,S3

AS T (S, S,AS)

AS

//ηS

$$JJJJJJJJJJJJJ

AS
��

hS,S

Arrows An arrow f : 〈A, h〉 → 〈A′, h′〉 is a natural transformation f : A ⇒ A′

280 Appendix B. Adjunctions and Algebras with Parameters

such that this diagram commutes:

T (S1, S2, AS2) T (S1, S2, A
′S2)

AS1 A′S1

//
T (S1,S2,fS2

)

���
� �
� �
� �
�

hS1,S2

���
� �
� �
� �
�

h′S1,S2

//
fS1

This definition clearly defines a category: the composition of two arrows is an

arrow of the category by putting the two commuting squares side by side. The

next theorem relates this category to the original category C by an adjunction

which is terminal in PAdj(T).

Theorem B.1.6 Given an S-parameterised monad (T, η, µ), the functors

F T : S × C → CT

F T (S,A) = 〈T (−, S, A), µS1,S2,S〉

F T (s, f) = T (−, s, f)

GT : Sop × CT → C

GT (S, 〈A, h〉) = AS

GT (s, f) = As; fS1

form a parameterised adjunction, with unit η and counit εS,〈A,h〉 = h−,S, whose

monad is (T, η, µ). This adjunction is terminal in PAdj(T).

Proof The object part of F T is well defined: the map µS1,S2,S satisfies the

two diagrams for algebras by the associativity and left unit laws for monads.

The arrow part is well defined by the naturality of µ. Also, F T clearly preserves

composition and identities. The definition of GT also gives a functor: it is trivially

well-defined on objects and arrows, and preserves composition by the naturality

of arrows in CT .

The unit is natural and dinatural since it is the unit of a parameterised monad.

The defined counit is natural and dinatural in the appropriate variables by the

definition of algebras. The unit and counit satisfy the triangular identities by the

B.2. Typed State Algebras 281

right unit law for a parameterised monad and the unit law for an algebra. Hence

〈F T , GT , η, εT 〉 is a parameterised adjunction.

This parameterised adjunction determines the monad T . The units are the

same, as are the functors: GT (S1, F
T (S2, A)) = T (S1, S2, A) and the multiplica-

tion:

µT
S1,S2,S3,A = GT (S1, εS2,F T (S3,A)) = GT (S1, εS2,〈T (−,S3,A),µ−,−,S3,A〉) =

GT (S1, µ−,S2,S3,A) = µS1,S2,S3,A

Given any other parameterised adjunction 〈F,G, η, ε〉 : C → D in PAdj(T),

define the functor K : D → CT as KA = 〈G(−, A), G(S1, εS2,A)〉 and Kf =

G(−, f). This is well-defined on objects since the first diagram for algebras com-

mutes by naturality and the second is just one of the triangular identities for

a parameterised adjunction. It is well-defined on arrows because ε is a natural

transformation. The functor K is an arrow of PAdj(T):

GT (S,KA) = GT (S, 〈G(−, A), G(S1, εS2,A)〉) = G(S,A)

GT (s,Kf) = GT (s,G(−, f)) = G(s, A);G(S2, f) = G(s, f) K(F (S,A)) =

〈G(−, F (S,A)), G(S1, εS2,F (S,A))〉 = 〈T (−, S, A), µS1,S2,S,A〉 = F T (S,A)

K(F (s, f)) = G(−, F (s, f)) = T (−, s, f) = F T (s, f)

εTS,KA = εTS,〈G(−,A),G(S1,εS2,A)〉 = G(−, εS,A) = KεS,A

Given another arrow of PAdj(T), L : D → CT , it is equal to K: the equation

Id × L;GT = G implies that LA = 〈G(−, A), h〉, for some h and Lf = G(−, f).

For the arrow h:

hS1,S2 = εTS2,〈G(−,A),h〉,S1
= εTS2,LA = (LεS2,A)S1 = G(S1, εS2,A)

Hence K is the unique arrow to CT and CT is terminal. �

B.2 Typed State Algebras

We will now show that a suitable category of “typed state algebras” is equivalent

to the category of algebras for the typed global state monad on a cartesian closed

282 Appendix B. Adjunctions and Algebras with Parameters

category in Example 5.2.11.

Let C be a cartesian closed category and let S be a category with a chosen

terminal object and ·̂ : S → C a functor that preserves the terminal object. We

will write 1 for the chosen terminal objects in S and C and ! for the unique maps

to them. Given such a pair of categories we define the category of typed state

algebras over it.

Definition B.2.1 The category StAlg(C,S) is defined as:

Objects Triples 〈A : Sop → C, storeS : AS × Ŝ → A1, retrieveS : ASŜ →
AS〉, such that store is dinatural in S and retrieve is natural in S and the

following diagrams commute:

ASS (AS × S)S
A1S

ASS

AS

//
Λ(ASS×dup;ev×S)

$$JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

retrieveS

//
storeS

S

��
A!S

��

retrieveS

AS ASS

AS

//
Λ(π1)

��?
??

??
??

??
??

?

AS

���
� �
� �
� �
� �

retrieveS

A1S × S A1

ASS × S AS × S

//
evS,A1

��

A!S×S

//retrieveS×S

OO

storeS

(ASS)S
ASS

ASS AS

//
Λ((ASS)S×dup;ev×S;ev)

���
� �
� �
� �
� �
�

retrieveS
S

���
� �
� �
� �
� �
� �

retrieveS

//retrieveS

Arrows An arrow f : 〈A, store, retrieve〉 → 〈A′, store ′, retrieve ′〉 is a natural

transformation f : A⇒ A′ that preserves the operations:

AS × S A′S × S

A1 A′1

//fS×S

��

storeS

��

store′S

//f1

ASS A′SS

AS A′S

//
fS

S

���
� �
� �
� �
� �
�

retrieveS

���
� �
� �
� �
� �
�

retrieveS

//fS

B.2. Typed State Algebras 283

We informally justify the axioms of these algebras by thinking of the oper-

ations of the algebras as operations in a typed programming language. We do

not have a formal link between parameterised algebraic operations and arrows in

the Kleisli category as Plotkin and Power do [PP01], but can intuitively justify

the axioms anyway. The store and retrieve operations correspond to primitives

in the Typed Command Calculus of Chapter 6 typed as so:

storeS : (Ŝ, 1) → (1, S) retrieveS : (1, S) → (Ŝ, S)

and the map to the terminal object in S corresponds to a term clear : S → I

in the state calculus. The four axioms correspond to the following equations

between terms:

let (x; s1) = retrieve(?1; s) in

let (d; s2) = store(x; clear s1) in

(x; s2)

= retrieve

let (x; s) = retrieve(?1; s) in e = e (x not free in e)

let (d; s1) = store(y; s) in

let (x; s2) = retrieve(?1; s1) in

let (d; s3) = (?1; clear s3) in

e

= e[y/x, s/s3]

let (x; s1) = retrieve(?1; s) in

let (y; s2) = retrieve(?1; s1) in

e

=
let (x; s1) = retrieve(?1; s) in

e[x/y, s1/s2]

In order, these equations state that retrieving and then storing is the same as just

retrieving; retrieving and then discarding is the same as doing nothing; storing,

retrieving and then clearing is the same as doing nothing; and retrieving twice is

the same as retrieving once and using twice.

Ideally, we would now apply the parameterised analogue of Beck’s Theorem

([Mac98] §VI.7 and [Bec67]) to show that this category is isomorphic to the

Eilenberg-Moore category for the typed global state monad, i.e. that it is monadic

284 Appendix B. Adjunctions and Algebras with Parameters

over C. However, we do not have such a theorem at this time, so we prove the

desired result by hand:

Theorem B.2.2 The functor G : Sop × StAlg(C,S) → C, defined as:

G(S, 〈A, store, retrieve〉) = AS

G(s, f) = As; fS1

has a left parameterised adjoint which determines the typed global state monad

T (S1, S2, A) = (A×Ŝ2)
Ŝ1 . Moreover, the Eilenberg-Moore category of this monad

is isomorphic to StAlg(C,S).

Proof The tedious calculation in this proof has been placed at the end of this

appendix, in Section B.3. Define the functor F : S × C → StAlg(C,S) as:

F (S,A) = 〈(A× S)−, st , rt〉

F (s, f) = (f × s)−

where:

st = Λ(π1; evS1,(A×S)) rt = Λ(((A×S)S1)S1×dup; evS1,(A×S)S1×S1; evS1,(A×S1))

This definition is well-defined on objects and arrows, see Section B.3.1. Before we

show that it is the parameterised left adjoint, recall the unit and multiplication

of the parameterised monad:

ηS,A = Λ(id) : A→ (A× S)S

µS1,S2,S3,A = evS1

S2,(A×S3) : ((A× S3)
S2 × S2)

S1 → (A× S3)
S1

Take the unit of the parameterised adjunction to be the same as the unit of the

parameterised monad; this is well-defined since G(S1, F (S1, A)) = T (S1, S2, A) as

defined and we already know that this unit is appropriately natural and dinatural.

Define the counit to be:

εS,〈A,store,retrieve〉,S′ = storeS′

S ;A!S
′
; retrieveS′

See Section B.3.2 for the proof that this data forms a parameterised adjunction.

B.2. Typed State Algebras 285

This adjunction determines the typed global state monad by the construction

in Theorem B.1.2: we already know that it is the same as a functor and the units

are defined to be the same. The derived multiplication is the same as the original

multiplication:

µ′S1,S2,S3,A

= G(S1, εS2,F (S3,A))

= εS2,F (S3,A),S1

= Λ(π1; ev)S1 ; ((A× S)!)S1 ; Λ(((A× S)S1)S1 × dup; ev × S; ev)

= Λ(π1; ev)S1 ; Λ(((A× S)S1)S1 × dup; ev × S; ev)

= Λ(((A× S)S1)S1 × dup; ev × S; π1; ev)

= Λ(ev; ev)

= Λ(ev); evS1

= evS1

= µS1,S2,S3,A

Hence this adjunction gives the original typed global state monad.

We now show that the category StAlg(C,S) is isomorphic to the Eilenberg-

Moore category CT . Define:

K : StAlg(C,S) → CT

K(〈A, store, retrieve〉) = 〈A, store Ŝ1
S2

;A!Ŝ1 ; retrieveS1〉

Kf = f

L : CT → StAlg(C,S)

L(〈A, h〉) = 〈A,Λ(π1);h1,S,Λ(ASS × dup; ev × S);hS,S〉

Lf = f

The definition of K matches the definition of the terminal arrow to CT in the

category PAdj(T) given in the proof of Theorem B.1.6. Therefore we automat-

ically know it is well-defined as a functor. The definition of L is also a functor,

see Section B.3.3. These two functors form an isomorphism, see Section B.3.4.

286 Appendix B. Adjunctions and Algebras with Parameters

Therefore the category StAlg(C,S) is isomorphic to the category of algebras for

the typed global state monad. �

We believe that Theorem B.2.2 strongly hints that there is a connection to be

made between parameterised monads and some notion of typed algebras where

operations have start and finish types taken from the objects of some category.

We envisage that further research along this line would first prove an analogue

of Beck’s Theorem for parameterised monads and then find a suitable generalisa-

tion of Lawvere theories that corresponds to finitary parameterised monads. See

[Rob02] for more information about the case for normal and enriched monads.

B.3 Proof Details

B.3.1 The functor F is well-defined

Recall the definition of F : S × C → StAlg(C,S):

F (S,A) =
〈(A× S)−,Λ(π1; evS1,(A×S)),

Λ(((A× S)S1)S1 × dup; evS1,(A×S)S1 × S1; evS1,(A×S1))〉
F (s, f) = (f × s)−

We must check each of the axioms in turn, the dinaturality of the store family

and the naturality of the retrieve family. The first axiom:

Λ(((A× S)S1)S1 × dup; ev × S1); store
S1
S1

; ((A× S)!)S1 ; retrieveS1

=
Λ(((A× S)S1)S1 × dup; ev × S1);

Λ(π1; ev)S1 ; ((A× S)!)S; Λ(((A× S)S1)S1 × dup; ev × S1; ev)

= Λ(((A× S)S1)S1 × dup; ev × S1); Λ(π1; ev)S1 ; Λ(((A× S)S1)S1 × dup; ev × S1; ev)

= Λ(((A× S)S1)S1 × dup; ev × S1); Λ(Λ(π1; ev)S1 × S1; ((A× S)S1)S1 × dup; ev × S1; ev)

= Λ(((A× S)S1)S1 × dup; ev × S1); Λ(((A× S)S1 × S1)
S1 × dup; ev × S1; π1; ev)

= Λ(((A× S)S1)S1 × dup; ev × S1); Λ(ev; ev)

= Λ(((A× S)S1)S1 × dup; ev × S1); Λ(ev); evS1

= Λ(((A× S)S1)S1 × dup; ev × S1); evS1

B.3. Proof Details 287

= Λ(((A× S)S1)S1 × dup; ev × S1; ev)

= retrieveS1

The second axiom:

Λ(π1); retrieveS1

= Λ(π1); Λ(((A× S)S1)S1 × dup; ev × S1; ev)

= Λ(Λ(π1)× S1; ((A× S)S1)S1 × dup; ev × S1; ev)

= Λ((A× S)S1 × dup; π1 × S1; ev)

= Λ(ev)

= id

The third axiom:

((A× S)!)S1 × S1; retrieveS1 × S1; storeS1

= ((A× S)!)S1 × S1; Λ(((A× S)S1)S1 × dup; ev × S; ev)× S1; Λ(π1; ev)

= Λ(((A× S)!)S1 × dup; ev × S; ev)× S1; Λ(π1; ev)

= Λ(((A× S)1)S1 × dup; ev × S; (A× S)! × S1; ev)× S1; Λ(π1; ev)

= Λ(((A× S)1)S1 × dup; ev × S; (A× S)1×!; ev)× S1; Λ(π1; ev)

= Λ(((A× S)1)S1 × 〈id, !〉; ev × 1; ; ev)× S1; Λ(π1; ev)

= Λ(π1; Λ(((A× S)1)S1 × 〈id, !〉; ev × 1; ; ev)× S1; ev)

= Λ(π1; ((A× S)1)S1 × 〈id, !〉; ev × 1; ; ev)

= Λ(ev × 1; ; ev)

= ev; Λ(ev)

= ev

The fourth axiom:

retrieveS1
S1

; retrieveS1

= Λ(((A× S)S1)S1 × dup; ev × S1; ev)S1 ; Λ(((A× S)S1)S1 × dup; ev × S1; ev)

= Λ(Λ(((A× S)S1)S1 × dup; ev × S1; ev)S1 × S1; ((A× S)S1)S1 × dup; ev × S1; ev)

= Λ((((A× S)S1)S1)S1 × dup; ev × S1; ((A× S)S1)S1 × dup; ev × S1; ev)

288 Appendix B. Adjunctions and Algebras with Parameters

= Λ((((A× S)S1)S1)S1 × dup; (((A× S)S1)S1)S1 × dup× S1; ev × S1 × S1; ev × S1; ev)

= Λ((((A× S)S1)S1)S1 × dup; Λ((((A× S)S1)S1)S1 × dup; ev × S1; ev)× S1 × S1; ev × S1; ev)

= Λ(Λ((((A× S)S1)S1)S1 × dup; ev × S1; ev)× S1; ((A× S)S1)S1 × dup; ev × S1; ev)

= Λ((((A× S)S1)S1)S1 × dup; ev × S1; ev); Λ(((A× S)S1)S1 × dup; ev × S1; ev)

= Λ((((A× S)S1)S1)S1 × dup; ev × S1; ev); retrieveS1

Dinaturality of store:

(A× S)f × S1; storeS1

= (A× S)f × S1; Λ(π1; ev)

= Λ(π1; (A× S)f × S1; ev)

= Λ(π1; (A× S)S1 × f ; ev)

= (A× S)S2 × f ; Λ(π1; ev)

= (A× S)S2 × f ; storeS1

Naturality of retrieve:

((A× S)f)f ; retrieveS1

= ((A× S)f)f ; Λ(((A× S)S1)S1 × dup; ev × S1; ev)

= Λ(((A× S)S2)S2 × dup; ((A× S)S2)S2 × f × f ; ev × S2; ev)

= Λ(((A× S)S2)S2 × f ; ((A× S)S2)S2 × dup; ev × S2; ev)

= Λ(((A× S)S2)S2 × dup; ev × S2; ev); (A× S)f

= retrieveS2 ; (A× S)f

Hence F is well defined on objects. The definition of F is also well-defined on

arrows, firstly, commutativity with the defined store natural transformations:

F (s, f)S1 × S1; storeS1

= (f × s)S1 × S1; Λ(π1; ev)

= Λ((f × s)S1 × S1 × S1; π1; ev)

= Λ(π1; ev; f × s)

= Λ(π1; ev); (f × s)S1

= storeS1 ;F (s, f)S1

B.3. Proof Details 289

Secondly, commutativity with the defined retrieve natural transformations is sim-

ilar:

(F (s, f)S1)
S1 ; retrieveS1

= ((f × s)S1)S1 ; Λ(((B × S ′)S1)S1 × dup; ev × S1; ev)

= Λ(((A× S)S1)S1 × dup; ev × S1; ev; f × s)

= Λ(((A× S)S1)S1 × dup; ev × S1; ev); (f × s)S1

= retrieveS1 ;F (s, f)S1

B.3.2 The functor F is a parameterised left adjoint

Recall that the unit and counit are defined as:

ηA,S = Λ(idA×S) εS,〈A,store,retrieve〉,S′ = storeS′

S ;A!S
′
; retrieveS′

It is easy to see that these are well-defined in terms of objects. The counit is

an arrow of StAlg(C,S); it commutes with the store transformations:

εS,〈A,store,retrieve〉,S1 × S1; storeS1

= (storeS1
S ;A!S1 ; retrieveS1)× S1; storeS1

= storeS1
S × S1; ev

= storeS1
S × S1; ev; Λ(π1); retrieve1

= ev; storeS; Λ(π1); retrieve1

= ev; Λ(π1); store
1
S; retrieve1

= Λ(π1; ev); store1
S;A!1; retrieve1

= Λ(π1; ev); εS,〈A,store,retrieve〉,1

and it commutes with the retrieve natural transformations:

εS1

S,〈A,store,retrieve〉,S1
; retrieveS1

= (storeS1
S)S1 ; (A!S1)S1 ; retrieveS1

S1
; retrieveS1

= (storeS1
S)S1 ; (A!S1)S1 ; Λ((ASS1

1)S1 × dup; ev × S1; ev); retrieveS1

290 Appendix B. Adjunctions and Algebras with Parameters

= Λ(((AS × S)S1)S1 × dup; ev × S; ev; storeS;A!); retrieveS1

= Λ(((AS × S)S1)S1 × dup; ev × S; ev); storeS1
S ;A!S1 ; retrieveS1

= Λ(((AS × S)S1)S1 × dup; ev × S; ev); εS,〈A,store,retrieve〉,S1

This definition is also natural:

F (S,G(S, f))S1 ; εS,〈B,store,retrieve〉,S1

= (fS × S)S1 ; storeS1
S ;B!S1 ; retrieveS1

= storeS1
S ;A!S1 ; retrieveS1 ; fS1

= εS,〈A,store,retrieve〉,S1 ; fS1

and dinatural:

F (s,G(S, 〈A, store, retrieve〉))S1 ; εS,〈A,store,retrieve〉,S1

= (AS × s)S1 ; storeS1
S ;A!S1 ; retrieveS1

= (As× S ′)S1 ; storeS1

S′ ;A!S1 ; retrieveS1

= F (S ′, G(s, 〈A, store, retrieve〉))S1 ; εS′,〈A,store,retrieve〉,S1

This is a good definition of counit; it satisfies the triangle equalities for a param-

eterised monad:

ηS,G(S,〈A,store,retrieve〉);G(S, εS,〈A,store,retrieve〉)

= ηS,G(S,〈A,store,retrieve〉); εS,〈A,store,retrieve〉,S

= Λ(id); storeS;A!S; retrieveS

= Λ(Λ(π1)× S;ASS × dup; ev × S); storeS;A!S; retrieveS

= Λ(π1); Λ(ASS × dup; ev × S); storeS;A!S; retrieveS

= Λ(π1); retrieveS

= id

and:

F (S, ηS,A)S1 ; εS,F (S,A),S1

=
(Λ(id)× S)S1 ; Λ(π1; ev)S1 ; (((A× S)S × S)!)S1 ;

Λ((((A× S)S × S)S1)S1 × dup; ev × S1; ev)

B.3. Proof Details 291

= (Λ(id)× S)S1 ; Λ(π1; ev)S1 ; Λ((((A× S)S × S)S1)S1 × dup; ev × S1; ev)

= (Λ(id)× S)S1 ; Λ((((A× S)S × S)S1)S1 × dup; ev × S1; π1; ev)

= (Λ(id)× S)S1 ; Λ(ev; ev)

= (Λ(id)× S)S1 ; Λ(ev); evS1

= (Λ(id)× S)S1 ; evS1

= id

Hence 〈F,G, η, ε〉 is a parameterised adjunction.

B.3.3 The functor L is well-defined

Recall the definition of L:

L : CT → StAlg(C,S)

L(〈A, h〉) = 〈A,Λ(π1);h1,S,Λ(ASS × dup; ev × S);hS,S〉

Lf = f

Firstly, it is well-defined on objects: the first axiom:

Λ(ASS × dup; ev × S); storeS
S;A!S; retrieveS

= Λ(ASS × dup; ev × S); Λ(π1)
S;hS

1,S;A!S; Λ(ASS × dup; ev × S);hS,S

= Λ(ASS × dup; ev × S); Λ(π1)
S; ((AS × S)!)S;hS

S,S; Λ(ASS × dup; ev × S);hS,S

= Λ(ASS × dup; ev × S); Λ(π1)
S;hS

S,S; Λ(ASS × dup; ev × S);hS,S

= Λ(ASS × dup; ev × S); Λ(π1)
S; Λ(ASS × dup; ev × S); (hS,S × S)S;hS,S

= Λ(ASS × dup; ev × S); Λ(π1)
S; Λ(ASS × dup; ev × S); evS;hS,S

= Λ(ASS × dup; ev × S); Λ(π1)
S; Λ(ASS × dup; ev × S; ev);hS,S

= Λ(ASS × dup; ev × S); Λ(ASS × dup; ev × S; π1);hS,S

= Λ(ASS × dup; ev × S); Λ(ev);hS,S

= Λ(ASS × dup; ev × S);hS,S

= retrieveS

292 Appendix B. Adjunctions and Algebras with Parameters

The second axiom:

Λ(π1); retrieveS

= Λ(π1); Λ(ASS × dup; ev × S);hS,S

= Λ(ASS × dup; π1 × S);hS,S

= Λ(id);hS,S

= id

The third axiom:

A!S × S; retrieveS × S; storeS

= A!S × S; Λ(ASS × dup; ev × S)× S;hS,S × S; Λ(π1);h1,S

= A!S × S; Λ(ASS × dup; ev × S)× S; Λ(π1); (hS,S × S)1;h1,S

= A!S × S; Λ(ASS × dup; ev × S)× S; Λ(π1); ev1;h1,S

= Λ(A1S × dup; ev × S)× S; (A!× S)S × S; Λ(π1); ev1;h1,S

= Λ(A1S × dup; ev × S); Λ(π1); ((A!× S)S × S)1; ev1;h1,S

= Λ(A1S × dup; ev × S); Λ(π1); ev1; (A!× S)1;h1,S

= Λ(A1S × dup; ev × S); Λ(π1); ev1; (A1×!)1;h1,1

= Λ(π1; Λ(A1S × dup; ev × S); ev); (A1×!)1;h1,1

= Λ(π1;A1S × dup; ev × S); (A1×!)1;h1,1

= Λ(π1;A1S × dup; ev×!);h1,1

= Λ(ev × S);h1,1

= ev; Λ(id);h1,1

= ev

The fourth axiom:

Λ((ASS)S × dup; ev × S; ev); retrieveS

= Λ((ASS)S × dup; ev × S; ev); Λ(ASS × dup; ev × S);hS,S

= Λ((ASS)S × dup; (ASS)S × dup× S; ev × S; ev × S);hS,S

= Λ((ASS)S × dup; ev × S; Λ((ASS)S × dup; ev × S); ev);hS,S

B.3. Proof Details 293

= Λ((ASS)S × dup; ev × S)S; Λ(ASS × dup; ev × S; ev);hS,S

= Λ((ASS)S × dup; ev × S)S; Λ(ASS × dup; ev × S); evS;hS,S

= Λ((ASS)S × dup; ev × S)S; Λ(ASS × dup; ev × S); (hS,S × S)S;hS,S

= Λ((ASS)S × dup; ev × S)S;hS
S,S; Λ(ASS × dup; ev × S);hS,S

= retrieveS
S; retrieveS

The defined store family is dinatural:

As× S; storeS

= As× S; Λ(π1);h1,S

= Λ(π1); (As× S)1;h1,S

= Λ(π1); (AS ′ × s)1;h1,S′

= AS ′ × s; Λ(π1);h1,S′

= AS ′ × s; storeS′

The defined retrieve family is natural:

Af f ; retrieveS

= Af f ; Λ(ASS × dup; ev × S);hS,S

= Λ(AS ′S
′ × dup;Af f × S × S; ev × S);hS,S

= Λ(AS ′S
′ × dup;AS ′S

′ × f × S; ev × S;Af × S);hS,S

= Λ(AS ′S
′ × dup;AS ′S

′ × f × S; ev × S); (Af × S)S;hS,S

= Λ(AS ′S
′ × dup;AS ′S

′ × f × S; ev × S); (AS ′ × f)S;hS,S′

= Λ(AS ′S
′ × dup;AS ′S

′ × f × f ; ev × S ′);hS,S′

= Λ(AS ′S
′ × f ;AS ′S

′ × dup; ev × S ′);hS,S′

= Λ(AS ′S
′ × dup; ev × S ′); (AS ′ × S ′)f ;hS,S′

= Λ(AS ′S
′ × dup; ev × S ′);hS′,S′ ;Af

= retrieveS′ ;Af

Hence L is well-defined on objects. The definition is also well-defined on arrows;

commutativity with store:

L(f)S × S; storeS

294 Appendix B. Adjunctions and Algebras with Parameters

= fS × S; Λ(π1);h
B
1,S

= Λ(π1); (fS × S)1;hB
1,S

= Λ(π1);h
A
1,S; f1

= storeS;L(f)1

and commutativity with retrieve:

L(f)S
S; retrieveS

= fS
S ; Λ(ASS × dup; ev × S);hB

S,S

= Λ(ASS × dup; ev × S); (fS × S)S;hB
S,S

= Λ(ASS × dup; ev × S);hA
S,S; fS

= retrieveS; fS

Hence L is a functor CT → StAlg(C,S).

B.3.4 The functors L and K form an isomorphism

It is immediate that they are bijective on arrows. On objects, for K;L:

L(K(〈A, store, retrieve〉))

= L(〈A, storeS1
S2

;A!S1 ; retrieveS1〉)

= 〈A,Λ(π1); store
1
S;A!1; retrieve1,Λ(ASS × dup; ev × S); storeS

S;A!S; retrieveS〉

We must check that these new store and retrieve operations are equal to the

originals:

Λ(π1); store
1
S;A!1; retrieve1

= storeS; Λ(π1); retrieve1

= storeS

and:

Λ(ASS × dup; ev × S); storeS
S;A!S; retrieveS

= retrieveS

B.3. Proof Details 295

Hence K;L = Id. In the opposite direction:

K(L(〈A, h〉))

= K(〈A,Λ(π1);h1,S,Λ(ASS × dup; ev × S);hS,S〉)

= 〈A,Λ(π1)
S1 ;hS1

1,S2
;A!S1 ; Λ(ASS1

1 × dup; ev × S1);hS1,S1〉

We must check that the two structure maps are equal:

Λ(π1)
S1 ;hS1

1,S2
;A!S1 ; Λ(ASS1

1 × dup; ev × S1);hS1,S1

= Λ(π1)
S1 ; ((AS2 × S2)

!)S1 ;hS1
S1,S2

; Λ(ASS1
1 × dup; ev × S);hS1,S1

= Λ(π1)
S1 ;hS1

S1,S2
; Λ(ASS1

1 × dup; ev × S1);hS1,S1

= Λ(π1)
S1 ; Λ(ASS1

1 × dup; ev × S); (hS1,S2 × S1)
S1 ;hS1,S1

= Λ(π1)
S1 ; Λ(ASS1

1 × dup; ev × S); evS1 ;hS1,S2

= Λ(ASS1
1 × dup; ev × S; Λ(π1)× S; ev);hS1,S2

= Λ(ASS1
1 × dup; ev × S; π1);hS1,S2

= Λ(ev);hS1,S2

= hS1,S2

Hence L;K = Id and the categories CT and StAlg(C,S) are isomorphic.

Bibliography

[AB01] Carlos Areces and Patrick Blackburn. Bringing them all together.

Logic and Computation, 11(5), 2001. Editorial of special issue on

Hybrid Logics.

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theo-

retical Computer Science, 111:3–57, 1993.

[AFM05] Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed

model of substructural state. In International Conference on Func-

tional Programming, 2005. to appear.

[AH02] David Aspinall and Martin Hofmann. Another type system for in-

place update. In D. Le Métayer, editor, Programming Languages

and Systems, Proceedings of 11th European Symposium on Pro-

gramming, volume 2305, pages 36–52. Springer-Verlag, 2002. Lec-

ture Notes in Computer Science.

[Ahm04] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis,

Princeton University, 2004.

[AJW03] Amal Ahmed, Limin Jia, and David Walker. Reasoning about hi-

erarchical storage. In IEEE Symposium on Logic in Computer Sci-

ence, pages 33–44, June 2003.

[AM96] Samson Abramsky and Guy McCusker. Linearity, sharing and

state: a fully abstract game semantics for idealized algol with active

expressions. Electr. Notes Theor. Comput. Sci., 3, 1996.

297

298 Bibliography

[Amb92] Simon John Ambler. First Order Linear Logic in Symmetric

Monoidal Closed Categories. PhD thesis, LFCS, Edinburgh Uni-

versity, January 1992.

[AMJ94] Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan.

Full abstraction for pcf. In Masami Hagiya and John C. Mitchell,

editors, Theoretical Aspects of Computer Software, International

Conference TACS ’94, volume 789 of Lecture Notes in Computer

Science, pages 1–15. Springer, 1994.

[Atk04] Robert Atkey. A λ-calculus for resource separation. In Au-

tomata, Languages and Programming: 31st International Collo-

quium, ICALP 2004, volume 3142 of Lecture Notes in Computer

Science, pages 158–170. Springer, July 2004.

[Bak92] Henry G. Baker. Lively linear lisp–’look ma, no garbage!’. ACM

Sigplan notices, 27(8):89–98, 1992.

[Bak95] Henry G. Baker. ’use-once’ variables and linear objects – storage

management, reflection and multi-threading. ACM Sigplan Notices,

30(1):45–52, January 1995.

[Bar79] M. Barr. *-autonomous categories. Number 752 in Lecture Notes

in Mathematics. Springer, 1979.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical Report

ECS-LFCS-96-347, LFCS, University of Edinburgh, 1996.

[BBdPH92] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland.

Term assignment for intuitionistic linear logic. Technical Report

262, Computer Laboratory, University of Cambridge, August 1992.

[BBdPH93a] N. Benton, G. Bierman, V. de Paiva, and H. Hyland. A term cal-

culus for intuitionistic linear logic. In Proceedings of International

Conference on Typed Lambda Calculi and Applications, volume 664

of Lecture Notes in Computer Science. Springer-Verlag, 1993.

Bibliography 299

[BBdPH93b] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland.

Linear lambda calculus and categorical models revisited. In Pro-

ceedings of Sixth Conference on Computer Science Logic, volume

702 of Lecture Notes in Computer Science, 1993.

[BCS97] R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Categories

for computation in context and unified logic. Journal of Pure and

Applied Algebra, 116:49–98, 1997.

[BdGR97] Denis Bechet, Philippe de Groote, and Christian Retoré. A com-

plete axiomatisation for the inclusion of series-parallel partial or-

ders. In Proceedings of RTA’97, volume 1232 of Lecture Notes in

Computer Science, pages 230–240, 1997.

[Bec67] Jonathan Mock Beck. Triples, algebras and cohomology. PhD thesis,

Columbia University, 1967. Available as Reprints in Theory and

Applications of Categories, No. 2, 2003.

[Ben95] N. Benton. A mixed linear and non-linear logic: proofs, terms and

models. In Proceedings of Computer Science Logic ’94, volume 933

of Lecture Notes in Computer Science, 1995.

[Ben05] Nick Benton. A typed compositional logic for a stack-based ab-

stract machine. In Proceedings of the Third Asian Symposium on

Programming Languages and Systems (APLAS), volume 3780 of

Lecture Notes in Computer Science, November 2005. To appear.

[BHM02] Nick Benton, John Hughes, and Eugenio Moggi. Monads and ef-

fects. In G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, Ap-

plied Semantics: Advanced Lectures, volume 2395 of Lecture Notes

in Computer Science, pages 42–122. Springer-Verlag GmbH, 2002.

[BNR01] John Boyland, James Noble, and William Retert. Capabilities for

sharing: A generalisation of uniqueness and read-only. In J. Lind-

300 Bibliography

skov Knudsen, editor, Proceedings of ECOOP 2001, volume 2072 of

Lecture Notes in Computer Science, pages 2–27. Springer, 2001.

[Bor94] Francis Borceaux. Handbook of Categorical Algebra I, volume 50

of Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1994.

[BPR00] Gavin M. Bierman, Andrew M. Pitts, and Claudio V. Russo. Op-

erational properties of lily, a polymorphic linear lambda calculus

with recursion. Electr. Notes Theor. Comput. Sci., 41(3), 2000.

[BS93] Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness

typing in graph rewrite systems (extended abstract). In R. K. Shya-

masundar, editor, Proceedings of the 13th Conference on the Foun-

dations of Software Technology and Theoretical Computer Science,

pages 41–51. Springer-Verlag, 1993. Lecture Notes in Computer

Science 761.

[BTSR04] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local

reasoning about a copying garbage collector. In Jones and Leroy

[JL04], pages 220–231.

[BTSY05] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics

of separation-logic typing and higher-order frame rules. In LICS,

pages 260–269. IEEE Computer Society, 2005.

[BW83] Michael Barr and Charles Wells. Toposes,

Triples and Theories. Springer-Verlag, 1983.

http://www.cwru.edu/artsci/math/wells/pub/ttt.html.

[BW96] Nick Benton and Philip Wadler. Linear logic, monads, and the

lambda calculus. In Proceedings of 11th IEEE Symposium on Logic

in Computer Science, 1996.

Bibliography 301

[CG92] P.-L. Curien and G. Ghelli. Coherence of subsumption, minimum

typing and type checking in fsub. Mathematical Structures in Com-

puter Science, 2(1):55–91, 1992.

[CG03] Luca Cardelli and Andrew D. Gordon. Ambient logic. WWW:

http://www.luca.demon.co.uk/, 2003.

[CGR96] J. Chirimar, C. A. Gunter, and J. G. Riecke. Reference counting as

a computational interpretation of linear logic. Journal of Functional

Programming, 6(2):195–244, 1996.

[CH97] Chih-Ping Chen and Paul Hudak. Rolling your own mutable

ADT—A connection between linear types and monads. In Con-

ference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 54–66,

Paris, France, 15–17 1997.

[Chu41] Alonzo Church. The Calculi of Lambda Conversion. Princeton

University Press, 1941.

[CHW02] Mario José Cáccamo, J. Martin E. Hyland, and Glynn Winskel.

Lecture notes in category theory (draft). Unpublished manuscript,

June 2002.

[CKR98] William D. Clinger, Richard Kelsey, and Jonathan Rees. Revised5

report on the algorithmic language scheme. Journal of Higher-Order

and Symbolic Computation, 11(1):7–105, 1998.

[CMMS94] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Sce-

drov. An extension of system f with subtyping. Information and

Computation, 109(1/2):4–56, February 1994.

[CPR05] Matthew Collinson, David Pym, and Edmund Robinson. On

bunched polymorphism. In Luke Ong, editor, Computer Science

302 Bibliography

Logic: 19th International Workshop, CSL 2005, 14th Annual Con-

ference of the EACSL, volume 3634 of Lecture Notes in Computer

Science. Springer, 2005.

[Cro94] Roy Crole. Categories for Types. Cambridge University Press, 1994.

[CS97] J. R. B. Cockett and R. A. G. Seely. Weakly distributive categories.

Journal of Pure and Applied Algebra, 114(2):133–173, 1997.

[CS99] J. R. B. Cockett and R. A. G. Seely. Linearly distributive functors.

Journal of Pure and Applied Algebra, 143:155–203, 1999.

[Day70] B. J. Day. On closed categories of functors. In S. Mac Lane, editor,

Reports of the Midwest Category Seminar, volume 137 of Lecture

Notes in Mathematics, pages 1–38. Springer-Verlag, 1970.

[DB76] J. Darlington and R. M. Burstall. A system which automatically

improves programs. Acta Informatica, 6:41–60, 1976.

[DF89] Olivier Danvy and Andrzej Filinski. A functional abstract of typed

contexts. Technical report, DIKU – Computer Science Department,

University of Copenhagen, August 1989.

[Dos93] Kosta Dosen. A historical introduction to substructural logics. In

Schroeder-Heister and Došen [SHD93], pages 1–30.

[DS95] Brian Day and Ross Street. Kan extensions along promonoidal

functors. Theory and Applications of Categories, 1(4):72–77, 1995.

[dSCHdP96] Marcelo da S. Corrêa, Edward H. Haeusler, and Valeria C. V.

de Paiva. A dialectica model of state. In CATS’96, Computing:

The Australian Theory Symposium Proceedings, January 1996.

[FD02] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practi-

cal linear types for imperative programming. In PLDI, pages 13–24,

2002.

Bibliography 303

[Flo67] R. W. Floyd. Assigning meanings to programs. In Mathematical

Aspects of Computer Science, number 19 in Proc. Amer. Math. Soc.

Symposia in Applied Mathematics, pages 19–31, 1967.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische schießen. In

Mathematische Zeitschrift 39 [Sza69], pages 176–210.

[GH90] Juan C. Guzmán and Paul Hudak. Single-threaded polymorphic

lambda calculus. In Proceedings of the Fifth Annual IEEE Sympo-

sium on Logic in Computer Science, pages 333–343, 1990.

[Gha95] Neil Ghani. Adjoint Rewriting. PhD thesis, University of Edin-

burgh, 1995.

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des

coupures de l’arithmétique d’ordre supérieur. PhD thesis, University

of Paris VII, 1972.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,

50:1–101, 1987.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.

Number 7 in Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 1989.

[GMJ+02] Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W.

Hicks, Yanling Wang, and James Cheney. Region-based memory

management in cyclone. In PLDI, pages 282–293, 2002.

[GP01] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax

with variable binding. Formal Aspects of Computing, 13:341–363,

2001.

[Har01] Dana G. Harrington. A type system for destructive updates in

declarative programming languages. Master’s thesis, University of

Calgary, 2001.

304 Bibliography

[HDM93] Robert Harper, Bruce Duba, and David MacQueen. Typing first-

class continuations in ML. Journal of Functional Programming,

3(4), 1993.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.

Comm. ACM, 12(10):576–580, 1969.

[Hof00] Martin Hofmann. A type system for bounded space and functional

in-place update. Nordic Journal of Computing, 7(4):258–289, 2000.

[How80] W. A. Howard. The formulae-as-types notion of construction. In

J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays

on combinatory logic, lambda calculus, and formalism. Academic

Press, 1980.

[HPP02] Martin Hyland, Gordon D. Plotkin, and John Power. Combining

computational effects: commutativity & sum. In Ricardo A. Baeza-

Yates, Ugo Montanari, and Nicola Santoro, editors, IFIP TCS, vol-

ume 223 of IFIP Conference Proceedings, pages 474–484. Kluwer,

2002.

[IK02] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis.

In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 331–342,

New York, NY, USA, 2002. ACM Press.

[IO01] Samin Ishtiaq and Peter W. O’Hearn. Bi as an assertion language

for mutable data structures. In Proceedings of the 28th Symposium

on Principles of Programming Languages, pages 14–26, January

2001.

[ISO99] ISO. Programming languages – C. 1999. ISO/IEC 9899:1999.

[JL04] Neil D. Jones and Xavier Leroy, editors. Proceedings of the 31st

ACM SIGPLAN-SIGACT Symposium on Principles of Program-

Bibliography 305

ming Languages, POPL 2004, Venice, Italy, January 14-16, 2004.

ACM, 2004.

[JMG+02] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James

Cheney, and Yanling Wang. Cyclone: A safe dialect of c. In Pro-

ceedings of USENIX Annual Technical Conference, pages 275–288,

June 2002.

[Joh89] P. T. Johnstone. A topos-theorist looks at dilators. J. Pure and

Applied Algebra, 58(3):235–249, 1989.

[JW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional

programming. In POPL, pages 71–84, 1993.

[Kob99] Naoki Kobayashi. Quasi-linear types. In Conference Record of

POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, San Antonio, Texas, pages

29–42, New York, NY, 1999.

[Koc72] Anders Kock. Strong functors and monoidal monads. Archiv der

Mathematik, 23, 1972.

[KP93] G. M. Kelly and A. J. Power. Adjunctions whose counits are co-

equalizers, and presentations of finitary enriched monads. Journal

of Pure and Applied Algebra, (89):163–179, 1993.

[Kri63a] S. Kripke. Semantical analysis of intuitionistic logic I. In J. Cross-

ley and M. Dummett, editors, Formal Systems and Recursive Func-

tions, pages 92–130. North-Holland, 1963.

[Kri63b] S. Kripke. Semantical analysis of modal logic I. Zeitschrift fur

math. Logik und Grundlagen der Mathematik, 9:67–96, 1963.

[Kri63c] S. Kripke. Semantical considerations on modal logic. Acta Philo-

sophica Fennica, 16:83–94, 1963.

306 Bibliography

[Kri65] S. Kripke. Semantical analysis of modal logic II. In Addison,

Henkin, and Tarski, editors, The theory of models. North-Holland,

1965.

[Laf88] Yves Lafont. The linear abstract machine. Theoretical Computer

Science, 59:157–180, 1988.

[Lam58] Joachim Lambek. The mathematics of sentence structure. Ameri-

can Mathematical Monthly, (65):154–169, 1958.

[Law70] F. W. Lawvere. Equality in hyperdoctrines and comprehension

schema as an adjoint functor. Proc. Sympos. Pure Math., XVII:1–

14, 1970.

[LG88] J.M. Lucassen and D.K. Gifford. Polymorphic effect systems. In

Proceedings of 15th ACM Symposium on Principles of Programming

Languages, pages 47–57, 1988.

[LG97] Christoph Lüth and Neil Ghani. Monads and modular term rewrit-

ing. In Eugenio Moggi and Giuseppe Rosolini, editors, Category

Theory and Computer Science, volume 1290 of Lecture Notes in

Computer Science, pages 69–86. Springer, 1997.

[LM92] Patrick Lincoln and John Mitchell. Operational aspects of linear

lambda calculus. In Proceedings 7th Annual IEEE Symp. on Logic

in Computer Science, LICS’92, pages 235–246. IEEE Computer

Society Press, June 1992.

[Lon95] John Longley. Realizability Toposes and Language Semantics. PhD

thesis, University of Edinburgh, 1995.

[LPT03] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling en-

vironments in call-by-value programming languages. Information

and Computation, 185:182–210, 2003.

Bibliography 307

[LS88] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical

Logic. Number 7 in Cambridge Studies in Advanced Mathematics.

Cambridge University Press, 1988.

[Mac94] Ian Mackie. Lilac: A functional programming language based on

linear logic. Journal of Functional Programming, 4(4):395–433,

1994.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician.

Number 5 in Graduate Texts in Mathematics. Springer-Verlag, 2nd

edition, 1998.

[MAF05] Greg Morrisett, Amal J. Ahmed, and Matthew Fluet. L3: A linear

language with locations. In Urzyczyn [Urz05], pages 293–307.

[MM92] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A

First Introduction to Topos Theory. Springer-Verlag, 1992.

[Mog89a] E. Moggi. Computational lambda-calculus and monads. In Rohit

Parikh, editor, Proceedings of the Fourth Annual IEEE Symp. on

Logic in Computer Science, LICS 1989, pages 14–23. IEEE Com-

puter Society Press, June 1989.

[Mog89b] Eugenio Moggi. An abstract view of programming languages. Tech-

nical Report ECS-LFCS-90-113, Edinburgh University, 1989.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information

and Computation, 93(1):55–92, 1991.

[NSvEP91] E. G. J. M. H. Nöcker, J. E. W. Smetsers, Marko C. J. D. van

Eekelen, and Marinus J. Plasmeijer. Concurrent clean. In Emile

H. L. Aarts, Jan van Leeuwen, and Martin Rem, editors, PARLE

(2), volume 506 of Lecture Notes in Computer Science, pages 202–

219. Springer, 1991.

308 Bibliography

[Ode92] Martin Odersky. Observers for linear types. In B. Krieg-

Brückner, editor, ESOP ’92: 4th European Symposium on Pro-

gramming, Rennes, France, Proceedings, pages 390–407. Springer-

Verlag, February 1992. Lecture Notes in Computer Science 582.

[O’H91] P. W. O’Hearn. Linear logic and interference control (preliminary

report). In D H. Pitt, P.-L. Curien, S. Abramsky, A. M. Pitts,

A. Poigné, and D. E. Rydeheard, editors, Category Theory and

Computer Science, number 530 in Lecture Notes in Computer Sci-

ence. Springer, September 1991.

[O’H93] P. W. O’Hearn. A model for syntactic control of interference. Math.

Struct. in Comput. Sci., 3:435–465, 1993.

[O’H03] P. W. O’Hearn. On bunched typing. Journal of Functional Pro-

gramming, 13(4):747–796, 2003.

[O’H05] Peter W. O’Hearn. Resources, concurrency and local reasoning.

Theoretical Computer Science, 2005.

[Ole82] Frank J. Oles. A Category Theoretic Approach To Semantics of

Programming Languages. PhD thesis, Syracuse University, Syra-

cuse, New York, August 1982.

[Ole85] Frank J. Oles. Type algebras, functor categories, and block struc-

ture. In Maurice Nivat and John C. Reynolds, editors, Algebraic

Methods in Semantics, pages 543–573. Cambridge University Press,

1985.

[Ole97] Frank J. Oles. Functor categories and store shapes. In Peter W.

O’Hearn and Robert D. Tennent, editors, ALGOL-like languages,

Volume 2, pages 3–12. Birkhäuser, 1997.

[OP99] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin

of Symbolic Logic, 5(2):215–243, 1999.

Bibliography 309

[OPTT99] P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent.

Syntactic control of interference revisited. Theoretical Computer

Science, 228:211–252, 1999.

[Orl28] I. E. Orlov. The calculus of compatibility in propositions. Mathe-

maticheskǐi sbornik, 35:263–286, 1928. (In Russian).

[Ove03] David Overton. Precise and expressive mode systems for typed logic

programming languages. PhD thesis, Department of Computer Sci-

ence and Software Engineering, The University of Melbourne, De-

cember 2003.

[OYR04] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Sep-

aration and information hiding. In Jones and Leroy [JL04], pages

268–280.

[PHCP03] Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A

type theory for memory allocation and data layout. In G. Mor-

risett, editor, Conference Record of the 30th Annual Symposium on

Principles of Programming Languages (POPL’03), pages 172–184,

January 2003. ACM Press.

[Pit00] A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and

T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

Volume 5. Algebraic and Logical Structures, chapter 2, pages 39–

128. Oxford University Press, 2000.

[Plo75] Gordon Plotkin. Call-by-name, call-by-value, and the λ-calculus.

Theoretical Computer Science, 1(2):125–159, 1975.

[Plo93] G. D. Plotkin. Type theory and recursion. In Moshe Vardi, editor,

Proceedings of the Eighth Annual IEEE Symp. on Logic in Com-

puter Science, LICS 1993, pages 374–374. IEEE Computer Society

Press, June 1993. Invited Talk.

310 Bibliography

[Pow89] A. J. Power. A general coherence result. J. Pure Appl. Algebra,

57(2):165–173, March 1989.

[Pow95] A. John Power. Why tricategories? Information and Computation,

120(2):251–262, 1995.

[Pow00a] A. J. Power. Enriched lawvere theories. Theory and Applications

of Categories, pages 83–93, 2000.

[Pow00b] John Power. Models for the computational lambda-calculus. Electr.

Notes Theor. Comput. Sci., 40, 2000.

[POY04] David J. Pym, Peter W. O’Hearn, and Hongseok Yang. Possible

worlds and resources: the semantics of BI. Theor. Comput. Sci.,

315(1):257–305, 2004.

[PP99] Jeff Polakow and Frank Pfenning. Natural deduction for intuition-

istic non-commutative linear logic. In J.-Y. Girard, editor, Pro-

ceedings of the 4th International Conference on Typed Lambda Cal-

culi and Applications (TLCA’99), number 1581 in Lecture Notes in

Computer Science, pages 295–309. Springer-Verlag, April 1999.

[PP01] Gordon D. Plotkin and John Power. Semantics for algebraic oper-

ations. Electr. Notes Theor. Comput. Sci., (45), 2001.

[PP02] Gordon D. Plotkin and John Power. Notions of computation de-

termine monads. In M. Nielsen and U. Engberg, editors, Foun-

dations of Software Science and Computation Structures : 5th In-

ternational Conference, FOSSACS 2002, number 2303 in Lecture

Notes in Computer Science. Springer-Verlag, April 2002.

[PP04] Gordon D. Plotkin and A. John Power. Computational effects

and operations: An overview. Electr. Notes Theor. Comput. Sci.,

73:149–163, 2004.

Bibliography 311

[PR97] John Power and Edmund Robinson. Premonoidal categories and

notions of computation. Math. Struct. in Comp. Science, 7:453–

468, 1997.

[PT97] John Power and Hayo Thielecke. Environments, continuation se-

mantics and indexed categories. In Proc. Theoretical Aspects of

Computer Science, volume 1281 of Lecture Notes in Computer Sci-

ence, pages 391–414, 1997.

[PT99] John Power and Hayo Thielecke. Closed freyd- and kappa-

categories. In ICALP, volume 1644 of Lecture Notes in Computer

Science. Springer, 1999.

[PT05] John Power and Miki Tanaka. Binding signatures for generic con-

texts. In Urzyczyn [Urz05], pages 308–323.

[Pym02] D. J. Pym. The Semantics and Proof Theory of the Logic of

Bunched Implications, volume 26 of Applied Logic Series. Kluwer

Academic Publishers, 2002.

[Red93] Uday Reddy. A linear logic model of state. Electronic manuscript:

http://www.cs.bham.ac.uk/~udr/, October 1993.

[Red94] Uday Reddy. Passivity and independence. In Samson Abramsky,

editor, Proceedings of the Ninth Annual IEEE Symp. on Logic in

Computer Science, LICS 1994, pages 342–352. IEEE Computer So-

ciety Press, July 1994.

[Res00] Greg Restall. An Introduction to Substructural Logics. Routledge,

2000.

[Ret97] Christian Retoré. Pomset logic: a non-commutative extension of

classical linear logic. In In proceedings of TLCA’97, volume 1210

of Lecture Notes in Computer Science, pages 300–318, 1997.

312 Bibliography

[Rey74] John C. Reynolds. Towards a theory of type structure. In Colloque

sur la Programmation, Paris, France, volume 19 of Lecture Notes

in Computer Science, pages 408–425. Springer, 1974.

[Rey78] John C. Reynolds. Syntactic control of interference. In Proceedings

of the 5th ACM SIGACT-SIGPLAN symposium on Principles of

Programming Languages, pages 39–46. ACM Press, 1978.

[Rey81] John C. Reynolds. The essence of Algol. In Jaco W. de Bakker and

J. C. van Vliet, editors, Algorithmic Languages, pages 345–372,

Amsterdam, 1981. North-Holland.

[Rey89] John C. Reynolds. Syntactic control of interference, part 2. In

G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, ed-

itors, Automata, Languages and Programming, 16th International

Colloquium, pages 704–722. Springer-Verlag, 1989. Lecture Notes

in Computer Science 372.

[Rey93] John C. Reynolds. The discoveries of continuations. Lisp and Sym-

bolic Computation, 6(3–4):233–247, November 1993.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable

data structures. In Proceedings of 17th Annual IEEE Symposium

on Logic in Computer Science, 2002.

[Rob02] Edmund Robinson. Variations on algebra: Monadicity and general-

isations of equational theories. Formal Asp. Comput., 13(3-5):308–

326, 2002.

[See89] R. A. G. Seely. Linear logic, *-autonomous categories, and cofree

algebras. In Categories in Computer Science and Logic, number 92

in AMS Contemporary Mathematics, June 1989.

[Sel01] Peter Selinger. Control categories and duality: on the categorical

semantics of the lambda-mu calculus. Mathematical Structures in

Computer Science, 11(2):207–260, 2001.

Bibliography 313

[SF89] George Springer and Daniel P. Friedman. Scheme and the Art of

Programming. MIT Press, 1989.

[SHD93] Peter Schroeder-Heister and Kosta Došen, editors. Substructural

Logics. Number 2 in Studies in Logic and Computation. Oxford

University Press, 1993.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based

information-flow security. IEEE Journal on Selected Areas in Com-

munications, 21(1):5–19, January 2003. Special issue on Formal

Methods for Security.

[SS04] Ulrich Schöpp and Ian Stark. A dependent type theory with names

and binding. In Jerzy Marcinkowski and Andrzej Tarlecki, editors,

CSL, volume 3210 of Lecture Notes in Computer Science, pages

235–249. Springer, 2004.

[Sta94] Ian Stark. Names and Higher-Order Functions. PhD thesis, Uni-

versity of Cambridge, December 1994. Also available as Technical

Report 363, University of Cambridge Computer Laboratory.

[Sta05] Ian Stark. Free-algebra models for the i-calculus. In Vladimiro Sas-

sone, editor, FoSSaCS, volume 3441 of Lecture Notes in Computer

Science, pages 155–169. Springer, 2005.

[SWM00] Frederick Smith, David Walker, and J. Gregory Morrisett. Alias

types. In Gert Smolka, editor, ESOP, volume 1782 of Lecture Notes

in Computer Science, pages 366–381. Springer, 2000.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen.

North-Holland, Amsterdam, 1969.

[Thi97] Hayo Thielecke. Categorical Structure of Continuation Passing

Style. PhD thesis, University of Edinburgh, 1997.

314 Bibliography

[Tro93] A. S. Troelstra. Tutorial on Linear Logic. In Schroeder-Heister and

Došen [SHD93], pages 327–355.

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-based memory man-

agement. Information and Computation, 132(2):109–176, 1997.

[TW99] David N. Turner and Philip Wadler. Operational interpretations of

linear logic. Theoretical Computer Science, 227:231–248, 1999.

[Urz05] Pawel Urzyczyn, editor. Typed Lambda Calculi and Applications,

7th International Conference, TLCA 2005, Nara, Japan, April 21-

23, 2005, Proceedings, volume 3461 of Lecture Notes in Computer

Science. Springer, 2005.

[VCHP04] Tom Murphyø VII, Karl Crary, Robert Harper, and Frank Pfen-

ning. A symmetric modal lambda calculus for distributed comput-

ing. In LICS, pages 286–295. IEEE Computer Society, 2004.

[VTL82] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series-

parallel digraphs. SIAM Journal of Computing, 11(2):298–313, May

1982.

[Wad90] Philip Wadler. Linear types can change the world! In M. Broy

and C. Jones, editors, Programming Concepts and Methods. North

Holland, Amsterdam, 1990.

[Wad91] Philip Wadler. Is there a use for linear logic? In Proceedings of the

Symposium on Partial Evaluations and Semantics-Based Program

Manipulation, pages 255–273, 1991.

[Wad92] P. Wadler. There’s no substitute for linear logic. Presented at

Workshop on Mathematical Foundations Of Programming Language

Semantics, Oxford, April 1992.

[Wad93a] P. Wadler. A syntax for linear logic. In Ninth International Confer-

ence on the Mathematical Foundations of Programming Semantics,

Bibliography 315

number 802 in Lecture Notes in Computer Science. Springer-Verlag,

April 1993.

[Wad93b] P. L. Wadler. A taste of linear logic. In Proceedings of the 18th In-

ternational Symposium on Mathematical Foundations of Computer

Science, Gdánsk, New York, NY, 1993. Springer-Verlag.

[Wad94] Philip Wadler. Monads and composable continuations. Lisp and

Symbolic Computation, 7(1):39–56, January 1994.

[Wad99] Philip Wadler. The marriage of effects and monads. In Proceed-

ings of the ACM SIGPLAN International Conference on Functional

Programming (ICFP ’98), volume 34(1), pages 63–74, 1999.

[Wal05] David Walker. Substructural Type Systems. In Benjamin C. Pierce,

editor, Advanced Topics in Types and Programming Languages,

pages 3–43. MIT Press, 2005.

[WCM00] David Walker, Karl Crary, and Greg Morrisett. Typed memory

management via static capabilities. ACM Transactions on Pro-

gramming Languages and Systems, 22(4):701–771, 2000.

[Win05] Glynn Winskel. Relations in concurrency. In Prakash Panangaden,

editor, Proceedings of the Twentieth Annual IEEE Symp. on Logic

in Computer Science, LICS 2005, pages 2–11. IEEE Computer So-

ciety Press, June 2005. Invited Talk.

[WJ99] Keith Wansbrough and Simon L. Peyton Jones. Once upon a poly-

morphic type. In POPL, pages 15–28, 1999.

[WM00] David Walker and J. Gregory Morrisett. Alias types for recursive

data structures. In Robert Harper, editor, Types in Compilation,

volume 2071 of Lecture Notes in Computer Science, pages 177–206.

Springer, 2000.

316 Bibliography

[WW01] David Walker and Kevin Watkins. On regions and linear types. In

ICFP, pages 181–192, 2001.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical pro-

gramming. In Proceedings of the 26th ACM SIGPLAN Symposium

on Principles of Programming Languages, pages 214–227, San An-

tonio, January 1999.

[XZL05] Hongwei Xi, Dengping Zhu, and Yanka Li. Applied type system

with stateful views. Technical Report BUCS-2005-03, Computer

Science Department, Boston University, January 2005.

