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Abstract13

Verification of neural networks is currently a hot topic in automated theorem proving. Progress has14

been rapid and there are now a wide range of tools available that can verify properties of networks15

with hundreds of thousands of nodes. In theory this opens the door to the verification of larger16

control systems that make use of neural network components. However, although work has managed17

to incorporate the results of these verifiers to prove larger properties of individual systems, there is18

currently no general methodology for bridging the gap between verifiers and interactive theorem19

provers (ITPs).20

In this paper we present Vehicle, our solution to this problem. Vehicle is equipped with an21

expressive domain specific language for stating neural network specifications which can be compiled22

to both verifiers and ITPs. It overcomes previous issues with maintainability and scalability in23

similar ITP formalisations by using a standard ONNX file as the single canonical representation of24

the network. We demonstrate its utility by using it to connect the neural network verifier Marabou25

to Agda and then formally verifying that a car steered by a neural network never leaves the road,26

even in the face of an unpredictable cross wind and imperfect sensors. The network has over 20,00027

nodes, and therefore this proof represents an improvement of 3 orders of magnitude over prior proofs28

about neural network enhanced systems in ITPs.29
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1 Introduction38

In the last decade deep neural networks have made their way into systems used in everyday39

life and, as with any system that interacts directly with humans, it is highly desirable to40

1 Corresponding author

© Matthew L. Daggitt, Wen Kokke, Bob Atkey, Luca Arnaboldi, Ekaterina Komendantskya;
licensed under Creative Commons License CC-BY 4.0

13th International Conference on Interactive Theorem Proving (ITP 2022).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johnqpublic@dummyuni.org
http://www.myhomepage.edu 
https://orcid.org/0000-0002-1825-0097
mailto:joanrpublic@dummycollege.org
mailto:joanrpublic@dummycollege.org
mailto:joanrpublic@dummycollege.org
mailto:joanrpublic@dummycollege.org
https://doi.org/10.4230/LIPIcs.ITP.2022.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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have formal guarantees about their behaviour. However, these systems present a challenge41

for the verification community as typically the neural networks are used in domains where a42

formal specification of the desired behaviour remains elusive. Furthermore, their size and43

inability to be decomposed into components that tackle identifiable sub-tasks mean that they44

are usually viewed as black-box components, which makes traditional verification difficult to45

apply.46

Nonetheless, the discovery of adversarial attacks on neural networks in 2014 [27], has47

spurred the Automated Theorem Proving (ATP) community to develop neural network48

verifiers. These are based on SMT solvers [9, 19], abstract interpretation [26] or interval49

bounded arithmetic [29] and aim to prove linear (or occasionally semi-definite) relationships50

between the inputs and the outputs of the network. Progress has been rapid and they are51

now reaching the point where they are powerful enough to verify properties of networks with52

tens or even hundreds of thousands of nodes.53

The majority of the ATP community’s attention has been focused on using them to prove54

the robustness of the networks against adversarial attack, and there has been comparatively55

little work on using them to prove the functional correctness of larger systems that incorporate56

neural network components. Although there are several reasons for this, including the difficulty57

in coming up with a specification for the neural network in the first place, we believe that a58

key missing component on the technical side is that no one has yet integrated them with59

interactive theorem provers (ITPs).60

As when incorporating other ATP tools such as SMT solvers into ITPs [4, 10], one must61

translate high-level statements in the ITP into low level queries for the verifier. However,62

there are several additional challenges unique to the integration of neural network verifiers:63

1. Modelling mismatch - in an ITP a neural network is usually modelled as a function64

which can be composed with a larger system. However, neural network verifiers model a65

network as a relation between its inputs and outputs. As discussed in Sections 2.2 & 4.2.4,66

the translation from the former to the latter is not straightforward.67

2. Scalability - modern networks can contain millions or even billions of nodes, whereas68

most ITPs will consume excessive amounts of memory when representing even very69

small networks. For example, recent formalisations in Coq [3, 8] have have worked with70

networks of just 10 or 20 nodes.71

3. Maintainability - most neural networks are not static artefacts, and regularly undergo72

further training as new data is collected. For obvious practical reasons, a formally verified73

representation of the network within an ITP is unlikely to be the canonical representation74

deployed in a production system. Instead, specialised file formats are used to distribute75

and deploy networks. This raises the problem of how to maintain the faithfulness of the76

model (and the proofs) within the ITP with the rapidly evolving implementation stored77

elsewhere.78

4. Performance - even with domain specific verifiers, verification of large neural networks79

can be exceedingly expensive, often taking hours or even days to complete. This has the80

potential to be very disruptive in ITPs whose workflow encourages users to regularly81

recheck the validity of their proof during development.82

5. Integration into other parts of the neural network lifecycle - verification is only a83

small part of constructing a neural network with formal guarantees. When trained using84

traditional methods, a network is highly unlikely to satisfy the required specifications.85

Recent work has shown how specifications may be integrated into the training of the86

network [11] and gradient-based counter-example search [21]. Therefore ideally the87

specification should be usable in these other tools as well. However, current ITPs are88
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a poor environment in which to perform these complex and computationally intensive89

operations.90

We believe that in order for verification of neural network-enhanced systems to achieve91

wide-spread adoption, all of these issues must be addressed. Our vision is as follows.92

The specification for a neural network should be stated once, in a high-level, human-93

readable format. This specification should then be automatically translated to work with94

the appropriate tools in the different stages in the life-cycle of the network. Importantly,95

there should only ever be one representation of the network, stored in a format usable by96

the mainstream machine learning community. For performance and modularity reasons,97

we also argue that an appropriate level of abstraction should be maintained at each stage.98

Concretely, the training and verification tools should be able to inspect the internal neural99

network structure. However, when writing the specification and using it to prove properties100

of the larger system in an ITP, the view of the network as a black-box function should be101

maintained where possible. Finally to maintain interactivity in the ITP, the checking of the102

proof of system correctness should be decoupled from the checking of the proof of the neural103

network specification, so that former does not automatically trigger the latter.104

1.1 Contributions105

In this paper we present Vehicle, a tool that implements the interaction between network106

specifications, verifiers and ITPs proposed in our vision above. In particular:107

1. Vehicle is equipped with a high-level, domain specific language (DSL) for writing neural108

network specifications. The Vehicle compiler automatically translates these specifications109

down to low-level queries for neural network verifiers, and then subsequently to high-level110

ITP code. The latter can be used as an interface upon which proofs about the larger111

systems can be constructed.112

2. Instead of modelling the network directly inside the ITP, Vehicle side-steps the maintain-113

ability issue outlined above by using an Open Neural Network Exchange (ONNX) [1] file114

as the single canonical representation of the network. The ONNX format is a widely-115

supported, cross-platform, training-framework independent, representation of neural116

networks [1]. The Vehicle compiler extracts the necessary internal implementation details117

from the ONNX file, and uses hashing to maintain the integrity of the specification in118

the ITP with respect to the underlying ONNX file.119

3. As Vehicle stores the neural network externally and uses specialised neural network120

verifiers, its performance is dependent on that of the underlying verifier rather than the121

ITP. This means that Vehicle can potentially be used to verify systems that use networks122

with hundreds of thousands of nodes.123

4. Vehicle maintains interactivity in the ITP when checking the proof, as the generated124

interface code calls back to Vehicle rather than directly calling the neural network verifier.125

Vehicle then checks its proof cache to ascertain the verification status of the specification,126

thereby preventing costly and unnecessary re-verification of the network.127

5. Vehicle maintains the abstraction of the neural network as a black-box function. When128

writing the specification the user is only required to provide the type of the function129

implemented by the network. Similarly in the ITP interface, the neural network is130

presented as a function that can be used, but not decomposed.131

In our current implementation, we target the SMT-based neural network verifier Marabou [19]132

and the interactive theorem prover Agda [23]. The latter was chosen due to the authors’133

ITP 2022
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Figure 1 The architecture of a Vehicle proof about a neural network enhanced system. The
ability to evaluate the network directly in Agda has not yet been implemented. However, the

integrity of the proof with respect to the network is maintained via the proof cache file, which also
maintains the interactivity of the Agda file.

expertise in it, and we acknowledge it is better suited to modelling systems rather than ex-134

tracting formally verified executable code. However, the integration with Agda is deliberately135

very lightweight, with a single file in the compiler defining the translation, and a single Agda136

file defining macros for calling back to Vehicle. It would therefore be relatively simple to137

extend support to other ITPs such as Coq.138

As an example of the utility of Vehicle, we use it to formally verify that a car controlled139

by a neural network will never leave the road, even in the presence of noisy sensor data140

and an unpredictable cross-wind. The neural network has over 20,000 nodes and therefore,141

as far as we aware, this proof represents an improvement of over 3 orders of magnitude142

when compared to previous proofs about neural network enhanced systems in ITPs. The143

architecture of the proof is shown in Figure 1. All accompanying code, including Vehicle144

itself, is available online [7].145

Vehicle will also be of use to people who are not interested in integrating with ITPs. The146

existing interfaces to verifiers are very low-level, usually involving the user specifying a set147

of equalities or inequalities over the individual inputs and outputs of the neural network.148

As a large neural network typically can have thousands of inputs and outputs, creating149

such inequalities is both time consuming and error prone. Furthermore, the result is almost150

completely unintelligible to a non-technical domain expert. In contrast Vehicle can provide a151

much higher-level, human readable version of the specification.152

The paper is laid out as follows. In Section 2 we describe our running example problem153

and related work on verifiers, neural network verification efforts and other similar specification154

languages. In Section 3 we propose an extension to the query language for Marabou to allow155

it to support specifications involving multiple networks. In Section 4, we describe the Vehicle156

DSL and the novel passes in the Vehicle compiler used to generate verifier queries and the157

Agda code. Finally, in Section 5 we discuss future work.158
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2 Background159

2.1 An example: staying on the road160

We will use a modified version of the verification problem presented by Boyer, Green and161

Moore [5] as a running example throughout this paper. In the scenario an autonomous162

vehicle is travelling along a straight road of width 6 parallel to the x-axis, with a varying163

cross-wind that blows perpendicular to the x-axis. The vehicle has an imperfect sensor that164

it can use to get a (possibly noisy) reading on its position on the y-axis, and can change165

its velocity on the y-axis in response. The car’s controller takes in both the current sensor166

reading and the previous sensor reading and its goal is to keep the car on the road. The167

setup is illustrated in Figure 2.

0

-1

-2

3

1

Road edges
y-velocity

windspeedy-position

direction
of travel

-3

2

Figure 2 A simple model of an autonomous vehicle compensating against a cross-wind.

168

For simplicity, we assume that both the wind-speed and the car’s velocity in the y-direction169

can grow arbitrarily large. As in [5] we discretise the model, and then formalise it in Agda as170

follows. The state of the system consists of the current wind speed, the position and velocity171

of the car and the most recent sensor reading. An oracle provides updates in the form of172

observations consisting of the shift in wind speed and the error on the sensor reading.173

record State : Set where174

constructor state175

field176

windSpeed : Q177

position : Q178

velocity : Q179

sensor : Q180

181

record Observation : Set where182

constructor observe183

field184

windShift : Q185

sensorError : Q186

187

For the moment, we assume that we have some controller that takes in the current and the188

previous sensor reading and produces a resulting change in velocity:189

controller : Q → Q → Q190

Given this, we can define the evolution of the system as follows:191

initialState : State192

initialState = state 0Q 0Q 0Q 0Q193

194

ITP 2022
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nextState : Observation → State → State195

nextState o s = state newWindSpeed newPosition newVelocity newSensor196

where197

newWindSpeed = windSpeed s + windShift o198

newPosition = position s + velocity s + newWindSpeed199

newSensor = newPosition + sensorError o200

newVelocity = velocity s + controller newSensor (sensor s)201

202

finalState : List Observation → State203

finalState xs = foldr nextState initialState xs204

Given this setup we would like to prove the following property of the system:205

I Theorem 1. Assuming that the wind-speed can shift by no more than 1 per unit time and206

that the sensor is never off by more than 0.25 then the car will never leave the road.207

We define the pre-conditions of the theorem in Agda as follows:208

ValidObservation : Observation → Set209

ValidObservation o = | sensorError o | ≤ 0.25Q × | windShift o | ≤ 1Q210

and the post-condition as:211

OnRoad : State → Set212

OnRoad s = | position s | ≤ 3Q213

which allows us to formalise the theorem as:214

finalState-onRoad : ∀ xs → All ValidObservation xs → OnRoad (finalState xs)215

As is standard when proving properties of large systems in a top-down manner, one eventually216

deduces the properties that must hold of the sub-components. In this case Theorem 1 can217

be proved by formulating a suitable inductive hypothesis about the state of the system at218

each time-step. The full inductive proof can be found online [], but the crucial part is that219

the inductive step requires the controller function to satisfy the following specification:220

controller-lemma : ∀ x y → | x | ≤ 3.25Q → | y | ≤ 3.25Q → | controller x y + 2Q * x - y | < 1.25Q221

We implement the controller with a 3-layer densely connected neural network with over222

20,000 nodes. The network is constructed in Tensorflow and all weights in the network are223

unique and non-zero. The challenge is then to implement the Agda function controller with224

this neural network, and prove controller-lemma, without having to directly represent either225

the network or the proof directly in Agda.226

In the interests of full disclosure, the problem above as stated is hardly very challenging227

to solve with a neural network and the size of the network used is complete overkill. The228

scenario could be made more realistic by adding further, possibly conflicting, objectives229

that the controller should optimise for, thereby rendering the problem intractable to solve230

analytically. For example, adding waypoints on the road that the car had to pass through,231

or regions it had to avoid. In such scenarios the statement of Theorem 1 would remain the232

same, but the number of inputs to the controller would increase. We do not explore these233

more complicated scenarios in this paper due to space limitations. Nonetheless, the simple234

scenario presented above is sufficient to illustrate the methodology and the utility of Vehicle.235
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2.2 Neural network verifiers236

Neural network verifiers can be roughly split into two families: those that are both sound237

and complete, like Marabou [19], and those that are only sound, based on techniques such as238

abstract interpretation [26] or bounded interval arithmetic [29]. While the latter are more239

performant, their incompleteness means that when the verifier fails to show that the property240

holds, it is unknown whether there truly exists a counter-example.241

There is no consensus on a single input format for verifications queries. Each solver defines242

its own, which makes interfacing with multiple solvers difficult. However, one commonality is243

that they implicitly model the neural network as a relation between its inputs and outputs,244

where each of the network’s inputs and outputs. For example when writing a Marabou query245

for a network with m inputs and n outputs, the input are labelled x0, x1, · · · x[m − 1]246

and the outputs are labelled y0, y1, · · · y[n − 1]. Queries are then written as a series of247

inequalities involving these variables. For example, the Marabou queries required to verify248

controller-lemma are shown in Figure 3.

x0 >= -3.25
x0 <= 3.25
x1 >= -3.25
x1 <= 3.25
-y0 -2.0x0 +x1 >= 1.25

(a) Query 1

x0 >= -3.25
x0 <= 3.25
x1 >= -3.25
x1 <= 3.25
y0 2.0 x0 -x1 >= 1.25

(b) Query 2

Figure 3 Marabou queries for controller-lemma. The lemma is true iff Marabou cannot find an
assignment of variables that satisfy the either set of inequalities.

249

In contrast to the solvers based on SMT technology, solvers based on abstract interpreta-250

tion and interval arithmetic can only handle properties that involve reasoning about how251

regions in the input space get mapped to regions in the output space. Concretely this means252

that they are unable to solve inequalities that involve both input and output variables, such253

as the last line of the queries in Figure 3. In order to maximise the number of interesting254

properties solvable, we therefore choose Marabou as the first solver to integrate into Vehicle.255

2.3 Verified neural network properties: the state of the art256

As discussed in the introduction, most of the work using neural network verifiers has focused257

on the verification of the robustness of the network. Informally, a network is robust if when258

you move no more than a small distance in the input space, then the result of the neural259

network should only move a small distance in the output space. Several different types260

of robustness have been studied including, classification robustness, Lipschitz robustness,261

standard robustness and approximate classification robustness [6].262

One of the first neural network verifiers, Reluplex [18], was also one of the first to verify263

non-trivial domain-specific properties, proving several results about ACAS Xu, a collision264

avoidance system for unmanned aircraft. The ACAS Xu neural networks map inputs such as265

the aircraft’s own speed and heading, and the angle and distance to the intruder aircraft266

to 5 different output actions, ranking each with a confidence score. The action with the267

highest confidence score being the one that the system will perform. In their verification the268

authors checked that the ACAS Xu worked as expected and avoided collisions, properties269

including, checking that a distant aircraft’s path will mean that it remains clear of collision270

ITP 2022
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Vehicle Functional None 1 Yes Yes Yes No
DNNV [25] Imperative Python 13 No No No No
Socrates [24] Declarative None 2 No No No Yes
Table 1 Comparison of existing property languages for neural networks

given various conditions such as angle and speed, checking that despite previous actions it271

will still perform the safe response given the new presence of a possible collision object etc.272

More recent work in verification focused on the verification of a reinforcement learning273

based neural network controller [16]. The authors show that they can verify that the function274

will always terminate with certain guarantees. In their case study, the authors use an example275

of a car climbing up a hill and verify that the car will always reach the top of the hill with at276

least 90 reward. This is the first paper of its kind formally verifying reachability properties277

for neural network components. Building on this same techniques the authors expand their278

earlier work by formally verifying a reinforcement learning based controller for an autonomous279

vehicle [15]. The authors first train some controllers for the vehicle and then verify its safety.280

Specifically they are able to verify that the vehicle will never be less than 30cm away from a281

wall and consequently will not crash. Unlike previous work by Katz [18] which deals with282

ReLu activation functions, their tool Verisig supports neural networks with smooth activation283

functions (e.g. sigmoid), however it only scales to small networks of about 100 neurons.284

2.4 Other neural network specification languages285

Given the low-level input formats supported by the verifiers described in Section 2.2, it286

is unsurprising there have been other attempts at coming up with a high-level property287

language. A comparison is shown in Table 1.288

The first is the Deep Neural Network Verifier (DNNV) toolbox [25], which has an internal289

Python DSL called DNNP. However its aims are somewhat orthogonal to that of Vehicle, as290

its primary focus is on providing a unified interface for many different verifiers. In particular,291

it has the ability to refactor the structure of the neural network to eliminate unsupported292

operators. However, DNNP is untyped and relies on Python semantics and therefore would293

be challenging to integrate into ITPs. Its dependence on Python also makes it difficult to294

use in other languages commonly used with neural networks such as C++.295

The second, yet unpublished attempt, is Socrates [24]. Again it positions itself as a296

platform for neural network analysis, which aims to unify different tools. The DSL is297

comparatively limited, primarily supporting different forms of robustness properties using298

a structured JSON file. It also has the disadvantage that one must redefine the internal299

structure of the network within the specification. However, one notable feature is its ability300

to specify probabilistic queries, for example no more than 10% of inputs violate the property.301
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network f

x0 x1 x2

y0 y1

network f

x3 x4 x5

y2 y3

network g

x6 x7

y4

Figure 4 Proposed extension to the Marabou query language to support properties involving
multiple networks and multiple applications of the same network. Input and output variables are
labelled sequentially in the order that the networks are passed to Marabou. The diagram shows the

proposed labelling of input and output variables for a property that applies network f to two
different inputs and network g to one input.

3 Multi-network specifications and the Marabou query language302

As described in Section 2.2, Marabou queries use the variables x1, ..., xm to represent the303

inputs to the network and y1, ..., yn to represent the outputs of the network, and one304

consequence of this is that it is unable to represent queries that involve multiple networks or305

applying the same network to more than one input. This situation is suboptimal as there306

are several such queries that one might be interested in verifying. For example when using307

teacher-student training [14], one might want to prove that the output of the student network308

is approximately equal to that of the teacher network.309

∀x : | student(x)− teacher(x) | ≤ ε310

Alternatively one might want to prove that a neural network f is a monotonic function with311

respect to one or more of its inputs [28], which requires reasoning about the output of the312

network when applied to two distinct inputs.313

∀x1, x2 : x1 ≤ x2 ⇒ f(x1) ≤ f(x2)314

Luckily, the inability to solve such queries is a limitation of the query language rather315

than a fundamental shortcoming of the verification engine. This is because Marabou uses316

an SMT-based approach, and internally has no concept of a network. Instead it represents317

the nodes and edges simply as a set of variables and constraints between them. One of our318

purposes in designing Vehicle is to explore what a high-level interface for neural network319

verification should look like, and consequently we think there is significant value to be gained320

in targeting maximally expressive verifiers, even if they do not yet exist. We therefore now321

propose a conservative, backwards-compatible extension to the Marabou query language322

which will be targeted by the Vehicle compiler.323

Conceptually the idea is very simple: if a property involves multiple neural network324

applications, then the set of applications is assigned an order, and additional input and325

output variables are then assigned sequentially using this order. An example illustration326

can be seen in Figure 4. In theory this can be seen as composing the networks in parallel,327

although in practice the different networks will still be stored in individual ONNX files.328

We should stress that this extension is not yet implemented by Marabou, although we329

hope to do so in the near future. Therefore only Vehicle properties that involve a single330

application of a single network can currently be verified by Marabou.331

ITP 2022
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type InputVector = Tensor Rat [2]

network controller : InputVector -> Rat

currentPosition : InputVector -> Rat
currentPosition x = x ! 0

previousPosition : InputVector -> Rat
previousPosition x = x ! 1

safeInput : InputVector -> Bool
safeInput x = -3.25 <= currentPosition x <= 3.25 and

-3.25 <= previousPosition x <= 3.25

safeOutput : InputVector -> Bool
safeOutput x = let y = controller x in

-1.25 < y + 2 * currentPosition x - previousPosition x < 1.25

safe : Prop
safe = forall x . safeInput x => safeOutput x

Figure 5 The specification of the safety property expressed in Vehicle for car’s neural network
controller.

4 Vehicle332

4.1 Specification language333

The Vehicle specification language is a functional language with Haskell-like syntax. At its334

centre is a small dependently-typed core, upon which various built-in operators and types335

are then added. Figure 5 shows one possible formulation of the specification for the running336

example, and will be used to explain the key features of the language. The full BNF grammar337

of the language can be found online.338

In order to better abstract away the representation of the inputs of our network, the339

first line of the specification declares InputVector to be a synonym for the type of 1-340

dimensional rational tensors of length 2. Vehicle has a set of builtin types that includes341

Bool, Int, Rat, Real and Tensor. An observant reader may note that neural networks use342

floating point arithmetic whereas we are using rationals in our specification. We acknowledge343

this compromises soundness, and aim for Vehicle to support floating point types in the344

future. Some neural network verifiers have recently been found to have similar unsoundness345

problems [17].346

Next, the car’s controller is bound to the name controller using the network keyword.347

As previously discussed, we are only required to provide a name and a type for the network348

in the specification, and the implementation of the network is provided later to the Vehicle349

compiler in the form of an ONNX file. Consequently the network remains a black-box350

function from the perspective of the specification, while still allowing us to write expressive351

properties which can be statically type-checked.352

The local functions currentPosition and previousPosition assign meaningful names353

to the first and second components of the input vector. The ! operator looks up the value354

of the tensor at the provided index. The safeInput and safeOutput declarations then use355
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these to provide human-readable statements of the pre-condition and post-conditions of356

controller-lemma.357

Finally, the safe declaration assembles these pieces together to complete the specification.358

It uses the universal quantifier forall to bind a new variable x representing an arbitrary359

input to the network and then states that whenever safeInput x is true then safeOutput360

x is true as well. Note that the type of safe is Prop rather than Bool. The Prop type361

represents the type of boolean expressions whose value cannot be decided within Vehicle362

itself. Most of the built-ins that use booleans are polymorphic with respect to either Bool363

and Prop. The exceptions are the quantifiers forall and exists which always return Prop,364

and if then else which always requires that the condition must be of type Bool.365

4.2 Compilation to Marabou366

The Vehicle compiler is implemented in Haskell and uses a lexer and parser generated by367

BNFC [12]. The type-checking algorithm is based on the one presented in [20], with the368

addition of type classes and unification-based term inference.369

We will now describe the compiler passes that translate a type-checked Vehicle program370

into verification queries suitable for Marabou. Note that only the very last pass in the371

pipeline does anything that is specific to Marabou, and therefore it should be relatively easy372

to target further verifiers.373

4.2.1 Network type analysis374

The first step is to check the networks declared in the specification against their implementa-375

tions in the ONNX files provided by the user. Using a custom-written Haskell bindings for376

the C implementation of ONNX, Vehicle reads the type information from the ONNX file and377

checks that it matches that declared by the user.378

Next it checks that the network type is supported by Vehicle. Although the ONNX379

format is significantly more expressive, supporting multiple tensor inputs with different sizes380

and element types, at the moment Vehicle supports only networks of following type, where A,381

B are one of Nat/Int/Rat/Real and m and n are literals:382

Tensor A [m] -> Tensor B [n]383

However it also allows syntactic sugar for this pattern in the form of:384

A -> ... -> A -> B385

If the type is in this form, then during this pass, it is normalised to Tensor A [n] -> Tensor386

B [1]. This necessitates traversing the program to find any applications of the network,387

f x1 ... xn and replacing them with f [x1, ... , xn] ! 0, where the [ ] syntax388

constructs a tensor from the comma-separated list of elements contained within the brackets.389

Finally, the network declarations are removed from the program, and the names and390

types of the networks are stored in the network context which is passed along to subsequent391

stages in the compiler.392

4.2.2 Normalisation393

The next step is normalisation. As well as performing the standard operations such as394

beta-reduction, normalisation of builtin operations applied to constants and substituting395

through any references to top-level functions, some domain-specific operations are required.396
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Firstly, the verifier input format described in Section 2.2, assigns variables to each397

individual input and therefore quantifiers over tensor variables must be converted to multiple398

quantifiers over its elements, e.g. forall (x : Tensor A [2, 2]) is normalised to forall399

(x11 x12 x21 x22 : A). Secondly, after normalisation, only top-level declarations with400

type Prop are of interest, as the rest should have been substituted through. Declarations401

which do not have type Prop are therefore removed from the program. After normalisation,402

we are therefore left with the following Vehicle program:403

safe : Prop
safe : forall (p0 p1 : Rat) .

(3.25 <= p0 <= -3.25) and (3.25 <= p1 <= -3.25) =>
-1.25 < controller [p0 , p1] + 2 * p0 - p1 < 1.25

404

4.2.3 Subdivision of queries405

Neural network verifiers only support solving existential queries involving conjunctions of406

numeric equalities and inequalities. We now describe how a Vehicle property is reduced to a407

set of such queries.408

Initially, Vehicle traverses the property making note of the set of quantifiers used. If only409

existential quantifiers are used then the property passes through this stage untouched. If410

only universal quantifiers are used then the property is negated. If both types of quantifier411

are used then the compiler will emit an error.412

Next, any if statements contained within the property are eliminated, using the trans-413

formation:414

if a then b else c ⇒ a => b and not a => c415

Note that this transformation is only valid if the arguments of if statement have type Prop416

or Bool. However this may not be the case, e.g. exists x . (if a then x else x + 2)417

>= 8. Nonetheless, as the overall type of the Vehicle property is guaranteed to be Prop, it is418

always possible to lift the if expression recursively until the arguments have type Prop, e.g.419

exists x . if a then x >= 8 else x + 2 >= 8, and then perform the elimination.420

Next, the expression is converted to disjunctive normal form, with implications being421

converted to ors and or expressions being lifted to the top-level. At this point the following422

invariants should hold of the property: only existential quantifiers, no negations, no if423

statements, and the only tensor literals present should be the input to the networks. Our424

running example is therefore:425

exists (p0 p1 : Rat) .
(3.25 <= p0 <= -3.25) and (3.25 <= p1 <= -3.25) and
controller [p0 , p1] + 2 * p0 - p1 < -1.25

or
exists (p0 p1 : Rat) .

(3.25 <= p0 <= -3.25) and (3.25 <= p1 <= -3.25) and
controller [p0 , p1] + 2 * p0 - p1 > 1.25

426

Each disjunction is now split up into its own query. From this point onwards, we will427

only follow the compilation of the first query in the running example.428

4.2.4 Moving from a functional to relational model of networks429

The next stage is to move from our model of the network as a function to the relational430

model used by the verifiers. As discussed in Section 3, we aim to support multiple neural431
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networks applications, and therefore this is a little more involved than one might at first432

suspect.433

The first step is to construct a list of the network applications in the query. Despite434

supporting multiple applications of the same network, we must be careful not to duplicate435

applications of the same network to the same input, as doing so would result in an exponential436

decrease in performance during verification. Therefore in order to avoid this, we first perform437

a common-sub-expression elimination pass, binding all network applications to fresh variables438

using let-expressions. We use an efficient hash-based approach procedure using co-de-Bruijn439

indices [22]. Once this pass is complete, we can generate the required list of network440

applications simply by calculating the set of free variables that occur in the query.441

In the next step, we recurse downwards into the expression, keeping track of our position442

in the list of network applications and replacing every let-bound neural network application443

with an expression that a) equates the inputs to the application with the input variables,444

and b) substitutes a list of the output variables for the bound variable in the body of the445

let-binding. For example, if we are looking at an application of network f with n inputs and446

m outputs, and the list of network applications that we have traversed so far has k inputs447

and l outputs in total then the following transformation would be performed:448

let y = f [e1 , ..., en] in e

⇒

[e1 , ..., en] == [X<k+1> ... X<k+n>] and e{y/[Y<l+1>, ..., Y<l+m >]}

449

As with if-elimination in Section 4.2.3, this is only a valid transformation if the type of e450

is Prop. However, this is guaranteed as the common sub-expression elimination inserts the451

lets at the top-most position, i.e. just before the quantifiers of the variables bound in the452

expression.453

However, there is one more niggle, as it is necessary to eliminate the variables quantified454

over by the user. Therefore, when performing the above substitution the compiler tracks455

which user variables are equated to which introduced input and output variables. Upon456

recursing back up the tree, when a quantifier is reached, it checks for an equated input or457

output variable. If there is, we remove the quantifier and substitute the latter through in its458

place. If there is not, then at the moment, the compiler errors. Note that in future it should459

be possible to refine this analysis, to reduce the number of such errors. For example the460

property exists v . f (v + 2) <= 0 would generate the constraint x0 = v + 2 which461

currently errors, but could in fact be rearranged to the form v = x0− 2 and then substituted462

through.463

Finally, the compiler then reruns the normalisation pass in order to simplify the introduced464

tensor expressions. This leaves the first query from the running example as:465

(3.25 <= x0 <= -3.25) and
(3.25 <= x1 <= -3.25) and
y0 + 2 * x0 - x1 < -1.25

466

4.2.5 Conversion to Marabou syntax467

Finally we now specifically target Marabou’s query language, recursing through the query468

and splitting conjunctions into separate assertions. Each individual assertion is first checked469

for linearity and then rearranged to put the constant on the right hand side of the relation.470

The left-hand side is then transformed into the required syntax, resulting in the query in471
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Figure 3a. This query is then written to a user-defined location ready to be fed into Marabou.472

Marabou proves both queries in approximately 20 seconds on a mid-range laptop.473

4.3 Compilation to Agda474

After compiling the Vehicle specification to Marabou and verifying the resulting queries, we475

can now use it to complete the overall proof that the car never leaves the road by compiling476

it to Agda. As before, the Vehicle program is type-checked and the network types compared477

against those in the ONNX file. The subsequent transformation to Agda code is relatively478

simple. The only non-trivial insight needed is that any Vehicle expression of type Prop must479

be lifted to the Set type in Agda. This leads to having two different methods of compiling480

each built-in, depending on whether it is being instantiated with the Bool or Prop type. The481

output of compiling the example specification is:482

module ControllerSpec where483

484

InputVector : Set485

InputVector = Tensor Q (2 :: [])486

487

postulate controller : InputVector → Q488

489

currentPositon : InputVector → Q490

currentPositon x = x (# 0)491

492

previousPositon : InputVector → Q493

previousPositon x = x (# 1)494

495

SafeInput : InputVector → Set496

SafeInput x = (Q.- (Z.+ 13 Q./ 4) Q.≤ currentPositon x × currentPositon x Q.≤ Z.+ 13 Q./ 4)497

× (Q.- (Z.+ 13 Q./ 4) Q.≤ previousPositon x × previousPositon x Q.≤ Z.+ 13 Q./ 4)498

499

SafeOutput : InputVector → Set500

SafeOutput x =501

Q.- (Z.+ 5 Q./ 4) Q.< (controller x Q.+ (Z.+ 2 Q./ 1) Q.* currentPositon x) Q.- previousPositon x502

× (controller x Q.+ (Z.+ 2 Q./ 1) Q.* currentPositon x) Q.- previousPositon x Q.< Z.+ 5 Q./ 4503

504

abstract505

safe : ∀ (x : Tensor Q (2 :: [])) → SafeInput x → SafeOutput x506

safe = checkVehicleProperty record507

{ propertyFile = "path/to/property/file.vclp"508

; propertyName = "safe"509

}510

511

There are a few things to note. Firstly, the network is declared as a postulate and therefore512

cannot be evaluated within Agda. This is not a fundamental limitation, and with a bit of513

effort the Haskell bindings created for ONNX could be lifted to Agda. Secondly, the desired514

proof safe is within an abstract block which prevents code that uses the generated module515

from depending on the implementation of the proof.516
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Finally, the definition of the proof is implemented via a macro checkVehicleProperty which517

calls out to the Vehicle compiler. A naive implementation would have Agda use a reference518

to the query files to call Marabou directly. However, while Marabou is running the user519

would be unable to interact with the file. As Marabou takes over 20 seconds to verify these520

queries, and potentially much longer for more complex queries, this would unacceptably521

degrade the user experience.522

Instead we require users to explicitly ask Vehicle to use Marabou to verify the specification.523

If successful then Vehicle will write the result to a Vehicle proof cache file which contains524

locations and hashes of the ONNX files and the verification status of the specification. It525

is a reference to this file rather than the original source code that the Agda macro passes526

back to Vehicle. Vehicle reads this file, uses the hashes to check that the network has not527

changed on disk, and then returns the verification status of the property to Agda. There is528

however one missing piece of the puzzle, namely the integrity of the generated Agda code.529

In theory a malicious or careless user could change the type of the proof in the Agda code530

which would currently not be detectable by Vehicle. While Vehicle does store the hash of531

the generated Agda code in the proof file, Agda macros cannot query the location of the532

source file from which they are called and so Vehicle cannot locate the current Agda file to533

re-hash. Hopefully this short-coming in Agda can be fixed in the future.534

Leaving aside this issue, in summary the generated Agda module is now linked to both535

the underlying ONNX file and the result of the Marabou verifier. The module can now be536

imported into the main development outlined in Section 2.1 and the safe proof can now be537

used in the proof of controller-lemma. This therefore completes the formal proof of Theorem 1538

that, subject to the assumptions that the sensor error is never more than 0.25 and the wind539

never shifts by more than 1 per unit time, the neural network controlled vehicle will never540

leave the road.541

5 Conclusions and future work542

This paper has described how the Vehicle tool can be used to express high-level specifications543

for neural networks. These can then be compiled to low-level queries for neural network544

verifiers, and to high-level postulates within an interactive theorem prover, linked by hashes, to545

provided end-to-end verification of neural-network powered systems. We have demonstrated546

this process by proving the safety of a system involving a 20,000 node neural network547

controller. All accompanying code, including Vehicle itself, is available online [7].548

We expect that as the field of neural network verification matures, a system like Vehicle549

that integrates automated and interactive theorem proving will be required to ensure that550

verified neural network specifications support the specifications of the larger systems that551

contain them.552

Before discussing possible future work, we should emphasise that building Vehicle has553

been a significant undertaking, as many of the necessary components are still relatively554

immature. Firstly, in order to allow the Vehicle compiler to read the ONNX files we have555

had to create Haskell bindings for the C version of the ONNX runtime library. Secondly,556

the current version of Marabou which is implemented in C++, only supports networks in557

the ONNX format via its Python bindings. We have therefore had to patch support into558

Marabou for reading ONNX files natively in C++. This involved using undocumented C++559

bindings to the ONNX format to manually traverse and parse the networks into Marabou’s560

internal representation. Therefore, while we believe that neural network verification has561

a bright future, there is significant work to be done before mature, robust, flexible and562
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interoperable tools can be developed.563

5.1 Improved integration564

One possible future direction is to increase the number of ITPs that Vehicle connects to, and565

in particular those with better support extracting verified code. While there are no reasons566

why popular theorem provers such as Coq, Isabelle and Idris cannot be targeted, there are567

also some more interesting potential targets. Among these is a relatively new ITP called568

KeYmaera X [13] which is based on differential dynamic logic and is specifically designed to569

verify the safety of real-world controllers using continuous dynamics. Alternatively, adding570

the ability to compile to a suitable training framework such as Tensorflow would allow the571

same specification to be used in training.572

5.2 Language features573

There are many additional features that could be added to the Vehicle language. This574

includes adding top-level parameter declarations, which would allow users to pass arbitrary575

values in at compile time rather than hard-coding them in the property. For example, the576

epsilon value in specifications of robustness properties [6], or the training dataset with which577

the network is robust to. Such a feature would facilitate the feedback loop between the578

verifier and reinforcement learning algorithms implemented in [15].579

Another improvement would be for the compiler to read the names of the input and580

output variables from the ONNX file, and use them to automatically bind functions mapping581

input and output vectors to their elements. In the running example this would remove the582

need to explicitly define the functions currentPosition and previousPosition.583

5.3 A call to arms584

We would like to end with a call to arms to the neural network verifier community. Unlike585

SMT solvers which have converged on SMTLib as a unified input format, every neural network586

verifier currently uses their own incompatible input format. While it is impressive that587

DNNV [25] unifies 13 different verifiers, it is high-level language and therefore is unsuitable588

to build other tools such as Vehicle on top of. We argue that in order to have a thriving589

ecosystem of both backends and frontends, a common low-level interface is needed for solvers.590

There is currently a fledgling proposal out there in the form of VNNLib [2], but it needs591

significantly more work to ensure it is suitably expressive to capture all possible properties592

of interest.593
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